Cutaneous adnexal cysts revisited: what we know and what we think we know

KAYA, Guerkan, SAURAT, Jean-Hilaire

Abstract

Cutaneous cysts have been classified by dermatopathologists in many different ways. Here, we propose a novel classification of cutaneous adnexal cysts according to their origin in the folliculosebaceous unit and the sweat glands. By examining the lining of the cystic structure, its origin can be easily identified. Epidermal cysts have an epithelial wall containing a granular layer with lamellar keratinization, indicating an infundibular origin. Tricholemmal cysts have an undulating epithelial wall with no granular layer and a compact keratinization, showing an isthmic origin. In steatocystoma, dermoid cyst, and folliculosebaceous hamartoma, the epithelial lining shows a crenulated appearance which is seen in the sebaceous duct. Hidrocystoma shows the characteristic cuboidal epithelial lining of sweat glands with decapitation secretion in its apocrine forms. The hair matrix cyst wall is composed of basaloid cells maturing to squamoid cells, as seen in the normal hair matrix and shadow cells in the lumen. Metabolizing acquired dioxin-induced skin hamartoma (MADISH) is a cystic lesion with lamellar keratinization, and no […]

DOI : 10.1159/000488585
PMID : 29998103

Available at:
http://archive-ouverte.unige.ch/unige:126312

Disclaimer: layout of this document may differ from the published version.
Cutaneous Adnexal Cysts Revisited: What We Know and What We Think We Know

Gürkan Kayaa Jean-Hilaire Sauratb

aDepartment of Dermatology, University Hospital of Geneva, Geneva, Switzerland; bDepartment of Pharmacology and Toxicology, University of Geneva, Geneva, Switzerland

Keywords
Cutaneous cysts · Classification · Cytokeratin

Abstract
Cutaneous cysts have been classified by dermatopathologists in many different ways. Here, we propose a novel classification of cutaneous adnexal cysts according to their origin in the folliculosebaceous unit and the sweat glands. By examining the lining of the cystic structure, its origin can be easily identified. Epidermal cysts have an epithelial wall containing a granular layer with lamellar keratinization, indicating an infundibular origin. Tricholemmal cysts have an undulating epithelial wall with no granular layer and a compact keratinization, showing an isthmic origin. In steatocystoma, dermoid cyst, and folliculosebaceous hamartoma, the epithelial lining shows a crenulated appearance which is seen in the sebaceous duct. Hidrocystoma shows the characteristic cuboidal epithelial lining of sweat glands with decapitation secretion in its apocrine forms. The hair matrix cyst wall is composed of basaloid cells maturing to squamoid cells, as seen in the normal hair matrix and shadow cells in the lumen. Metabolizing acquired dioxin-induced skin hamartoma (MADISH) is a cystic lesion with lamellar keratinization, and no sebaceous glands. The classification proposed here aims to simplify the complexity of cutaneous adnexal cysts, and to facilitate a better understanding of the origin of cystic lesions of the skin.
Historical Classification

Cutaneous cysts have been classified differently by various authors in major dermatopathology textbooks (Tables 1–4). Weedon [1] classifies them as appendageal, developmental, miscellaneous, or lymphatic (Table 1). The classification by McKee [2] includes follicular and glandular cysts (Table 2). Rapini [3] did not make a subclassification of cutaneous cysts.
(Table 3). Barnhill [4] is the only author cited here who classifies cutaneous cysts according to the types of cells in their wall lining (Table 4).

We propose a novel classification of cutaneous adnexal cysts according to their origin in the folliculosebaceous unit and sweat glands (Table 5; Fig. 1). This classification is in accordance with the cytokeratin expression profile of these cysts (Table 6).

