Leadless pacing using the transcatheter pacing system (Micra TPS) in the real world: initial Swiss experience from the Romandie region

VALITON, Valerian, et al.

Abstract

Leadless pacemakers are implanted in Switzerland since June 2015. Large worldwide registries have shown high implant success, low complication rates, and good electrical parameters up to 12 months' follow-up. However, data are scarce outside the investigational setting. The purpose of this study is to assess the real-world experience regarding clinical safety and efficacy of Micra TPS (transcatheter pacing system) leadless pacemakers.

Reference

PMID : 30202950
DOI : 10.1093/europace/euy195

Available at:
http://archive-ouverte.unige.ch/unige:145528

Disclaimer: layout of this document may differ from the published version.
Leadless pacing using the transcatheter pacing system (Micra TPS) in the real world: initial Swiss experience from the Romandie region

Valérian Valiton1,2, Denis Graf2,3, Etienne Pruvot3, Patrice Carroz3,4, Martin Fromer3, Laurence Bisch3, Ván Nam Tran3, Stéphane Cook2, Christoph Scharf5, and Haran Burri1*

1Department of Cardiology, Geneva University Hospital, Rue Gabrielle Perret Gentil 4, 1205 Geneva, Switzerland; 2Department of Cardiology, University and Hospital Fribourg, Fribourg, Switzerland; 3Service of Cardiology, Cardiovascular Department, Lausanne University Hospital, Lausanne, Switzerland; 4Department of Cardiology, Sion Hospital; and 5Klinik Hirslanden, Zurich, Switzerland

Aims

Leadless pacemakers are implanted in Switzerland since June 2015. Large worldwide registries have shown high implant success, low complication rates, and good electrical parameters up to 12 months' follow-up. However, data are scarce outside the investigational setting. The purpose of this study is to assess the real-world experience regarding clinical safety and efficacy of Micra TPS (transcatheter pacing system) leadless pacemakers.

Methods and results

Retrospective observational, multi-centre study designed to assess initial safety and efficacy of the Micra TPS in the Swiss Romande region. A total of 92 patients were included from four different centres with an implantation success rate of 97.8% (90 of 92). Thresholds were overall low at implantation (median 0.38 V/0.24 ms, ranging from 0.13 to 2.88 V/0.24 ms) and remained stable over 1-year follow-up. The perioperative serious adverse event rate was 6.5% in six patients which lead to prolonged hospitalization in five patients and death in one patient. In addition, three further major events (3.3%) occurred during an average follow-up of 1 year, requiring implantation of a standard transvenous pacemaker in two patients, and surgical explantation of the Micra TPS in one patient due to intractable ventricular tachycardia.

Conclusion

Leadless pacemakers are a valuable adjunct for treating selected patients requiring single-chamber pacing. However, in this initial experience, major complication rates were high (9.8%). The implant procedure requires proper training and should be performed in an adequate setting.

Keywords

Leadless pacemaker • Transcatheter pacing system • Implantation • Follow-up • Complications

Introduction

Since 1970, totally self-contained intra-cardiac pacemakers were studied but never made it to clinical practice because of battery longevity and size.1 In June 2015, the Micra TPS (Transcatheter Pacing System, Medtronic, Minneapolis, MN, USA) was introduced in Switzerland. Unlike conventional pacemakers with leads and a subcutaneous pocket, these miniature intra-cardiac devices are implanted directly in the right ventricle. The aim of this new device is to avoid lead and pocket-related complications of traditional pacing systems, which can amount to up to 9–12% of cases at 6 months according to different studies.2,3

In the Micra investigational study, Reynolds et al. report a 99.2% successful implant rate (719/725 patients).4 The efficacy endpoint defined by low and stable pacing threshold at 6 months was 98.3% (data from 292 patients). The long-term safety of the same group was consistent with the early published data with a freedom from major complications of 96% at 12 months.5 In a post-market registry, Roberts et al.6 confirmed the good results of the investigational study, with an

* Corresponding author. Tel: +41 22 372 72 00; fax: +41 22 372 72 29. E-mail address: haran.burri@hcuge.ch

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.

