UNIGE document Scientific Article
previous document  unige:100701  next document
add to browser collection

CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance

Cantley, Jennifer L
Yoshimura, Toru
Camporez, Joao Paulo G
Zhang, Dongyan
Kumashiro, Naoki
Guebre-Egziabher, Fitsum
Jurczak, Michael J
show hidden authors show all authors [1 - 19]
Published in Proceedings of the National Academy of Sciences. 2013, vol. 110, no. 5, p. 1869-74
Abstract Comparative gene identification 58 (CGI-58) is a lipid droplet-associated protein that promotes the hydrolysis of triglyceride by activating adipose triglyceride lipase. Loss-of-function mutations in CGI-58 in humans lead to Chanarin-Dorfman syndrome, a condition in which triglyceride accumulates in various tissues, including the skin, liver, muscle, and intestines. Therefore, without adequate CGI-58 expression, lipids are stored rather than used for fuel, signaling intermediates, and membrane biosynthesis. CGI-58 knockdown in mice using antisense oligonucleotide (ASO) treatment also leads to severe hepatic steatosis as well as increased hepatocellular diacylglycerol (DAG) content, a well-documented trigger of insulin resistance. Surprisingly, CGI-58 knockdown mice remain insulin-sensitive, seemingly dissociating DAG from the development of insulin resistance. Therefore, we sought to determine the mechanism responsible for this paradox. Hyperinsulinemic-euglycemic clamp studies reveal that the maintenance of insulin sensitivity with CGI-58 ASO treatment could entirely be attributed to protection from lipid-induced hepatic insulin resistance, despite the apparent lipotoxic conditions. Analysis of the cellular compartmentation of DAG revealed that DAG increased in the membrane fraction of high fat-fed mice, leading to PKCε activation and hepatic insulin resistance. However, DAG increased in lipid droplets or lipid-associated endoplasmic reticulum rather than the membrane of CGI-58 ASO-treated mice, and thus prevented PKCε translocation to the plasma membrane and induction of insulin resistance. Taken together, these results explain the disassociation of hepatic steatosis and DAG accumulation from hepatic insulin resistance in CGI-58 ASO-treated mice, and highlight the importance of intracellular compartmentation of DAG in causing lipotoxicity and hepatic insulin resistance.
Keywords 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics/metabolismAdipose TissueWhite/drug effects/metabolismAnimalsCell Membrane/drug effects/metabolismDietHigh-FatDiglycerides/metabolismEndoplasmic Reticulum/drug effects/metabolismGene Expression/drug effectsGene Knockdown TechniquesHumansImmunoblottingInjectionsIntraperitonealInsulin ResistanceLipids/chemistryLiver/drug effects/metabolism/pathologyMaleMiceMiceInbred C57BLOligonucleotidesAntisense/administration & dosage/geneticsProtein Kinase C-epsilon/metabolismProtein Transport/drug effectsReverse Transcriptase Polymerase Chain Reaction
PMID: 23302688
Full text
Article (Published version) (694 Kb) - document accessible for UNIGE members only Limited access to UNIGE
(ISO format)
CANTLEY, Jennifer L et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. In: Proceedings of the National Academy of Sciences, 2013, vol. 110, n° 5, p. 1869-74. doi: 10.1073/pnas.1219456110 https://archive-ouverte.unige.ch/unige:100701

279 hits

0 download


Deposited on : 2017-12-20

Export document
Format :
Citation style :