Un modèle sémantique basé sur les ontologies pour le partage et la réutilisabilité des itinéraires cliniques à travers le contexte (ShaRE-CP)

BEDIANG, Georges Wyfred

Abstract

Clinical pathways (CP) enable a standardized and an efficient management of patients with common pathologies. As operational tools, they take into account knowledge from guidelines and from the context (e.g. availability of resources) in which the different interventions are to be carried out. Mastering the coherence of interactions between all these knowledge domains is a major challenge for the implementation of CP. This thesis led to the development of an ontology called Shareable and Reusable Clinical Pathway Ontology (ShaRE-CP) which integrates four knowledge domains (CP, guidelines, resources and context) and to the establishment of existing semantic links between them. The consistency of this semantic model has been validated by representing some corpora related to these knowledge domains and by solving some use cases using reasoners, SWRL rules or SPARQL queries. ShaRE-CP can serve as a basis for the development of a decision support system for planning and managing patient care.

Reference

BEDIANG, Georges Wyfred. Un modèle sémantique basé sur les ontologies pour le partage et la réutilisabilité des itinéraires cliniques à travers le contexte (ShaRE-CP). Thèse de doctorat : Univ. Genève, 2019, no. GSEM 68

URN : urn:nbn:ch:unige-1237057
DOI : 10.13097/archive-ouverte/unige:123705
Un modèle sémantique basé sur les ontologies pour le partage et la réutilisabilité des itinéraires cliniques à travers le contexte (ShaRE-CP)

THÈSE de Doctorat (PhD) es Systèmes d’Information

Présentée à la Faculté d’Economie et de Management de l’Université de Genève par

Georges Wyfred Bediang

Sous la Direction de:

- Professeur Gilles FALQUET
- Professeur Antoine GEISSBUHLER
Un modèle sémantique basé sur les ontologies pour le partage et la réutilisabilité des itinéraires cliniques à travers des contextes (ShaRE-CP)

THESE de Doctorat (PhD)
Présentée à la Faculté d’Économie et de Management de l’Université de Genève

Par
Georges Wylfred BEDIANG

Sous la Direction des
Prof. Gilles FALQUET
Prof. Antoine GEISSBUHLER

Pour l’obtention du grade de
Docteur es Systèmes d’Information

Membres du jury de thèse :
- Prof. Dimitri KONSTANTAS, Président du Jury, Université de Genève
- Prof. Gilles FALQUET, co-Directeur de thèse, Université de Genève
- Prof. Antoine GEISSBUHLER, co-Directeur de thèse, Université de Genève
- Dr. Brigitte SEROUSSI, Membre, Sorbonne Universités (Pierre et Marie Curie)

Thèse n° 68
Genève, le 18 Juin 2019
La Faculté d’Économie et de Management, sur préavis du jury, a autorisé l’impression de la présente thèse, sans entendre par là, émettre aucune opinion sur les propositions qui s’y trouvent énoncées et qui n’engagent que la responsabilité de leur auteur.

Genève, le 27 Juin 2019

Le Doyen
Marcelo OLARREAGA

Impression d’après le manuscrit de l’auteur
Table des matières

Résumé ... viii
Abstract.. x
Remerciements .. xi
Liste des figures .. xii
Liste des tableaux ... xv
Liste des acronymes et des abréviations xvi

Chapitre 1. Introduction Générale 1

Chapitre 2. Méthodologie de recherche 4
2.1. Problématique et défis .. 4
2.2. Hypothèses de recherche 5
2.3. Questions de recherche 6
2.3.1. Question de recherche principale 6
2.3.2 Questions de recherche spécifiques 6
2.4. Objectifs de recherche .. 6
2.5. Approche méthodologique 7
2.5.1. Développement de l'ontologie ShaRE-CP (Shareable and Reusable Clinical Pathway Ontology) 7
2.5.1.1. L'ontologie ShaRE-CP 7
2.5.1.2. L'ontologie de l'itinéraire clinique 7
2.5.1.3. L'ontologie des guidelines 7
2.5.1.4. L'ontologie du contexte 7
2.5.1.5. L'ontologie des ressources 7
2.5.2. Développement d'un itinéraire clinique pour la prise en charge des patientes ayant une pré-éclampsie sévère .. 8
2.5.3. Représentation d'un itinéraire clinique, des guidelines, des ressources et le contexte et leurs interactions sémantiques en se basant sur l'ontologie ShaRE-CP 8
2.5.4. Cas d'utilisation et démonstration du fonctionnement de l'ontologie ShaRE-CP .. 8