Downloaded from https://academic.oup.com/europace/article/21/2/275/5091845 by Université de Genève user on 12 October 2020
implant success rate of 99.6%, a low rate of major complications at 30 days (1.5%), and excellent electrical performance of the Micra TPS.

As this is new technology and there is currently only one study in the real-world setting, our aim was to assess the performance and safety of this device in the Romandie (French-speaking) region of Switzerland.

Methods

Study design

The study is retrospective, observational, non-randomized, multicentric, and designed to evaluate the early performance and safety of the Micra TPS in the Romandie region. The study plan protocol was approved by the institution ethics committee of the University Hospital of Geneva, which served as the central committee for the study centres.

Patients, procedure, and study device

All patients intended to be implanted with a Micra TPS from June 2015 to May 2017 were included in the study. Patients had a clinical indication for a single-chamber pacemaker (according to the evaluation of the centre). There were no exclusion criteria. The patients were recruited from four centres implanting the Micra TPS: the university hospitals of Geneva and Lausanne and the regional hospitals of Fribourg and Sion.

The Micra TPS is a self-contained single-chamber ventricular pacemaker. It has a volume of 0.8 cm³, a length of 25.9 mm, and a weight of 2.0 g (Figure 1). It has similar functions as a traditional single-chamber pacemaker with features such as rate-adaptive pacing, automated capture thresholds, etc. with more limited memory functions and algorithms.

The device is inserted through the femoral vein via a 27-Fr external introducer and positioned in the right ventricle, where it is fixedated by four flexible nitinol tines (see Figure 2).

The procedure was performed in the catheterization laboratory of the four centres by seven different cardiologists who had all undergone specific training by the manufacturer.

Follow-up and endpoints

Data from the patients’ files were reviewed regarding the implantation procedure, device follow-ups, and adverse events. When required, additional information was directly provided by the operators.

Charts were reviewed for procedure duration, fluoroscopy time, electrical parameters (capture thresholds, pacing impedance, and battery voltage), and complications.

Major procedure-related complications were defined as those which prolonged hospital stay, required a new admission, resulted in significant disability, were life-threatening or resulted in death through 6 months after implantation.

In order to compare procedure duration and fluoroscopy times with standard single-chamber pacemakers, data from the Swiss national pacemaker registry were analysed for 2016. Data for all leadless pacemakers implanted in Switzerland from June 2015 to May 2017 were also extracted. The website automatically provides the user with averages and ranges for data for the chosen time period.

Statistical analysis

Statistical analysis was performed using the IBM SPSS v24 program. Data distribution was verified using histogram analysis and the Kolmogorov–Smirnov and Shapiro–Wilk tests. Electrical parameters showed a skewed distribution, and changes over follow-up were analysed using the Kruskal–Wallis test. Data are displayed as mean ± SD or median ± 25th–75th percentiles as appropriate. A two-tailed P-value of <0.05 was considered statistically significant.

Results

Patients

We included 92 patients implanted from June 2015 to June 2017, with last data collection at the end of June 2017, with a mean follow-up of 12.4 ± 7.4 months.

The baseline characteristics of our patients are presented in Table 1. The youngest patient was 22 years old and suffered from congenital high-grade atrioventricular (AV) block. The Micra TPS was implanted instead of a dual-chamber system according to the patient’s choice. Only two patients were younger than 60 years, and the oldest patient was aged 96 years.

The reason for Micra TPS implantation instead of a conventional transvenous pacemaker was not detailed in the patient files. However, one patient had failed implantation of a transvenous device because of a persistent left superior vena cava, and four patients had a septic state that contraindicated a traditional transvenous pacemaker.

Four patients had a prior transvenous pacemaker, which had to be removed in two of them because of infection. The third patient had breast radiotherapy which needed removal of the pacemaker. The last patient had a transvenous pacemaker which was approaching end of life and preferred not to have device replacement by a conventional system.

Procedural success

Of the 92 patients undergoing implantation, 90 (97.8%) were successfully implanted. The two unsuccessful cases are detailed below (one death and one cardiac tamponade).