Discussion

Cutaneous cysts have been classified by many prominent dermatopathologists in different ways as explained above. Here, we have proposed a novel classification of cutaneous adnexal cysts according to their origin in the folliculosebaceous unit and sweat glands. By examining the lining of the cystic structure, its origin can be easily identified. Epidermal cysts have an epithelial wall containing a granular layer, and the keratinization through the lumen is lamellar, indicating an infundibular origin (Fig. 2a, b). Tricholemmal cysts have an undulating epithelial wall with no granular layer and a compact keratinization, showing an isthmic origin (Fig. 2c, d). In steatocystoma, dermoid cyst, and folliculosebaceous hamartoma, the epithelial lining shows a crenulated appearance which is seen in the sebaceous duct (Fig. 2e, f, k–n). Hidrocystoma shows the characteristic cuboidal epithelial lining of sweat glands with decapitation secretion in its apocrine form (Fig. 2g, h). The hair matrix cyst wall is composed of basaloid cells maturing to squamoid cells, as seen in the normal hair matrix and shadow cells in the lumen (Fig. 2i, j). Metabolizing acquired dioxin-induced skin hamartoma (MADISH) is a cystic lesion with no sebaceous glands, and shows lamellar keratinization [5, 6] (Fig. 2o, p).

The cytokeratin expression pattern is also consistent with the origin of the cyst. For example, the sebaceous-duct keratin, CK17, is expressed in steatocystoma, dermoid cyst, and folliculosebaceous hamartoma. Epidermal cysts express CK10 as do tricholemmal cysts, which also express CK17. Eccrine and apocrine hidrocystomas show broader expression of cytokeratins (CK1, CK5, CK7, CK8, CK10, CK14, CK18, and CK19). CK16 is only expressed by folliculosebaceous hamartoma [7–9]. In MADISH, as in folliculosebaceous hamartoma, CK15 is expressed (Table 6). The hair matrix cyst, often diagnosed as a part of a follicular hybrid cyst (e.g., epidermal and/or tricholemmal cyst) does not express any cytokeratins [10]; however, the wall of the cyst shows a strong positivity for β-catenin [11].

Table 3. Classification of skin cysts according to Rapini [3]

<table>
<thead>
<tr>
<th>Cyst Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidermoid cyst</td>
</tr>
<tr>
<td>Pilar cyst</td>
</tr>
<tr>
<td>Dermoid cyst</td>
</tr>
<tr>
<td>Vellus hair cyst</td>
</tr>
<tr>
<td>Steatocystoma</td>
</tr>
<tr>
<td>Cervical thymic cyst</td>
</tr>
<tr>
<td>Cutaneous ciliated cyst</td>
</tr>
<tr>
<td>Thyroglossal duct cyst</td>
</tr>
<tr>
<td>Branchial cleft cyst</td>
</tr>
<tr>
<td>Bronchogenic cyst</td>
</tr>
<tr>
<td>Hidrocystoma</td>
</tr>
<tr>
<td>Median raphe cyst of the penis</td>
</tr>
<tr>
<td>Auricular pseudocyst</td>
</tr>
</tbody>
</table>

This classification is taken from chapter 19: "Cysts" [3].
Table 4. Classification of cutaneous cysts according to Barnhill [4]

Epithelial-lined cysts
- Stratified squamous
 - Epidermoid (infundibular) cyst
 - Pilar (tricholemmal) cyst
 - Vellus hair cyst
 - Milia
 - Follicular hybrid cyst
 - Pigmented follicular cyst
- Stratified squamous with components in cyst wall
 - Steatocystoma (simplex and multiplex)
 - Dermoid cyst
 - Thymic cyst
- Cuboidal
 - Eccrine hidrocystoma
 - Apocrine hidrocystoma
- Mixed squamous and nonsquamous ciliated
 - Bronchogenic cyst
 - Brachial cleft cyst
 - Thyroglossal duct cyst
 - Cutaneous ciliated cyst
 - Ciliated cyst of vulva
 - Omphalomesenteric cyst
- Pseudostratified columnar
 - Median raphe cyst

Cysts not lined by an epithelium
- Digital mucous cyst
- Mucocele
- Metaplastic synovial cyst
- Pilonidal cyst
- Pseudocyst of auricle

New entities
- Proliferating epithelial cyst

This classification is taken from chapter 25: “Cutaneous Cysts and Related Lesions (Table 25-1: Classification of cutaneous cysts)” [4].