Chapitre 3. Etat de l'art et travaux similaires 9
3.1. Les itinéraires cliniques .. 9
3.1.1. Introduction .. 9
3.1.2. Définition opérationnelle 9
3.1.3. Enjeux des itinéraires cliniques 9
3.1.3.1. Un outil pour l'amélioration de la qualité des soins 9
3.1.3.2. Un outil pour l'amélioration de l'efficience des soins 10
3.1.4. Itinéraires cliniques : de la gestion papier à l'informatisation ... 10
3.1.4.1. Itinéraire clinique et approche basée sur le papier 10
3.1.4.2. Itinéraire clinique : vers l'informatisation 11
3.1.5. Gestion des variances dans un itinéraire clinique 12
3.1.5.1. Définition et intérêt de la variance 12
3.1.5.2. Classification des différents types de variances 12
3.1.5.3. Méthodes de collecte des données sur les variations 13
3.1.5.3.1. Approches basées sur du papier 13
3.1.5.3.2. Approches semi-informatisées 14
3.1.5.3.3. Approches informatisées 14
3.1.5.4. Gestion, analyse et évaluation des variances 15
3.1.5.4.1 Buts .. 15
3.1.5.4.2 Méthodes ... 15
3.1.5.4.3. Rédaction des rapports et feedback sur les variances 16
3.1.6. Evaluation de l'efficacité et de l'efficience itinéraires cliniques .. 16
3.2. Les recommandations pour les bonnes pratiques 17
3.2.1. Introduction .. 17
3.2.2. La médecine fondée sur les preuves 17
3.2.3. Développement et implémentation des recommandations pour les bonnes pratiques 17
3.2.4. Méthodologie d'évaluation du niveau de preuves, gradation des recommandations et qualité.. 18
3.2.4.1. Grading of Recommendations Assessment, Development and Evaluation (GRADE) 18
3.2.4.1.1. La qualité des preuves 19
3.2.4.1.2. La force des recommandations 20
3.2.4.2. Evaluation de la qualité du processus d’élaboration des recommandations 20
3.2.5. Méthodes de représentation et informatisation des recommandations pour les bonnes pratiques ... 21
 3.2.5.1. La syntaxe d’Arden pour les modules logiques médicaux ... 21
 3.2.5.1.1. Structure de la base de connaissance de la syntaxe d’Arden ... 21
 3.2.5.1.2. Syntaxe d’Arden et guidelines ... 23
 3.2.5.2. PROforma ... 24
 3.2.5.2.1. Les fondements du langage PROforma ... 24
 3.2.5.2.2. PROforma : une combinaison des deux approches ... 27
 3.2.5.2.3. L’exécution d’un moteur PROforma ... 27
 3.2.5.3. GuideLine Interchange Format (GLIF) ... 28
 3.2.5.3.1. GLIF 2.0 ... 28
 3.2.5.3.2. GLIF 3 ... 29
 3.2.5.4. EON ... 31
 3.2.5.5. Autres modèles de représentation des recommandations pour les bonnes pratiques 33
 3.2.5.5.1. Prodigy (Prescribing RatiONally with Decision Support In General Practice Study) 33
 3.2.5.5.2. Asbru .. 33
 3.2.5.5.3. Prestige ... 33
 3.3. Le contexte ... 34
 3.3.1. Introduction ... 34
 3.3.2. Définition ... 34
 3.3.3. Catégories de contexte pour une application ... 35
 3.3.4. L’informatique sensible au contexte .. 35
 3.4. Les Systèmes d’Information Hospitaliers (SIH) ... 35
 3.5. Travaux similaires ... 37
 3.5.1. Le Web sémantique (ontologie) et les itinéraires cliniques ... 37
 3.5.1.1. Utilisation du langage sémantique OWL (Web Ontology Language) et ses dérivés pour la modélisation des itinéraires cliniques ... 37
 3.5.1.2. Représentation des règles d’exécution sémantiques à l’aide du langage SWRL 38
 3.5.1.2.1. Le langage SWRL et la représentation des relations temporelles 38
 3.5.1.2.2. Le langage SWRL et la prise de décision clinique ... 38
 3.5.2. Le web sémantique, les itinéraires cliniques et le contexte ... 39
 3.5.3. Intégration entre les itinéraires cliniques et les Systèmes d’Information Cliniques 40
 3.5.4. Problèmes et manques observés .. 41
 Chapitre 4. Description de l’ontologie ShaRE-CP .. 42
 4.1. Introduction ... 42
 4.2. Développement de l’ontologie ShaRE-CP .. 43
 4.2.1. But de l’ontologie ShaRE-CP ... 43
 4.2.2. Processus de développement de l’ontologie ShaRE-CP ... 43
 4.2.2.1. La capture (identification des concepts clés et leurs relations) ... 43
 4.2.2.2. Le codage (représentation des concepts et relations à travers un langage formel) 43
 4.2.2.3. Ontologies et domaines de connaissances importés ou associés .. 43
 4.2.2.3.1. L’ontologie pour les services Web (OWL-S) ... 44
 4.2.2.3.1.1. Description générale de l’ontologie pour les services Web (OWL-S) 44
 4.2.2.3.1.2. Termes, concepts et propriétés importés de l’ontologie OWL-S 46
 4.2.2.3.2. L’ontologie du temps .. 47
 4.2.2.3.2.1. Objectif général et fondements de l’ontologie du temps ... 47
 4.2.2.3.2.2. Termes, concepts et propriétés importés de l’ontologie du temps .. 48
 4.2.2.3.3. L’ontologie Dublin Core ... 51
 4.2.2.3.4. Autres ressources importées d’autres domaines de connaissance .. 51
 4.2.2.3.4.1. SNOMED-CT ... 51
 4.2.2.3.4.2. Classification Suisse des Interventions Chirurgicales (CHOP) ... 52
 4.2.2.3.4.3. Classification des Interventions de Soins Infirmiers .. 52
 4.2.2.3.4.4. Classification des Résultats des Soins Infirmiers ... 52
 4.3. Description de l’ontologie ShaRE-CP .. 53
 4.3.1. Description générale de l’ontologie ShaRE-CP et formalisme utilisé ... 53
 4.3.2. Les différents modules de l’ontologie ShaRE-CP ... 54
 4.3.2.1. Module 1 : L’ontologie des itinéraires cliniques ... 54
 4.3.2.1.1. Description de l’ontologie des itinéraires cliniques ... 54
 4.3.2.1.2. Représentation sémantique de l’ontologie des itinéraires cliniques .. 57
5.4. L’itinéraire clinique de prise en charge des patientes souffrant de pré-éclampsie sévère à l’Hôpital Central de Yaoundé
5.4.1. Contexte : description de l’Hôpital Central de Yaoundé (HCY) .. 86
5.4.1.1. Bref historique, mission et organigramme ... 86
5.4.1.2. Fonctionnement et activités ... 86
5.4.1.3. Présentation de l’unité de Gynécologie-Obstétrique de l’HCY .. 86
5.4.1.3.1. Présentation ... 86
5.4.1.3.2. Personnel de santé ... 87
5.4.1.3.3. Activités au sein de la maternité .. 87
5.4.1.3.4. Circuit du malade .. 87
5.4.1.3.5. Codification des diagnostics ou des actes à la maternité .. 88
5.4.1.3.6. Horaires de service ... 88
5.4.1.3.7. Services connexes ... 88
5.4.1.3.7.1. Le Service de Radiologie et d’Imagerie médicale .. 88
5.4.1.3.7.2. Le Service des Laboratoires ... 88
5.4.1.3.7.3. Le Service de Pharmacie .. 89
5.4.1.3.7.4. Système d’information, Internet et parc informatique de l’HCY 89
5.4.1.3.7.5. La cellule des statistiques de l’HCY ... 90
5.4.2. Eligibilité de l’itinéraire clinique sur la prise en charge de la pré-éclampsie sévère à l’HCY 91
5.4.2.1. La pathologie est-elle clairement définie ? ... 91
5.4.2.2. La population (ou sous-groupes) traitée est-elle homogène ? 91
5.4.2.3. La prise en charge est-elle ‘standardisable’ ? .. 91
5.4.2.4. Cette prise en charge peut-elle être séquencée temporellement et la délimitation en phases est-elle possible ? ... 92
5.4.2.5. Existe-t-il des interventions clés identifiables? ... 92
5.4.2.6. L’état actuel de la prise en charge et les possibilités d’amélioration 92
5.4.2.6.1. Quel est le nombre de patients concernés ? .. 92
5.4.2.6.2. Existe-il une variabilité dans la prise en charge actuelle (durée de séjours, coûts)? 92
5.4.2.6.3. Quel est le bénéfice clinique potentiel attendu pour le patient? 92
5.4.2.6.4. La pluridisciplinarité est-elle nécessaire à la prise en charge des patients concernés ? 93
5.4.2.6.5. Existe-t-il des recommandations de bonnes pratiques ? ... 93
5.4.2.6.6. Les équipes : est-il possible d’obtenir un consensus professionnel et une motivation des professionnels des différentes filières et départements, à travailler ensemble ? ... 93
5.4.2.7. Conclusion ... 93
5.4.3. Développement et validation d’un itinéraire clinique pour la prise en charge de la pré-éclampsie sévère non compliquée survenant entre la 29e et la 33e semaine d’aménorrhée à l’HCY ... 94
5.4.3.1. Développement de l’itinéraire clinique ... 93
5.4.3.2. Validation de l’itinéraire clinique : approche basée sur le consensus 94
5.4.3.2.1. Objectifs .. 94
5.4.3.2.2. Choix des experts .. 94
5.4.3.2.3. Méthodologie ... 94
5.4.3.2.3.1. Méthode Delphi : premier tour ... 94
5.4.3.2.3.2. Méthode Delphi : deuxième tour ... 95
5.4.3.2.3.3. Méthode Delphi : Troisième tour ... 96
5.4.3.4. Résultats : Elaboration d’un itinéraire clinique .. 96
5.4.4. Discussion ... 99

Chapitre 6. Représentation d’un itinéraire clinique, des guidelines, des ressources et le contexte et leurs interactions sémantiques en se basant sur l’ontologie ShaRE-CP ... 100
6.1. Introduction .. 100
6.2. La syntaxe Turtle .. 100
6.3. Représentation sémantique de l’itinéraire clinique pour la prise en charge des patientes souffrant de pré-éclampsie sévère à la maternité de l’Hôpital Central de Yaoundé ... 100
6.3.1. Relations sémantiques des individus de la classe cp:Clinical_Pathway ... 100
6.3.3. Relations sémantiques des individus de la classe cp:intervention et de la classe cp:Clinical_Process ... 102
6.3.4. Relations sémantiques des individus de la classe cp:Outcome ... 106
6.3.5. Relations temporelles ... 108
6.3.5.1. Moment d’exécution d’une intervention .. 108
6.3.5.2. Moment pour l’atteinte d’objectifs cliniques .. 108
6.3.5.3. Relations temporelles entre les interventions .. 109
Chapitre 7. Cas d’utilisation, extraction et inférence des connaissances .. 131

7.1. Introduction .. 131

7.2. Rappel sur les méthodes utilisées pour extraire ou générer des connaissances 131

7.2.1. L’utilisation d’un raisonneur (moteur d’inférence) .. 131

7.2.2. Le langage d’interrogation SPARQL ... 131

7.2.2.1. Structure d’une interrogation simple ... 131

7.2.2.2. Les motifs de graphes .. 132

7.2.2.3. Les modificateurs .. 132

7.2.2.4. Contraintes des termes ... 132

7.2.3. Les règles d’inférences SWRL ... 132

7.3. Cas d’utilisation et méthodes utilisées pour extraire ou générer des connaissances 133

7.3.1. Cas d’utilisation concernant la gestion de l’itinéraire clinique 133

7.3.1.1. Cas d’utilisation simples ... 134

7.3.1.1.1. Utilisation d’un raisonneur OWL ... 134

7.3.1.1.2. Utilisation des requêtes SPARQL .. 136

7.3.1.2. Cas d’utilisation évolués ou complexes ... 140

7.3.1.2.1. Utilisation d’un raisonneur OWL ... 140

7.3.1.2.2. Utilisation des requêtes SPARQL .. 141

7.3.2. Cas d’utilisation concernant la gestion de l’itinéraire clinique et de sa contextualisation ... 145

7.3.2.1. Cas d’utilisation simples ... 145

7.3.2.1.1. Utilisation d’un raisonneur OWL ... 145

7.3.2.1.2. Utilisation des requêtes SPARQL .. 149

7.3.2.2. Cas d’utilisation évolués ou complexes ... 153

7.3.2.2.1. Utilisation d’un raisonneur OWL ... 153

7.3.2.2.2. Utilisation des requêtes SPARQL .. 154

7.3.2.3. Cas d’utilisation supplémentaires ... 167

7.3.3. Cas d’utilisation concernant la gestion des patients au sein d’un itinéraire clinique 169
7.3.3.1. Cas d’utilisation simples ... 169
7.3.3.1.1. Utilisation d’un raisonneur OWL .. 169
7.3.3.1.2. Utilisation des requêtes SPARQL ... 170
7.3.3.2. Cas d’utilisation évolués ou complexes .. 173
7.3.3.2.1. Utilisation d’un raisonneur OWL .. 173
7.3.3.2.2. Utilisation des requêtes SPARQL ... 175
7.3.3.2.3. Utilisation des règles SWRL ... 179
7.4. Discussion ... 180
Chapitre 8. Conclusion et Perspectives .. 183
Références Bibliographiques ... 185
Annexes .. 201
Annexe 1 : Définition des classes (axiomes) relatives à l’ontologie de l’itinéraire clinique .. 201
Annexe 2 : Définition des classes (axiomes) relatives à l’ontologie des recommandations (guidelines) 206
Annexe 3 : Définition des classes (axiomes) relatives à l’ontologie des ressources ... 208
Annexe 4 : Définition des classes (axiomes) relatives à l’ontologie du contexte ... 209
Annexe 5 : Définition des classes (axiomes) relatives à l’ontologie ShaRE-CP (intégration des ontologies des itinéraires cliniques, des recommandations (guidelines), des ressources et du contexte) .. 211
Résumé

Les itinéraires cliniques sont considérés comme des outils de management de la qualité. Ils constituent un moyen de gérer efficacement et de manière efficiente la prise en charge des patients au cours de leurs soins. Plusieurs bénéfices sont associés à leur utilisation notamment en termes d’amélioration de la qualité des soins. Habituellement les itinéraires cliniques intègrent non seulement les données issues de la littérature scientifique (médecine basée sur les preuves) mais surtout, ils tiennent compte du contexte (par exemple, la disponibilité des ressources matérielles, financières, humaines ou autres) dans lequel les interventions requises doivent être réalisées. C'est cette adéquation entre choix des interventions et disponibilité des ressources qui en fait un outil pertinent pour l’amélioration de la qualité des soins.