The mean procedure duration was 41 ± 22 min (range 16–129 min). The average duration of fluoroscopy was 6.7 ± 4.8 min (range 1–26 min) with a mean dose area product of 2630 ± 4594 cGycm².

According to data from the Swiss national pacemaker registry for the same 2-year period (June 2015–May 2017), a total of 289 Micra TPS leadless pacemakers were implanted across Switzerland. Mean procedure duration was 47 min (range 16–130 min) with a mean fluoroscopy duration of 9.4 min (range 1–60 min). In comparison to Micra TPS, implantation of standard single-chamber transvenous pacemaker...
pacemakers \((n = 1320)\) took on average 50 min with 5.3 min of fluoroscopy time (national registry data from 2016).

Electrical performance

The results are displayed in Figure 3.

Capture thresholds at implantation were low (median 0.38 V/0.24 ms, ranging from 0.13 to 2.88 V/0.24 ms). At Day 1 post-implantation, of the 90 implanted patients, 74 (82.2%) had a capture threshold <1 V/0.24 ms and four (4.4%) patients had an elevated threshold >2 V/0.24 ms, all of which were also elevated at implantation. Thresholds remained stable over follow-up.

Capture thresholds of >2 V/0.24 ms at 1, 6, and 12 months were observed in 6/78 (7.7%), 5/46 (10.9%), and 3/30 (10%) patients, respectively. One patient had an increase in capture threshold greater than 1.5 V from implantation to 6 months of follow-up. Except for this patient, all patients with elevated capture thresholds at baseline remained stable during follow-up.

Sensing amplitudes remained stable, but there was a significant reduction in pacing impedance over follow-up.

The mean battery voltage at 1 year (29 patients) was 3.04±0.04 V.

Procedure-related major complications

Perioperative complications

There were six major perioperative complications (6.5%) in six patients, from all four study sites, which led to prolonged hospitalization in five patients and death in one patient. The cases are detailed below:

1. A death occurred in a 91-year-old diabetic and hypertensive female (with a body mass index of 25 kg/m²) with heart failure and 2nd degree AV block. During attempts at positioning the Micra TPS across the tricuspid valve (and before positioning the device at the apex), the patient presented with tamponade and haemodynamic collapse. Despite emergency pericardiocentesis and reanimation, the patient could not be resuscitated. An autopsy was not performed, and it is
assumed that the device had perforated the atrial appendage. This was the operator’s 7th patient, without subsequent major perioperative complications in the following 32 patients.

(2) A second case of cardiac tamponade and haemodynamic collapse occurred in a 76-year-old female with sick sinus disease and paroxysmal AF while delivering the device at the right ventricular apex. She was successfully reanimated with pericardiocentesis. The procedure was interrupted, and the patient refused any further implantation. This was the 8th implantation of the operator.

(3) A 79-year-old male patient with AF and symptomatic bradycardia experienced a local complication with haematoma and active bleeding at the groin puncture site (despite prior interruption of anticoagulants and a haemostatic figure-of-eight suture at the puncture site after sheath withdrawal). External compression was required, subsequently with extensive ilio-femoro-popliteal deep vein thrombosis. The patient ultimately required inferior vena cava filter placement. He was treated in the hospital for a total of 30 days and received transfusion of three units of packed red blood cells. The complication occurred in the 9th patient of an operator with 15 years’ experience in large-bore femoral venous access for lead extractions.

(4) Another local complication occurred in an 86-year-old male patient with three-vessel coronary artery disease and paroxysmal AF. He was implanted with a Micra TPS because of second degree Mobitz II AV block. During the intervention, after three deployments the TPS catheter was removed for inspection due to high thresholds and a voluminous thrombus was found at the distal extremity. The operator changed the device, and a new TPS was successfully deployed with a low pacing threshold. A routine transthoracic echocardiogram showed a thrombus attached to the tricuspid valve (which was absent on the preoperative recording). He received intravenous therapeutic heparin and the thrombus disappeared. At 48 h post-implantation, he presented with haemodynamic instability (hypotension and tachycardia) with a haemoglobin drop requiring transfusion of two units of packed red blood cells. An 8 × 5 cm haematoma without active bleeding was found at the right groin puncture site. He was discharged after 5 days of conservative management. This was the 8th patient of the operator.