Table 5. Our proposed novel classification of cutaneous adnexal cysts

- Cysts with infundibular epithelial wall
 - Epidermal (infundibular) cyst
 - Comedon
 - Milia
 - Vellus hair cyst
- Cysts with isthmic epithelial wall
 - Tricholemmal cyst
- Cysts with sebaceous duct epithelial wall
 - Steatocystoma
 - Cutaneous keratocyst
- Cysts with glandular epithelial wall
 - Eccrine/apocrine hidrocystoma
- Cysts with hair matrix epithelial wall
 - Hair matrix (pilomatrical) cyst

Hamartomatous cysts
- Dermoid cyst
- Folliculosebaceous hamartoma
- MADISH (metabolizing acquired dioxin-induced skin hamartoma)
The follicular stem cell marker Lrig1 is expressed at the isthmic region of the human folliculosebaceous unit [12], and the activation of β-catenin in Lrig1-positive stem cells gives rise to cystic proliferations that are reminiscent of MADISH in mice [13].

Trichoblastic infundibular cyst, cystic trichoblastoma, cystic panfolliculoma, dermoid cyst with basaloid proliferations, folliculosebaceous cystic hamartoma, and BCC occurring in infundibular cysts have also been classified differentially [14]. Recently, cutaneous keratocyst and steatocystoma, unified as sebaceous-duct cyst, have been proposed to be a hamartoma resembling the sebaceous duct [15, 16].

The classification proposed here aims to simplify the complexity of cutaneous adnexal cysts and facilitate a better understanding of the origin of the cystic lesions of the skin.

Table 6. Cytokeratin expression of different cutaneous adnexal cysts (see Table 5)

<table>
<thead>
<tr>
<th></th>
<th>CK1</th>
<th>CK5</th>
<th>CK7</th>
<th>CK8</th>
<th>CK10</th>
<th>CK14</th>
<th>CK15</th>
<th>CK16</th>
<th>CK17</th>
<th>CK18</th>
<th>CK19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidermal cyst</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vellus hair cyst</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tricholemmal cyst</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steatocystoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidrocystoma eccrine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidrocystoma apocrine</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermoid cyst</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folliculosebaceous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hamartoma</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MADISH</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Proposed novel classification of cutaneous adnexal cysts according to their origin in the folliculosebaceous unit and sweat glands.
Fig. 2. Epidermal cyst (a), tricholemmal cyst (c), steatocystoma (e), hidrocystoma (g), hair matrix cyst (i), dermoid cyst (k), folliculosebaceous hamartoma (m), and MADISH (o). ×1. Close-up of sections shows the epithelial lining with a granular layer and lamellar keratinization (b, p), undulation and tricholemmal keratinization with no granular layer (d), crenulation with sebaceous-duct-type keratinization (f, l, n), cuboidal cells with apocrine-type secretion (h), and basaloid cells with maturation to squamoid cells (j). ×40.

Disclosure Statement

The authors have no conflict of interest to declare.

References

7 Kurokawa I, Nishijima S, Kusumoto K, Senzaki H, Shikata N, Tsubura A: Cytokeratin expression in steato-
9 Kurokawa I, Nishimura K, Hakamada A, Isoda K, Yamanaka K, Mizutani H, Tsubura A: Cutaneous dermoid cyst: cyto-
13 Kretzschmar K, Weber C, Driskell RR, Calonje E, Watt FM: Compartmentalized epidermal activation of β-
16 Fernandez-Flores A: On steatocystoma, sebaceous duct cyst, isthmic-anagenic cyst, and CK19. Am J Dermato-
pathol 2015;37:733–734.