La maîtrise de la cohérence entre tous ces éléments de connaissance associée à la complexité de la gestion de leur évolution dans le temps constitue un des défis importants pour ceux qui ont la charge de développer et d’implémenter les itinéraires cliniques. Il est donc important d’établir un modèle sémantique commun permettant de représenter et de décrire les concepts et les liens sémantiques propres à un itinéraire clinique d’une part, et d’autre part, de représenter et de décrire les concepts et les liens sémantiques associés aux domaines de connaissances qui interagissent avec celui-ci (guidelines, contexte, ressources, etc.).

Bien que plusieurs modèles sémantiques basés sur les ontologies aient été proposés pour représenter les itinéraires cliniques et ses interactions avec d’autres domaines de connaissances, force est de constater qu’il n’existe pas de travaux ayant tenté de formaliser explicitement les interactions qui existeraient entre les différents domaines de connaissances que sont les itinéraires cliniques, les guidelines et le contexte. De plus, de nombreux défis existent encore à savoir : (i) le besoin de représenter formellement les relations sémantiques qui existent entre les itinéraires cliniques, les guidelines et le contexte ; et (ii) la nécessité pour un itinéraire clinique de s’adapter de manière cohérente à l’évolution des connaissances provenant des guidelines ou du contexte afin de faciliter son partage et sa réutilisabilité d’un contexte donné à un autre.

Les objectifs de cette thèse étaient de développer une ontologie qui intègre les concepts et les relations sémantiques relatifs aux domaines de connaissances que sont les itinéraires cliniques, les guidelines et le contexte, d’établir les liens et les interactions sémantiques qui existent entre ces domaines de connaissance, d’évaluer et de valider la consistance de ce modèle d’ontologie.

Nous avons développé une ontologie de domaine dénommée Shareable and Reusable Clinical Pathway Ontology (ShaRE-CP). Il s’agit d’un modèle sémantique modulaire de gestion des itinéraires cliniques qui intègre quatre domaines de connaissance à savoir : les itinéraires cliniques, les guidelines, les ressources en santé et le contexte dans lequel un itinéraire clinique est déployé. Cette ontologie décrit d’une part, les concepts et les relations qui existent au sein de ces quatre domaines de connaissance. D’autre part, elle identifie et met en évidence les liens et autres interactions sémantiques qui existent entre les concepts issus des différents domaines de connaissance. Pour une meilleure intégration et réutilisation, cette ontologie intègre elle-même d’autres ontologies à l’instar de : l’ontologie des services OWL-S, l’ontologie du temps, l’ontologie Dublin Core, ainsi que d’autres bases de connaissances.

Sur la base de la pertinence en santé publique (épidémiologie) et de l’évaluation de sa faisabilité, nous avons développé et validé par les professionnels de la santé travaillant à la maternité de l’Hôtel Central de Yaoundé (un des hôpitaux de référence du Cameroun), un itinéraire clinique destiné à la prise en charge des patientes ayant une pré-éclampsie sévère. Les données issues de cet itinéraire clinique ont été représentées au sein de l’ontologie ShaRE-CP. Il en est de même d’autres modules de l’ontologie à savoir : les recommandations de bonnes pratiques (guidelines OMS) pour la prise en charge des patientes souffrant de pré-éclampsie et d’éclampsie, les ressources requises pour la prise en charge des patientes souffrant de pré-éclampsie et d’éclampsie dans un pays en développement et enfin, le contexte de l’Hôtel Central de Yaoundé propre à l’exécution de cet itinéraire clinique. Les interactions sémantiques entre les différents faits et connaissances ont été également représentées. Enfin, pour tester et valider le fonctionnement et la consistance de cette ontologie et ce en accord avec les objectifs de recherche, nous avons identifié quelques cas d’utilisation qui ont été résolus au travers de l’exécution d’un moteur de raisonnement, d’application de règles SWRL et d’interrogations via des requêtes SPARQL.
Le modèle qui est proposé dans cette thèse à travers cette ontologie offre de nombreuses possibilités. Il pourrait servir de base sémantique pour la mise en place d’un système d’aide à la décision destiné à la planification pertinente et cohérente des soins (à l’échelle d’un système de santé ou d’un hôpital). Il aiderait ainsi les développeurs d’itinéraires cliniques, les gestionnaires de santé ou de soins à concevoir des itinéraires cliniques dits intelligents c’est-à-dire qui respectent au mieux les différentes contraintes issues des domaines de connaissances (guidelines, contexte) connexes aux itinéraires cliniques. Ce modèle peut également servir de support pour la gestion (exécution et suivi) des soins à l’échelle d’un patient. Son caractère modulaire offre la possibilité de le connecter aux données des patients contenues dans un dossier patient électronique.

Mots-clés : itinéraires cliniques ; recommandations pour les bonnes pratiques ; contexte ; ontologie, web-sémantique.
Abstract

Clinical pathways are considered as quality management tools. They provide an effective and efficient mean to manage patient care. Several benefits are associated with their use, particularly in terms of improving the quality of care. Clinical pathways usually integrate not only data from the scientific literature (evidence-based medicine) but more importantly, they take into account the context (e.g., the availability of material, financial, human or other resources) in which the required interventions must be performed. It is this match between the choice of interventions and the availability of resources that makes it a relevant tool for improving the quality of care.

Mastering the coherence between all these knowledge elements combined with the complexity of managing their evolution over time are important challenges for those in charge of developing and implementing clinical pathways. It is therefore important to establish a common semantic model to represent and describe the concepts and semantic links specific to a clinical pathway on the one hand, and to represent and describe the concepts and semantic links associated with the knowledge domains that interact with it (guidelines, context, resources, etc.) on the other hand.

Although several ontology-based semantic models have been proposed to represent clinical pathways and their interactions with various other knowledge domains, it must be noted that there is no work that has attempted to explicitly formalize the interactions that would exist between the different knowledge domains of clinical pathways, guidelines and context. In addition, many challenges still exist, namely: (i) the need to formally represent the semantic relationships that exist between clinical pathways, guidelines and context; and (ii) the need for a clinical pathway to adapt consistently to the evolution of knowledge from the guidelines or context in order to facilitate its sharing and its reusability from one context to another.

The objectives of this thesis were to develop an ontology that integrates the concepts and semantic relationships related to the knowledge domains of clinical pathways, guidelines and context, to establish the semantic links and interactions that exist between these knowledge domains, and to evaluate and to validate the consistency of this ontology model.

We have developed a domain ontology called Shareable and Reusable Clinical Pathway Ontology (ShaRE-CP). It is a modular semantic model of clinical pathway management that integrates four areas of knowledge: clinical pathways, guidelines, health resources and the context in which a clinical pathway is deployed. This ontology describes the concepts and relationships that exist within these four areas of knowledge. Furthermore, it identifies and highlights the links and other semantic interactions that exist between concepts from different knowledge domains. For better integration and easy reuse, this ontology itself integrates other ontologies such as: OWL-S services ontology, time ontology, Dublin Core ontology, as well as other knowledge bases.

Based on epidemiological relevance and the evaluation of its feasibility, we have developed and validated a clinical pathway for the management of patients with severe pre-eclampsia by health professionals working at the maternity of the Yaoundé Central Hospital (one of Cameroon's reference hospitals). Data from this clinical pathway were represented in the ShaRE-CP ontology. The same applies to the other modules of the ontology, namely: the recommendations of good practices (WHO guidelines) for the management of patients suffering from pre-eclampsia and eclampsia, the resources required for the management of patients suffering from pre-eclampsia in a developing country and finally, the context of the Yaoundé Central Hospital for the execution of this clinical pathway. Semantic interactions between different facts and knowledge were also represented. Finally, to test and validate the functioning and consistency of this ontology in accordance with the research objectives, we have identified some use cases that have been resolved through the execution of a reasoning engine, the application of SWRL rules and queries via SPARQL language.

The model that is proposed in this thesis through this ontology offers many possibilities. It could serve as a semantic basis for the implementation of a decision support system for relevant and consistent care planning (across a health system or a hospital). Thus, it would help clinical pathway developers, health or care managers to design so-called intelligent clinical pathways, i.e. ones that respect better the various constraints arising from knowledge (guidelines, context) related to clinical pathways. This model can also be used as a support for the management (execution and follow-up) of care at the patient level. Its modular approach makes it possible to connect it to patient data contained in an electronic patient record.

Keywords: clinical pathway; guidelines; context; ontology, semantic web.
Remerciements

Mes premiers remerciements s’adressent à mes directeurs de thèse les Professeurs Gilles Falquet et Antoine Geissbuhler. Après m’avoir donné l’opportunité de réaliser un travail de thèse (PhD), ils n’ont ménagé aucun effort pour m’encadrer tout au long de cette thèse. Malgré leurs multiples occupations, ils ont toujours su trouver du temps nécessaire pour m’encadrer et m’aiguiller dans les différentes activités relatives à cet important travail de recherche. De plus, au-delà de leurs différents enseignements et conseils, leur engagement à m’accompagner tout le long de cette thèse a su maintenir éveillé en moi, la volonté et toute la motivation nécessaire pour aller jusqu’à bout.