(5) A 70-year-old patient with slow atrial fibrillation (AF), 50% left ventricular ejection fraction (LVEF), two-vessel coronary artery disease, and hypertension, experienced during catheter handling two episodes of unstable ventricular tachycardia which required emergent electrical cardioversion. The device was finally positioned after three deployments without any further arrhythmia during the procedure and the following 24 h during which the patient’s rhythm was monitored.

(6) A 75-year-old patient with symptomatic bradycardia and permanent AF, moderate aortic stenosis, coronary artery disease, and normal ejection fraction, suffered from intense tearing chest pain during the implantation, which persisted during the days following the procedure. A complete work-up was performed and a cardiac, pulmonary, or gastro-intestinal aetiology could be ruled out. The suspected cause was a musculoskeletal pain related to the position during the procedure.

Table 1 Baseline characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients (n = 92)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>80.3 ± 11.1</td>
</tr>
<tr>
<td>Male</td>
<td>60 (65%)</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>57 ± 10</td>
</tr>
<tr>
<td>Pacing indication</td>
<td></td>
</tr>
<tr>
<td>Brachycardia with atrial arrhythmia</td>
<td>47 (51.1%)</td>
</tr>
<tr>
<td>Sinus rhythm with AV block</td>
<td>22 (23.9%)</td>
</tr>
<tr>
<td>2nd degree AV block</td>
<td>6 (6.5%)</td>
</tr>
<tr>
<td>3rd degree AV block</td>
<td>16 (17.4%)</td>
</tr>
<tr>
<td>Sinus node dysfunction</td>
<td>16 (17.4%)</td>
</tr>
<tr>
<td>Carotid sinus hypersensitivity</td>
<td>7 (7.6%)</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>16 (17.4)</td>
</tr>
<tr>
<td>LBBB</td>
<td>15 (16.3)</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>16 (17.4)</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>43 (46.7)</td>
</tr>
<tr>
<td>Valvular disease</td>
<td>30 (32.6)</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>28 (30.4)</td>
</tr>
<tr>
<td>Prior pacemaker</td>
<td>4 (4.3)</td>
</tr>
</tbody>
</table>

Data shown as n (%) or mean ± SD.

AV, atrioventricular; COPD, chronic obstructive pulmonary disease; LBBB, left bundle branch block; LVEF, left ventricular ejection fraction.

Figure 3 Electrical performance of the Micra TPS at implantation and over 1-year follow-up. Boxes correspond to median and 25th to 75th percentiles, and whiskers correspond to minimum and maximum values. mo, months; TPS, transcatheter pacing system.
Complications during follow-up

Three (3.3%) major complications occurred during a mean follow-up of 12.4 ± 7.4 months.

Two patients had elevated capture thresholds (4.25 V/0.24 ms and 4.0 V/0.24 ms) which required implantation of a traditional transvenous system at 2 and 13 months post-implantation, respectively. Of note, capture thresholds were already elevated at implantation for these two patients at 2.5 V/0.24 ms and 2.0 V/0.24 ms, despite multiple deployments of the system (3 and 5, respectively) with the devices being left in an apical position in the hope that thresholds would improve over time. The Micra TPS were left in place, and there were no complications with the transvenous implantations.

The patient who required electrical cardioversion for ventricular tachycardia during implantation was admitted 2 months later with recurrent haemodynamically unstable monomorphic ventricular tachycardia at 180–220 b.p.m. Despite amiodarone, beta blockers, verapamil, lidocaine, and external defibrillation, the ventricular tachycardia persisted. Radiofrequency catheter ablation was performed after having mapped the tachycardia to the interventricular septum via transseptal access, close to the insertion site of the Micra TPS. Application of up to 50 W of radiofrequency energy resulted in slowing and interruption of the arrhythmia. The ventricular tachycardia however recurred, with gradual acceleration (suggesting an automatic mechanism) after the end of the procedure. The patient underwent emergent surgical explantation of the Micra TPS, following which the arrhythmia resolved over the next 2 weeks (under amiodarone which had been previously introduced to treat AF). An MRI revealed asymmetrical septal hypertrophy with an LVEF of 50%, without ischaemia. A standard single-chamber pacemaker was implanted, and he was finally discharged after a 40-day hospitalization, with an uneventful course during the following 3 years of follow-up.