J’aimerais également adresser un remerciement particulier au Professeur Antoine Geissbuhler qui a été l’architecte de ma formation et de mon parcours académique à l’Université et aux Hôpitaux Universitaires de Genève. Venu à Genève en 2008 pour poursuivre des études post grades, c’est grâce à lui que j’ai pu accomplir mon rêve de jeune médecin désirant réaliser des études en informatique médicale. J’ai pu sous sa supervision : acquérir de nouvelles connaissances dans le domaine à travers une formation diplômante, développer des compétences opérationnelles à travers les différents projets locaux et internationaux y compris celui du Réseau en Afrique Francophone pour la Télémédecine (RAFT) auxquels j’ai pu participer, entrainer mes capacités à organiser et à transmettre mon savoir et savoir-faire à travers les différentes postes d’Assistant et Maître-Assistant à l’Université de Genève. Toutes ces différentes activités m’ont permis de nouer plusieurs contacts professionnels et même non professionnels utiles pour le développement de la discipline en Afrique en Général, au Cameroun en particulier.

Je remercie le président et tous les membres du jury de cette thèse, pour avoir accepté d’évaluer ce travail soumis à leur attention. Vos remarques et critiques constructives représentent une plus-value et permettront l’amélioration de ce travail.

J’adresse aussi des remerciements tous particuliers au Professeur Fritz Baumann. Mes contacts avec lui quand j’étais étudiant m’ont donné la possibilité d’entrevoir la Suisse comme pays hôte pour une formation post graduée en Informatique Médicale. Comme un père et très souvent autour d’un repas, il n’a cessé de m’encourager à faire les efforts nécessaires pour parachever mon parcours académique commencé à l’Université de Genève.

Je profite de l’occasion qui m’est offerte pour remercier toutes les autres personnes qui de près ou de loin ont permis la réalisation de ce travail. Je pense notamment aux médecins camerounais (Feu Prof. Nana Njotang, Prof. Agnes Esiene, Dr Joël Fokom, Dr Filibert Eko, Dr TonyeRebecca et aux médecins suisses à l’instar du Prof. Michel Boulvain.

Je vais également remercier tous les enseignants de l’Université de Genève ainsi que tous les collaborateurs de l’Université et des Hôpitaux Universitaires de Genève, qui chacun en sa manière a contribué à faire de moi un professionnel, un enseignant et un chercheur dans les domaines de l’Informatique Médicale et de la Santé Publique. Je vais citer quelques-uns (la liste n’est pas exhaustive): Prof. Philippe Chastonay, Prof. Cheick Oumar Bagayoko, Prof. Alain Gervaix, Dr Beat Stoll, Dre Astrid Stuckelberger, Dre Nadia Elia, Jean-Marc Naef, Dr Jean-Louis Abena, Caroline Perrin-Franck, Corrèse Lecynge, Jean-Raymond Fischer, Nicolas Roduit, Stéphane Spahn, Christian Girard, Gilles Vauvarin, Dr André Ratovohery et Mirana Randriambelonoro. Je ne vais pas oublier Madame Dominique Guérin pour son soutien logistique et administratif qui a permis d’entretenir des conditions de travail et un environnement propice pour l’épanouissement dans les études.

Je voudrai également remercier messieurs hiérarchiques, Prof. Francisca Monebenimp (Chef de Département de Santé Publique), Prof. Jacqueline Ze Minkande (Doyen de la Faculté de Médecine et des Sciences Biomédicales) et Prof. Maurice Aurélien Sosso(Recteur de l’Université de Yaoundé I) pour lesdifférentes autorisations administratives de sorte qui m’ont permis d’effectuer des séjours à l’étranger afin de poursuivre sereinement ces travaux de recherche.

Mes remerciements distingués vont également à mon épouse Mme Bediang née Atangana Oyoa Laetitia Cyrielle qui a toujours su me soutenir, m’encourager et me réconforter durant toutes ces années y compris pendant les 8 années que j’ai passées à Genève loin d’elle.Également ces remerciements vont à l’endroit de nos adorables enfants, Bediang Ndzie Lloyd Gabriel, Bediang Bitsong Liam Philippe et Bediang Dang Lohan Mathieu pour les merveilleux moments que je passe en leur présence.

Mes remerciements vont aussi à l’endroit de mes parents M. Bediang 18e Bitsong et Mme Dang Marie pour tous les efforts consentis pendant de nombreuses années pour ma scolarisation. Ces remerciements s’adressent aussi à mes frères et sœurs, à ma belle-famille et à tous mes amis notamment au Dr Yannick Kamba, qui en plus d’être un ami, est un collègue avec qui nous travaillons pour davantage implémenter les projets d’informatique médicale et de télémédecine au Cameroun et dans la région Afrique Centrale.

Enfin je n’oublierai pas de remercier tous mes différents co-équipiers de football au travers de tous les clubs amateurs dans lesquels j’ai pu évoluer (et évolue encore) au Cameroun et en Suisse.
Liste des figures

Figure 1. Syntaxe d’Arden : types d’événements basés sur des règles .. 22
Figure 2. Syntaxe d’Arden : les différents composants d’un MLM (modèle domino du processus clinique) .. 23
Figure 3. PROforma : le modèle domino du processus clinique .. 24
Figure 4. Ensemble de composants du langage PROforma .. 25
Figure 5. PROforma : formalisme basé sur la tâche ... 26
Figure 6. PROforma : relation entre le modèle domino des processus cliniques et le modèle des tâches l’ontologie de la tâche .. 27
Figure 7. GLIF 2.0 : composants (classes et attributs) du modèle de représentation 28
Figure 8. GLIF 3 : composants (classes, relations) du modèle de représentation 29
Figure 9. GLIF 3 : Algorithme de traitement de la toux chronique .. 30
Figure 10. Partie d’un algorithme de prise en charge du cancer du sein ... 32
Figure 11. Exemple d’architecture EON pour l’application de recommandations pour les bonnes pratiques .. 33
Figure 12. Modèle conceptuel d’un Système d’Information Hospitalier (SIH) .. 36
Figure 13. Structure globale de l’ontologie des services OWL-S (haut niveau d’abstraction) 44
Figure 14. Classes et propriétés de l’ontologie ServiceProfile ... 45
Figure 15. Classes et propriétés de l’ontologie ServiceModel (Process) ... 45
Figure 16. Correspondance entre OWL-S et WSDL (Web Services Description Language) 46
Figure 17. Modèle de base des entités temporelles ... 48
Figure 18. Relations élémentaires pour des entités temporelles ... 49
Figure 19. Classes pour la définition des positions temporelles ... 50
Figure 20. Classes pour la définition de la durée .. 51
Figure 21. Modèle général de l’ontologie ShaRE-CP ... 53
Figure 22. Modèle sémantique de l’ontologie des itinéraires cliniques : termes, concepts, propriétés et relation avec l’ontologie OWL-S .. 55
Figure 23. Modèle sémantique de l’ontologie des itinéraires cliniques : termes, concepts, propriétés et relation avec l’ontologie du temps .. 56
Figure 24. Modèle sémantique de l’ontologie des itinéraires cliniques : représentation détaillée d’un processus incluant la classe Repeat_Every ... 60
Figure 25. Modèle sémantique de l’ontologie des itinéraires cliniques : représentation détaillée d’un processus incluant la classe Repeat_Every ... 61
Figure 26. Modèle sémantique de l’ontologie des itinéraires cliniques : représentation des contraintes temporelles entre deux interventions .. 62
Figure 27. Modèle sémantique de l’ontologie des recommandations pour les bonnes pratiques (guidelines) .. 65
Figure 28. Modèle sémantique de l’ontologie des ressources en santé (domaine des soins) 68
Figure 29. Modèle sémantique de l’ontologie du contexte ... 72
Figure 30. Interactions sémantiques entre l’ontologie des itinéraires cliniques et l’ontologie du contexte .. 74
Figure 31. Interactions sémantiques entre l’ontologie des itinéraires cliniques et l’ontologie des ressources .. 74
Figure 32. Interactions sémantiques entre l’ontologie des itinéraires cliniques et l’ontologie des ressources .. 75
Figure 33. Interactions sémantiques entre l’ontologie des guides et l’ontologie des ressources .. 76
Figure 34. Interactions sémantiques entre l’ontologie des guides et l’ontologie du contexte 76
Figure 35a. Interactions sémantiques entre l’ontologie du contexte et l’ontologie des ressources . 77
Figure 35b. Interactions sémantiques entre la classe sharecp:Resources_Statement et l’ontologie des itinéraires cliniques .. 78
Figure 36. Schéma de la physiopathologie de la pré-éclampsie. CIVD : coagulation intravasculaire disséminée, HTA : hypertension artérielle, MFIU : mort fœtale in utero, RCIU : retard de croissance intra-utérin, SF : souffrance fœtale ... 81
Figure 37. Service de Gynéco-Obstétrique (maternité principale) de l’Hôpital Central de Yaoundé 86
Figure 38. Conservation des dossiers médicaux (papiers) à la maternité principale de l’HCY 90
Figure 39. Relations sémantiques existant entre un individu de la classe cp: Clinical_Pathway et d’autres individus .. 101
Figure 40. Relations sémantiques existant entre un individu de la classe cp:Intervention et d'autres individus... 101
Figure 41. Relation sémantique entre un individu de la classe cp:Intervention et un individu de la classe cp:Clinical_Process de type atomique .. 102
Figure 42. Relation sémantique entre un individu de la classe cp:Intervention et un individu de la classe cp:Clinical_Process de type composite.. 102
Figure 43. Relation sémantique entre un individu de la classe cp:Clinical_Process de type composite et les individus de type atomique .. 103
Figure 44. Exécution répétitive d'un processus clinique de type atomique .. 104
Figure 45. Exécution répétitive d'un processus clinique de type composite .. 105
Figure 46. Représentation d'outcomes primaires et secondaires .. 106
Figure 47. Représentation des conditions associées aux outcomes .. 107
Figure 48. Représentation du moment d'exécution d'une intervention .. 108
Figure 49. Représentation du moment prévu pour l'atteinte d'objectifs cliniques (outcomes) 108
Figure 50. Relations temporelles topologiques entre les intervalles de temps associés aux interventions .. 109
Figure 51. Représentation de la durée (intervalle de temps) entre deux interventions 110
Figure 52. Position d'un intervalle de temps relatif à une intervention sur un calendrier grégorien et une horloge de 24h.. 111
Figure 53. Relations temporelles des individus de la classe cp:Variance .. 112
Figure 54. Relations sémantiques des individus de la classe gdl:Guidelines .. 113
Figure 55. Relations sémantiques des individus des classes gdl:Contributors, gdl:Subjects et dcterms:BibliographicResource.. 114
Figure 56. Relations sémantiques des individus de la classe res:Drug .. 115
Figure 57. Relations sémantiques des individus de la classe cont:Community ... 116
Figure 58. Relations sémantiques des individus de la classe cont:Patient .. 116
Figure 59. Relations sémantiques des individus de la classe cont:Health_Institution .. 116
Figure 60. Relations sémantiques des individus de la classe cont:Setting .. 117
Figure 61. Relations sémantiques des individus de la classe cont:Health_Institution_Departments .. 117
Figure 62. Relations sémantiques des individus de la classe cont:Patient_Care_Stay_Encounter .. 117
Figure 63. Relations sémantiques entre les individus de la classe cont:Health_Institution_Roles et les individus de la classe cont:Health_Institution_Departments .. 117
Figure 64. Relations sémantiques entre les individus de la classe cont:Individual_Related_Preconditions et les individus de la classe cont:Patient_Status et les individus de la classe cont:Context_Related_Preconditions .. 118
Figure 65. Relations sémantiques entre les individus de la classe cp:Clinical_Pathway et les individus des classes cont:Health_Institution et cont:Patient_Care_Stay_Encounter .. 119
Figure 66. Relations sémantiques entre les individus appartenant aux classes cp:Disease et cont:Patient_Care_Stay_Encounter .. 119
Figure 67. Relations sémantiques entre les individus appartenant à la classe process:AtomicProcess et les individus des classes cont:Health_Institution_Departments et cont:Context_Related_Preconditions .. 120
Figure 68 Relations sémantiques entre les individus de la classe cont:Patient_Care_Stay_Encounter et cp:Care_Calendar.. 120
Figure 69. Relations sémantiques entre les individus appartenant à la classe cp:Variance et aux classes cont:Patient_Care_Stay_Encounter et cont:From_Missing_Resource .. 121
Figure 70. Relations sémantiques entre les individus appartenant à la classe process:AtomicProcess et aux sous-classes de la super classe res:Health_Resources respectivement .. 122
Figure 71. Relations sémantiques entre les individus appartenant aux classes cp:Clinical_Pathway et gdl:Guidelines_Recommendations.. 123
Figure 72. Relations sémantiques entre les individus appartenant aux classes process:AtomicProcess et gdl:Guidelines_Recommendations .. 123
Figure 73. Relations sémantiques entre les individus appartenant aux classes cp:Disease et gdl:Subjects .. 124
Figure 74. Relations sémantiques entre les individus appartenant aux classes gdl:Guidelines_Recommendations d'une part, cont:Community, cont:Health_institution_Care_Level et cont:Setting d'autre part .. 125
Figure 75. Relations sémantiques entre les individus appartenant aux classes cont:Health_Institution, sharecp:Resource_Statement et aux sous-classes de la classe res:Health_Resources respectivement .. 126
Liste des tableaux

Tableau 1 : Itinéraire clinique pour la prise en charge antépartale de la pré-éclampsie sévère (PES) non compliquée à la Maternité Principale de l’HCY ... 97
Tableau 2 : Interventions de l’itinéraire clinique relatives à la prise en charge de la pré-éclampsie sévère. .. 137
Tableau 3 : Processus cliniques utilisés par les interventions de l’itinéraire clinique de prise en charge de la pré-éclampsie sévère .. 137
Tableau 4 : Interventions et processus cliniques utilisés dans l’itinéraire clinique de prise en charge de la pré-éclampsie sévère .. 138
Tableau 5 : Moment d’exécution et sa durée de l’intervention « Administration des médicaments » entre la 1ère et la 24ème heure ... 139
Tableau 6 : Moment prévu pour l’atteinte de l’outcome primaire sharecp:spe_day1_h0_h1_outcome139
Tableau 7 : Processus atomiques utilisés par les interventions de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère ... 142
Tableau 8 : Processus atomiques de l’intervention sharecp:administer_drugs_day1_h0_h1_spe de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère ... 143
Tableau 9 : Composition de l’outcome primaire sharecp:spe_day1_h0_h1_outcome et ses conditions associées .. 144
Tableau 10 : Guidelines (recommandations) implémentées dans l’itinéraire clinique associées à leur statut ... 149
Tableau 11 : Guidelines (recommandations) implémentées dans l’itinéraire clinique et associées au domaine « communauté » ... 150
Tableau 12 : Guidelines (recommandations) implémentées dans l’itinéraire clinique et associées au domaine « contexte » ... 151
Tableau 13 : Liste de toutes les ressources requises pour l’administration de Sulfate de Magnésium en Intraveineux ... 152
Tableau 14 : Liste de tous les consommables requis pour l’administration de Sulfate de Magnésium en Intraveineux ... 152
Tableau 15 : Processus atomiques utilisés par les interventions de l’itinéraire clinique de prise en charge de la pré-éclampsie sévère et supportés par des guidelines (recommandations) .. 155
Tableau 16 : Liste des ressources médicamenteuses requises dans l’itinéraire clinique de prise en charge de la pré-éclampsie sévère ... 158
Tableau 17 : Liste des processus atomiques ayant des préconditions en lien avec l’institution de santé et de type ‘compétences’ ... 161
Tableau 18 : Liste des processus atomiques ayant des préconditions en lien avec l’institution de santé et de type ‘Infrastructu...
<table>
<thead>
<tr>
<th>Acronymes/Abréviations</th>
<th>Texte complet</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOG</td>
<td>American College of Obstetricians and Gynecologists</td>
</tr>
<tr>
<td>AGREE</td>
<td>Appraisal of Guidelines Research and Evaluation</td>
</tr>
<tr>
<td>ASAT</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>Asbru</td>
<td>Intention-based Execution Language for representation of clinical guidelines</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BPEL4WS</td>
<td>Business Process Execution Language for Web Services</td>
</tr>
<tr>
<td>BPML</td>
<td>Business Process Modeling Language</td>
</tr>
<tr>
<td>CHOP</td>
<td>Classification Suisse des Interventions Chirurgicales</td>
</tr>
<tr>
<td>CIVD</td>
<td>Coagulation Intravasculaire Disséminée</td>
</tr>
<tr>
<td>CNGOF</td>
<td>Collège National des Gynécologues et Obstétriciens Français</td>
</tr>
<tr>
<td>COMPENDIUM</td>
<td>Recueil officiel des informations relatives aux médicaments autorisés en Suisse</td>
</tr>
<tr>
<td>DAML-S</td>
<td>DARPA Agent Markup Language for Services</td>
</tr>
<tr>
<td>DRG</td>
<td>Diagnosis-Related Groups</td>
</tr>
<tr>
<td>EBM</td>
<td>Evidence-Based Medicine</td>
</tr>
<tr>
<td>EON</td>
<td>EON Guideline Model</td>
</tr>
<tr>
<td>GEM</td>
<td>Guidelines Element Models</td>
</tr>
<tr>
<td>GLIF</td>
<td>GuideLine Interchange Format</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading of Recommendations Assessment, Development and Evaluation</td>
</tr>
<tr>
<td>HCY</td>
<td>Hôpital Central de Yaoundé</td>
</tr>
<tr>
<td>HELLP</td>
<td>Syndrome considéré comme une complication grave de la pré-éclampsie associant trois signes cliniques (hémolyse, élévation des enzymes hépatiques et thrombopénie)</td>
</tr>
<tr>
<td>HELP</td>
<td>Système expert développé à l’hôpital LDS de Salt Lake City (Utah) dont le but était de mettre en œuvre la logique de décision médicale pour répondre aux besoins cliniques, pédagogiques et de recherche.</td>
</tr>
<tr>
<td>HL7</td>
<td>Health Level 7</td>
</tr>
<tr>
<td>HRP</td>
<td>Hématome rétro-placentaire</td>
</tr>
<tr>
<td>HTA</td>
<td>Hypertension Artérielle</td>
</tr>
<tr>
<td>IC</td>
<td>Itinéraires Cliniques</td>
</tr>
<tr>
<td>MeSH</td>
<td>Medical Subject Headings</td>
</tr>
<tr>
<td>MFIU</td>
<td>Mort fœtale in utero</td>
</tr>
<tr>
<td>MLM</td>
<td>Modules Logiques Médicaux</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council of Australia</td>
</tr>
<tr>
<td>NIC</td>
<td>Nursing Interventions Classification</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Clinical Excellence</td>
</tr>
<tr>
<td>NLM</td>
<td>National Library of Medicine</td>
</tr>
<tr>
<td>NOC</td>
<td>Nursing Outcomes Classification</td>
</tr>
<tr>
<td>NZGG</td>
<td>New Zealand Guidelines Group</td>
</tr>
<tr>
<td>OMS</td>
<td>Organisation Mondiale de la Santé</td>
</tr>
<tr>
<td>OWL</td>
<td>Web Ontology Language</td>
</tr>
<tr>
<td>OWL-S</td>
<td>Ontologie pour les services Web</td>
</tr>
<tr>
<td>PES</td>
<td>Pré-éclampsie Sévère</td>
</tr>
<tr>
<td>Prodigy</td>
<td>Prescribing RatiOnally with Decision Support In General Practice StudY</td>
</tr>
<tr>
<td>PROforma</td>
<td>PROforma guideline specification language</td>
</tr>
<tr>
<td>RAFT</td>
<td>Réseau en Afrique Francophone pour la Télémédecine</td>
</tr>
<tr>
<td>RBP</td>
<td>Recommandations pour les Bonnes Pratiques</td>
</tr>
<tr>
<td>RCIU</td>
<td>Retard de croissance intra-utérin</td>
</tr>
<tr>
<td>ROCOG</td>
<td>Royal College of Obstetricians and Gynaecologists</td>
</tr>
<tr>
<td>RDF</td>
<td>Resource Description Framework</td>
</tr>
<tr>
<td>RMRIS</td>
<td>Regenstrief Medical Record System</td>
</tr>
<tr>
<td>RuleML</td>
<td>Rule Markup Language</td>
</tr>
<tr>
<td>SA</td>
<td>Semaines d’aménorrhée</td>
</tr>
<tr>
<td>SEMPATH</td>
<td>SEMantic PATHway</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SF</td>
<td>Souffrance fœtale</td>
</tr>
<tr>
<td>ShaRE-CP</td>
<td>Shareable and Reusable Clinical Pathway Ontology</td>
</tr>
<tr>
<td>SIC</td>
<td>Système d’Information Clinique</td>
</tr>
<tr>
<td>SIGN</td>
<td>Scottish Intercollegiate Guideline Network</td>
</tr>
<tr>
<td>SIH</td>
<td>Système d’Information Hospitalier</td>
</tr>
<tr>
<td>SMART:</td>
<td>System supporting medical activities in real-time</td>
</tr>
<tr>
<td>SICOMED-CT</td>
<td>SNOMED Clinical Terms</td>
</tr>
<tr>
<td>SPARQL</td>
<td>Sparql Protocol and RDF Query Language</td>
</tr>
<tr>
<td>SPE</td>
<td>Severe Pre-eclampsia</td>
</tr>
<tr>
<td>SWRL</td>
<td>Semantic Web Rule Language</td>
</tr>
<tr>
<td>TAD</td>
<td>Tension Artérielle Diastolique</td>
</tr>
<tr>
<td>TAS</td>
<td>Tension Artérielle Systolique</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modeling Language</td>
</tr>
<tr>
<td>UMLS</td>
<td>Unified Medical Language System</td>
</tr>
<tr>
<td>VIDAL</td>
<td>Ouvrage médical français rassemblant des résumés des caractéristiques de produits médicamenteux et de certains compléments alimentaires</td>
</tr>
<tr>
<td>W3C</td>
<td>World Wide Web Consortium</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>WSCI</td>
<td>Web Service Choreography Interface</td>
</tr>
<tr>
<td>WSDL</td>
<td>Web Services Description Language</td>
</tr>
<tr>
<td>WSFL</td>
<td>Web Services Flow Language</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
<tr>
<td>XPDL</td>
<td>XML Processing Definition Language</td>
</tr>
</tbody>
</table>
Chapitre 1
Introduction Générale