There were no cases of embolization of the device or infection.

Mortality at follow-up

There were 19 deaths (20.7%) during follow-up, none of which were presumed to be directly related to the Micra TPS. Among these deaths, 4 occurred due to terminal cardiac failure, 1 due to stroke, 2 to ischaemic colitis, and 12 of unknown causes.

Discussion

The main findings of our study were that: (i) implant success was high and comparable with previous reports; (ii) electrical parameters at implantation and over follow-up were good and comparable with previous data; (iii) the rate of major complications was 9.8% and higher than previously reported.

The implant success rate was high, with procedure durations comparable to those previously reported in the first publication on Micra TPS implantation (total procedure time 34.8 ± 24.1 min, fluoroscopy time 8.9 ± 16.6 min). Implantation duration in our series was also comparable to that of standard single-chamber pacemakers in Switzerland (47 min vs. 50 min, respectively), with slightly longer fluoroscopy durations (9.4 min vs. 5.3 min, respectively). Patient X-ray exposure is likely to be significantly higher for Micra TPS implantation because high-quality cine acquisitions are necessary to verify proper anchoring of the tines (this is mitigated for the operator who is positioned at the patient’s groin).

Capture thresholds were low, as previously reported, which is important for device longevity. High thresholds (>2 V/0.24 ms) were encountered in 10.9% of patients at 6 months, which is higher than the 2% for previously reported data. Thresholds were stable over follow-up. As previously reported, pacing impedances decreased over time, which may reduce battery longevity as this results in a higher current drain.

Our series had a high rate of major complications (6.5% perioperative and 3.3% over follow-up). This is much higher than previously reported (1.5% at 30 days and 4.0% at 6 months). This is the first publication of a per-operative death directly related to the procedure. Mortality may be under-reported in the literature for a variety of reasons (e.g. patients not being included in a registry). It should however be noted that Medtronic automatically reports all cases of perioperative deaths of which they are aware of to the MAUDE database, so it is likely that the majority of cases have been disclosed. Fatal intra-procedural outcome due to tamponade has been reported in 12 patients implanted with a Micra TPS in this database at the time of submission of this article.

We speculate that tamponade resulting from Micra TPS implantation may be more serious than that caused by a standard pacing lead, due to the size of the device. This underscores the importance that emergent pericardiocentesis is available on site as a bailout for tamponade and that the paramedical staff is trained for reanimation. The French Society of Cardiology recently published recommendations suggesting that these devices should only be implanted in centres with cardiac surgery because of the exceptional need for emergency thoracotomy and risk of femoral vascular tears.

Another complication was life-threatening ventricular arrhythmia, which occurred at implantation and at follow-up in one patient and resolved only after emergent surgical device explantation. A pro-arrhythmic effect of the fixation tines was most probably responsible for the event. It should be mentioned that the Micra TPS currently does not store electrograms of ventricular arrhythmias, and in case of syncope, this diagnosis should be considered. There is a recent publication of ventricular premature beats presumably induced by a Micra TPS (the extrasystoles had an identical morphology as the paced beats) which triggered polymorphic ventricular tachycardia, and required percutaneous extraction of the device.

There may be several explanations for the higher complication rate observed in our report compared to the literature. Our patient population was considerably older (on average 80.3 years vs. 75.9 years in the investigational study and 75.2 years in the post-approval registry), and with more comorbidities especially coronary artery disease, pulmonary disease, and chronic renal failure. Importantly, this report includes the initial experience of all the operators, and complications (as well as the relatively high proportion of elevated capture thresholds) are likely to have been affected by their learning curve. The two cases of cardiac tamponade occurred in the very early experience of the operators and were not encountered thereafter. However, other complications may have been unrelated to the learning curve of this procedure (such as ventricular arrhythmia, or the venous access issue encountered by an operator experienced with large-bore femoral access).