De nos jours, le secteur de la santé en général, celui de la médecine en particulier, fait face à d'importants défis liés à l'amélioration de la qualité des soins et à la diminution des coûts des soins [1, 2]. Ces défis sont accentués par les progrès scientifiques immenses qui sont réalisés tous les jours. Des nouvelles techniques et autres approches scientifiques développées et mises au point par les scientifiques, permettent d'avoir de jour en jour, une compréhension plus élaborée des processus physiopathologiques et étiopathogéniques de certaines maladies auparavant mal connues ainsi qu'une meilleure gestion de celles-ci [3]. Par conséquent, on observe une augmentation de la quantité de connaissances à assimiler et à manipuler, à tel point qu'il est humainement impossible pour un professionnel de la santé de nos jours, de fournir sans assistance, des soins avec la plus grande efficacité, cohérence et sécurité possible en accord avec l'ensemble des connaissances actuelles du domaine concerné [3].

L'atteinte des objectifs relatifs aux défis mentionnés ci-dessus peut se faire à travers l'implémentation d'une approche standardisée de la prise en charge des patients dans les différents domaines de soins [1]. Cette approche standardisée nécessite la description détaillée d'un plan de soins et de suivi au cours de la prise en charge d'un patient ayant une pathologie donnée ainsi que les résultats attendus, les actions ou interventions à mener et la gestion des événements exceptionnels. Un outil efficace et efficient qui a été conçu pour implémenter cette approche standardisée de la prise en charge des patients ayant une pathologie commune est l’itinéraire clinique [1].

Un itinéraire clinique peut être défini comme la planification des procédures médicales et de soins y compris les tests diagnostiques, les traitements et les consultations dans le but de coordonner et de rendre efficient la prise en charge des patients [4]. L'objectif général d'un itinéraire clinique est d'améliorer la continuité et la coordination de la prise en charge des patients au travers de plusieurs disciplines et de son passage dans plusieurs services [5]. Il permet également de diminuer la variabilité des soins effectuées sur un patient au cours de sa prise en charge [6, 7]. Plus spécifiquement, un itinéraire clinique permet d’une part, d’améliorer la qualité des soins à travers une meilleure organisation des processus de soins et du suivi des (résultats) outcomes cliniques attendus chez les patients, d’autre part, il permet d’améliorer l’efficience des soins à travers une meilleure utilisation des ressources, ce qui entraîne une diminution des coûts des soins. L’utilisation d’un itinéraire clinique pour les soins présente plusieurs avantages à savoir : l'amélioration des outcomes cliniques attendus chez les patients, l'amélioration de la satisfaction des patients et de leur participation aux processus de soins, l'amélioration de la participation et de la communication entre les fournisseurs de soins, la réduction de la durée de séjour et des coûts ainsi que l’optimisation du temps des fournisseurs de soins [1, 8, 9].

En tant qu'outil destiné au soutien pour la prise en charge des patients, un itinéraire clinique fournit des détails sur les étapes de prise en charge d’un patient ayant une pathologie donnée [5]. On distingue quatre grands composants qui sont associés aux itinéraires cliniques : la chronologie du processus, les différents types de soins ou d'interventions, les résultats (outcomes) attendus et la gestion des variances (déviations observées dans le déroulement du processus) [5]. Par ailleurs, parmi les éléments autour d’un itinéraire clinique, il faut noter la place importante du fournisseur de soins en tant que gestionnaire du cas, la mise en place de groupes de pratique médico-soignant pour la gestion des épisodes de soins, la participation active du patient ou de sa famille à l’atteinte de ces outcomes et enfin, l’évaluation [10].

De plus, la pratique de la médecine de nos jours, exige l’utilisation des preuves issues de la recherche clinique (études randomisées et contrôlées, méta-analyses, études de cohorte, etc.) afin de soutenir et donner une base scientifique solide aux interventions ou activités utilisées dans le processus de soins. Cette approche qui s’appelle la médecine fondée sur les preuves ou en anglais « Evidence-Based Medicine », EBM), consiste en l’utilisation rigoureuse et judicieuse des meilleures données actuelles et disponibles pour prédire de décisions lors des soins aux patients [11, 12]. Dans le but de mettre en pratique ce concept de médecine fondée sur les preuves et aider les professionnels de la santé, les gestionnaires et/ou les décideurs à appliquer effectivement les bonnes pratiques, plusieurs organisations nationales, internationales, non gouvernementales ou des sociétés savantes développent des guidelines ou recommandations pour les bonnes pratiques (RBP). Il s’agit d’un ensemble de directives ou de principes qui visent à assister les professionnels de la santé dans
différents processus de soins [13]. Elles fournissent un guide pour la pratique recommandée et visent globalement à orienter la conduite des activités de soins de santé en s’appuyant sur les preuves scientifiques [13–15]. Les RBP ont souvent une portée internationale ou régionale. Historiquement, les RBP ont souvent été fournies sous forme de documents textuels ou narratifs posant ainsi le problème d’adhérence ou de compliance des professionnels de la santé pour leur utilisation en soins cliniques [16]. Sous ce format, ces recommandations restent très souvent sous utilisées [16]. C’est pour y remédier que de nombreux modèles informatiques de représentation des connaissances des RBP ont été proposés, de manière à les intégrer dans le workflow (flux de travail) clinique et à les exécuter directement au lieu des soins [17–20].

Les itinéraires cliniques en tant qu’outils opérationnels favorisent l’implémentation et l’adaptation locale ou dans des environnements de soins de santé spécifiques, les guidelines éditées par ces différents organismes[6]. En effet, les équipes en charge du développement des itinéraires cliniques doivent tenir compte non seulement du workflow (processus, contraintes temporelles, résultats attendus) mais aussi des preuves scientifiques issues de la médecine fondée sur les preuves (EBM).

Au-delà des guidelines, la conception, le développement et l’implémentation d’un itinéraire clinique dépendent d’autres éléments comme ceux liés au contexte et aux ressources, à savoir : le personnel, la disponibilité des équipements, le niveau d’éducation, la législation, les politiques, les règles administratives et de gestion, etc. [1]. Cela soulève un problème majeur qui est celui de la contextualisation des itinéraires cliniques à travers les différents contextes.

De par la diversité des connaissances à intégrer (procédures, outcomes, guidelines, contraintes temporelles, contraintes liées au contexte, aux ressources et au patient et/ou sa famille), développer un itinéraire clinique nécessite qu’un consensus soit établi entre les groupes multidisciplinaires qui ont en charge la gestion des patients ayant une pathologie donnée [1, 2]. La description de tous ces domaines de connaissances et l’obtention d’un consensus requièrent l’établissement d’un modèle sémantique commun [1]. Ce modèle doit pouvoir, représenter et décrire les concepts et les liens sémantiques propres à un itinéraire clinique d’une part, d’autre part, représenter et décrire les concepts et les liens sémantiques associés aux domaines de connaissances qui interagissent avec un itinéraire clinique (guidelines, contexte, ressources, etc.) [2]. Ce modèle sémantique non seulement, aidera à soutenir la coopération entre les différents acteurs impliqués (fournisseurs de soins, patients, familles, etc.) dans le déroulement des processus de soins, mais aussi, il aidera à une meilleure compréhension de la sémantique associée à ces connaissances et servira de support pour la contextualisation et l’interopérabilité sémantique entre des systèmes informatiques très souvent hétérogènes [2].

Dans le domaine de l’ingénierie des connaissances, les ontologies permettent de représenter et de modéliser l’ensemble de connaissances relatives à un domaine de connaissance donné [21]. Une ontologie permet ainsi de définir les termes, les relations sémantiques et les contraintes d’un domaine de connaissance afin de fournir une compréhension commune et partagée du domaine de connaissance, favorisant ainsi une interopérabilité sémantique, le partage et la réutilisation des connaissances ainsi représentées entre les humains et/ou systèmes informatiques [2]. Les ontologies permettent également de raisonner et générer de nouvelles connaissances (faire des inférences) [21]. Cette approche est utilisée dans plusieurs domaines tels que l’intelligence artificielle, le génie logiciel, le web sémantique, etc.

Les ontologies ont très souvent été utilisées pour décrire les connaissances sémantiques associées aux itinéraires cliniques comme le prouve l’abondante littérature que nous avons retrouvée [1, 2, 5, 22–27]. Cependant, bien que ces modèles intègrent déjà de nombreuses connaissances issues non seulement de la gestion du flux d’activités mais aussi de l’expérience des utilisateurs et du contexte, force est de constater qu’aucun travail à notre connaissance n’a tenté de représenter ensemble et de manière formelle les liens et autres interactions qui existent entre un itinéraire clinique d’une part, et les domaines de connaissance tels que les guidelines et le contexte d’autre part.

Dans ce travail de recherche, nous présentons un modèle qui décrit de manière formelle et explicite les différents concepts et relations sémantiques relatifs aux itinéraires cliniques ainsi qu’aux domaines de connaissances associés tels que les guidelines et le contexte. Un accent est mis également sur les interactions sémantiques qui existent entre les concepts des différents domaines de connaissances, en vue de leur utilisation pour la contextualisation des itinéraires cliniques.
Le but d'une telle approche est non seulement de soutenir l'amélioration de la qualité et l'efficience des soins à travers l'exécution et la gestion d'un itinéraire clinique dans un environnement donné par une identification précise des interactions sémantiques entre les concepts de l'itinéraire cliniques et les autres domaines de connaissances qui interagissent avec celui-ci, mais aussi, de soutenir sa conception et son développement. Les responsables en charge de l'implémentation d'un itinéraire clinique pourront déjà dès la phase de développement d'un itinéraire clinique, identifier les interactions possibles entre celui-ci et les éléments issus des domaines de connaissances connexes tels que les guidelines et le contexte dans lequel sera déployé. De plus, l’intérêt de développer un tel modèle sémantique peut faciliter l’adaptation cohérente des itinéraires cliniques à la dynamique de l’évolution des connaissances provenant des guidelines ou du contexte. Il pourrait également soutenir le partage et la réutilisabilité des itinéraires cliniques d’un contexte donné à un autre.
Chapitre 2
Méthodologie de recherche

2.1. Problématique et défis

Malgré les multiples propositions de modèles sémantiques basés sur les ontologies, lesquels intègrent pour certains les recommandations pour les bonnes pratiques (RBP) ou les connaissances issues du contexte, force est de constater que de nombreux défis existent encore. Quelques-uns d’entre eux, sont énumérés ci-dessous.

La non formalisation des relations sémantiques qui existent entre les itinéraires cliniques et les domaines de connaissance connexes tels que les RBP et le contexte

Les RBP et les itinéraires cliniques visent le même objectif à savoir : améliorer la qualité des soins délivrés aux patients. Les RBP sont des connaissances issues principalement de la recherche et dans une certaine mesure elles intègrent aussi les avis d’experts. Bien qu’elles se focalisent, sur l’importance des preuves scientifiques pour soutenir ou non une recommandation, il se trouve que certaines recommandations ne peuvent être appliquées que dans certains contextes. C’est une approche top-down qui ne tient pas suffisamment compte du contexte empêchant ainsi l’utilisation ou la dissémination de certaines recommandations dans certains contextes[28].

Contrairement aux RBP, le développement d’un itinéraire clinique quant à lui se fait en associant plusieurs types de connaissances : les connaissances plus générales issues des RBP (identification des interventions clefs provenant des preuves scientifiques) et les connaissances plus spécifiques liées au contexte (ressources disponibles, meilleures pratiques locales, valeurs des patients, etc.). En effet, au cours du développement d’un itinéraire clinique et pour que celui-ci soit fonctionnel, le groupe de travail (professionnels de la santé) en charge de son développement doit sélectionner (effectuer des choix) les interventions pertinentes pour cet itinéraire clinique. Ces interventions peuvent provenir de la littérature scientifique (recommandations pour les bonnes pratiques) ou de la littérature grise, de l’expérience clinique des professionnels de la santé mais aussi du contexte (équipement disponible, compétences disponibles, disponibilité des médicaments, aspects sociaux, culturels et religieux, etc.). C’est donc une approche plus opérationnelle (Bottom-up) qui met un accent sur le contexte.

Cependant, même s’il est évident que cette association de diverses de connaissances soit faite par le groupe de travail au cours du développement d’un itinéraire clinique, il n’existe à notre connaissance aucune représentation qui illustre de manière formelle les liens qui existent entre un itinéraire clinique, les RBP et le contexte. De plus, les processus qui déterminent les choix des interventions à réaliser dans le cadre d’un itinéraire clinique au sein d’une institution de santé, restent très souvent implicites (même s’il peut être explicite pour le groupe de travail) ou mal connus des utilisateurs finaux (professionnels de la santé appliquant l’itinéraire clinique). Il devient donc difficile : de savoir ce qui sous-tend l’utilisation d’une intervention donnée au sein d’un itinéraire clinique ; de déterminer les ressources requises pour l’exécution d’une intervention ; d’identifier quelles sont les interventions de l’itinéraire clinique qui sont recommandées par les RBP et enfin, de déterminer les recommandations qui s’appliquent à un contexte donné.

La nécessité de faire évoluer de manière cohérente et pertinente les itinéraires cliniques en fonction de l’évolution des connaissances connexes comme les RBP ou le contexte

La gestion de l’évolution des connaissances dans le domaine de la science en général et de la médecine en particulier constitue un enjeu important pour la gestion de l’évolutivité et la mise à jour d’un itinéraire clinique. Cette évolution des connaissances entraine souvent la formulation de nouvelles recommandations, lesquelles nouvelles recommandations peuvent compléter certaines recommandations existantes ou même aller à l’encontre des précédentes. Il en est de même des éléments du contexte. Un équipement qui n’existait pas au moment de la conception d’un itinéraire clinique peut être disponible (nouvelle acquisition) à un moment donné ou à l’inverse, un équipement qui existait au moment de la conception d’un itinéraire clinique peut être indisponible (panne) à un moment donné. De tels changements, s’ils surviennent dans le contexte d’un hôpital donné peuvent nécessiter une modification de l’itinéraire clinique en modifiant ou en y intégrant de nouvelles interventions.
Un itinéraire clinique doit ainsi pouvoir s’adapter en fonction de toutes ces évolutions. Sa mise à jour (par exemple, la modification ou l’intégration d’une nouvelle activité supportée par des nouvelles recommandations pour les bonnes pratiques ou par des modifications survenues dans le contexte) doit pouvoir se faire en identifiant les liens possibles entre cet itinéraire clinique et les recommandations pour les bonnes pratiques d’une part ; entre cet itinéraire clinique et le contexte d’autre part afin de conserver une certaine cohérence et pertinence.