In a recent EHRA survey, 64% of operators perceived leadless pacemaker implantations as being ‘easy and safe’. Nevertheless, our report stresses the importance of proper training (including
virtual-reality simulators), as the procedure is very different from that of conventional devices, with potentially serious complications. Furthermore, it is advisable that very close attention is paid during the initial experience of implanters (e.g. for the first 10 cases), ideally with the support of peers. As with any procedure, initial experience should be consolidated and maintained by a sufficient caseload thereafter. The French Society of Cardiology suggests a minimum of 20 implantations per medical centre per year with a maximum of two operators.9 It was surprising to note that patients in sinus rhythm with AV block, sinus dysfunction, or carotid sinus hypersensitivity were implanted with a single-chamber pacemaker, as a dual-chamber device is indicated according to current guidelines.12 Reasons for choosing an intra-cardiac pacemaker over a standard device were rarely available in the patient files. Advanced age, cognitive disorders, and other comorbid conditions or low percentage of pacing may have influenced the choice of pacemaker type. As this study reports the initial experience with the Micra TPS, the novelty of the device probably might have influenced the investigators’ choice as well. There are currently no international recommendations on the use of leadless pacemakers. Recently, the French ‘Commission nationale d’évaluation des dispositifs médicaux et des technologies de santé’ recommends intra-cardiac pacemakers mainly for adults at high risk of lead-related complications (history of lead fracture) and in whom veins must be spared (undergoing chemotherapy or haemodialysis) as well as patients without venous access and with a high risk of infection (history of endocarditis or septicaemia).9 Patient life expectancy is an important factor, as additional devices will be implanted upon battery exhaustion (depleted device will be inactivated and not is an important factor, as additional devices will be implanted upon battery exhaustion, no international recommendations on the use of leadless pacemakers). Recently, the French ‘Commission nationale d’évaluation des dispositifs médicaux et des technologies de santé’ recommends intra-cardiac pacemakers mainly for adults at high risk of lead-related complications (history of lead fracture) and in whom veins must be spared (undergoing chemotherapy or haemodialysis) as well as patients without venous access and with a high risk of infection (history of endocarditis or septicaemia).9 Patient life expectancy is an important factor, as additional devices will be implanted upon battery exhaustion (depleted device will be inactivated and not explanted). Omdahl et al.13 demonstrated on six human cadaver hearts that up to three devices could be accommodated in the right ventricle without physical interaction. Exceptionally, young patients may be implanted with a Micra TPS in order to delay implantation of a transvenous system, as was the case in the youngest patient in our series, aged 22 years.

Limitations
Our study sample size is relatively small with only 92 patients. The retrospective nature of our study means that data may have been missed (e.g. minor complications, which were not reported in the patient files). The training received by some of the operators by the manufacturer at the launch of the device has since been modified and may not reflect that currently dispensed to new operators (thus possibly impacting complication rates).

Conclusions
Intra-cardiac leadless pacemakers represent a technological accomplishment and a paradigm shift in device therapy. Clearly, they are of benefit in selected patients, such as those with venous access issues or at risk of pocket/lead complications. More widespread use of these devices as a substitute for conventional transvenous pacemakers should however be carefully weighed against the longevity of the device (limited to ~10 years—at the term of which a new device needs to be implanted), the risk of complications (which, as shown by our report, are by no means negligible—at least during initial operator experience), as well as their cost (roughly 50% more than a conventional single-chamber pacemaker in Switzerland).

Acknowledgements
The authors wish to thank Mrs Carine Stettler for her valuable assistance.

Conflict of interest: H.B. reports speaker fees and institutional fellowship/research contracts from Abbott, Biotronik, Boston Scientific, Medtronic, and LivaNova. M.F. has received speaker fees by Medtronic Switzerland. C.S. has received research grants from Medtronic, Boston, Abbott and Biotronik and holds equity interests in Acutus Medical.

References