Le besoin de partage et de réutilisation des itinéraires cliniques dans différents contextes

Un autre enjeu important est celui du partage et de la réutilisabilité des itinéraires cliniques à travers des contextes différents (ex : entre des hôpitaux). Les itinéraires cliniques sont à la base conçus pour répondre à des besoins spécifiques à chaque contexte. Hors, la conception et le développement d’un itinéraire clinique par un groupe de travail nécessite beaucoup de ressources à mobiliser (humaines, logistiques et financières). Cette problématique est d’autant plus pertinente que si l’on se situe dans un contexte de pays à ressources limitées.

Il y a donc un intérêt à faciliter le partage et la réutilisabilité des itinéraires cliniques, soit entre des hôpitaux de même catégorie (ex : d’un hôpital de référence à un autre hôpital de référence, ou d’un hôpital de district à un autre), soit entre des hôpitaux de catégories différentes (ex : d’un hôpital de référence à un hôpital de district), soit encore entre des hôpitaux situés dans des contextes économiques différents (ex : entre un hôpital situé dans un contexte à faibles ressources et un hôpital à ressources élevées).

Le partage et la réutilisabilité d’un itinéraire clinique d’un contexte donné à un autre nécessite donc de ce fait un important effort d’adaptation de cet itinéraire clinique en fonction des paramètres du contexte dans lequel il sera déployé. Pour atteindre cet objectif de partage et de réutilisabilité, plusieurs paramètres du contexte doivent être considérés dans le modèle y compris de manière sémantique. Un modèle sémantique standard qui identifie les différents composants d’un itinéraire clinique a été proposé pour favoriser l’implémentation des itinéraires cliniques [2]. Bien que ce modèle identifie et intègre certains concepts associés au contexte dans le modèle d’itinéraire clinique, il est difficile de le réutiliser en l’état d’un contexte donné à un autre.

2.2. Hypothèses de recherche

Une modélisation sémantique formelle des connaissances des itinéraires cliniques et de leurs liens avec les domaines de connaissance connexes, permettrait d’automatiser par du raisonnement logique la résolution des problèmes liés à ces itinéraires cliniques. Plus spécifiquement, elle :

- Favorisera une meilleure compréhension des interactions sémantiques entre ces différents domaines de connaissance,
- Soutiendra une meilleure coopération entre les différents acteurs (fournisseurs de soins, patients, familles, etc.) impliqués dans les processus de soins.
- Servira de support pour le développement des itinéraires cliniques qui d’une part, intègrent de manière optimale les interventions les plus efficaces et les plus efficientes possibles par rapport à un contexte donné, et qui d’autre part, s’adaptent de manière cohérente à l’évolution des différents domaines de connaissance associés (par exemple : impossibilité de réaliser une intervention donnée, existence de nouvelles recommandations, modification du contexte). Ceci permettrait d’avoir des itinéraires cliniques qui s’adaptent au contexte (itinéraires cliniques adaptatifs) et aiderait in fine, à une meilleure planification des soins (à l’échelle d’un système de santé ou d’un hôpital) et à une meilleure gestion (exécution et suivi) des soins (à l’échelle d’un patient).
- Enfin, favorisera l’interopérabilité sémantique entre les différents systèmes informatiques en santé.
2.3. Questions de recherche

2.3.1. Question de recherche principale

Ce travail a comme questions de recherche principales :

(i) Comment représenter formellement les concepts et les relations sémantiques relatifs aux domaines de connaissances que sont les itinéraires cliniques, les guidelines et le contexte ainsi que les relations sémantiques qui existent entre ces domaines de connaissance ?

(ii) Comment utiliser cette représentation pour des applications complexes basées sur la connaissance, en particulier pour traiter la question de la contextualisation des itinéraires cliniques ?

2.3.2 Questions de recherche spécifiques

Les questions de recherche spécifiques quant à elles sont les suivantes :

- Comment représenter/modéliser le domaine de connaissance relatif aux itinéraires cliniques ainsi qu’aux flux d’activités (workflow) et aux contraintes temporelles y afférentes ?
- Comment représenter/modéliser le domaine de connaissance relatif aux guidelines ?
- Comment représenter/modéliser le domaine de connaissance relatif au contexte dans le cadre de l’exécution d’un itinéraire clinique ?
- Comment représenter/modéliser le domaine de connaissance relatif aux ressources requises pour l’exécution d’un itinéraire clinique ?
- Quels sont les liens ou les interactions sémantiques qui existent entre tous ces domaines de connaissance ?
- Comment détecter des incompatibilités sémantiques ou les nouvelles connaissances issues des interactions entre ces différents domaines de connaissances ?
- Comment utiliser ces interactions sémantiques pour soutenir la contextualisation des itinéraires cliniques, y compris dans le cadre de l’intégration dans un système d’information hospitalier ?

2.4. Objectifs de recherche

L’objectif général de ce travail de recherche est de développer un modèle sémantique qui intègre les connaissances sur les itinéraires cliniques, les guidelines et le contexte afin de faciliter l’adaptation, le partage et la réutilisabilité des itinéraires cliniques à travers le contexte. Les objectifs spécifiques sont :

- De développer une ontologie qui définit les concepts et les relations sémantiques relatifs aux domaines de connaissances que sont les itinéraires cliniques, les guidelines et le contexte.
- D’établir les liens et les interactions sémantiques qui existent entre ces domaines de connaissance.
- De valider et d’évaluer la consistance de cette ontologie en s’appuyant sur des exemples concrets.
- D’illustrer l’utilisation de cette ontologie pour la contextualisation et la réutilisabilité des itinéraires cliniques à travers le contexte.
2.5. Approche méthodologique

Pour atteindre les objectifs associés à ce travail de recherche, l’approche méthodologique suivante a été adoptée.

2.5.1. Développement de l’ontologie ShaRE-CP (Shareable and Reusable Clinical Pathway Ontology)

2.5.1.1. L’ontologie ShaRE-CP

Il s’est agi de développer une ontologie de domaine [29, 30] qui intègre (importe) des sous-ontologies (modules). Ces sous-ontologies formalisent chacune, les connaissances (concepts, propriétés) de quatre domaines de connaissances que sont : les itinéraires cliniques, les guidelines, le contexte et les ressources. De plus, des axiomes (relations permanentes entre certains concepts) à l’intérieur des ontologies ou entre les ontologies ont été implémentés.

La construction de cette ontologie intégrée s’est appuyée : (i) sur la revue de la littérature mettant en exergue des travaux effectués par d’autres auteurs dans la représentation sémantique des connaissances relatives aux itinéraires cliniques et aux guidelines, sur des discussions et autres séances de travail menées avec des personnes exerçant dans le domaine de la gestion des connaissances en santé, (iii) et enfin, sur une analyse des situations réelles de terrain en contexte de pays en développement.

2.5.1.2. L’ontologie de l’itinéraire clinique

Le développement de cette ontologie s’est basé sur celle proposée par Ye et al. [2]. Cette ontologie qui se base sur un des langages populaires du web sémantique (OWL), a été proposée comme un modèle standard de représentation des connaissances d’un itinéraire clinique. Elle a été choisie car elle représente un modèle sémantique commun, extensible et réutilisable pour la représentation de tout itinéraire clinique donné [2]. On y retrouve donc les concepts clés tels que les interventions, les outcomes, les ressources (humaines, matérielles), les rôles, l’organisation, les écarts, le temps ainsi que les propriétés pertinentes entre ces différents concepts.

En s’appuyant sur ce modèle sémantique de base, le nouveau modèle que nous proposons s’est attelé à l’améliorer et à réorganiser les principaux concepts et propriétés qui ont trait au domaine de connaissance des itinéraires cliniques. Le changement le plus important à noter est celui de l’élagage de cet itinéraire clinique des concepts relatifs aux ressources et au contexte.

2.5.1.3. L’ontologie des guidelines

Le développement de cette ontologie a consisté à définir les concepts et relations essentielles de par leurs possibles interactions avec les itinéraires cliniques. A titre d’exemple, on peut citer les concepts tels que : les recommandations, leur niveaux de preuves et forces de recommandation.

2.5.1.4. L’ontologie du contexte

L’approche utilisée pour concevoir et développer l’ontologie du contexte a consisté à identifier les éléments du contexte qui interagissent potentiellement avec les concepts d’un itinéraire clinique, en s’appuyant principalement sur les approches suivantes : (i) l’analyse des concepts relatifs aux déterminants sociaux et économiques de la santé (approche formulée par l’OMS) et d’autres ressources documentaires afin d’identifier des concepts pertinents permettant de décrire le contexte (approche top-down), (ii) et l’identification des concepts relatifs au contexte à partir des guidelines (OMS) formulées à l’endroit de la pré-éclampsie et de l’éclampsie ainsi qu’à partir d’un itinéraire clinique développé pour la prise en charge de la pré-éclampsie sévère (approche bottom-up).

2.5.1.5. L’ontologie des ressources

Sur la base de quelques exemples d’itinéraires cliniques et de leur fonctionnement, nous avons identifié cinq classes de ressources requises pour l’exécution des interventions associées à un itinéraire clinique. Ces classes ont permis de développer le module de l’ontologie relatif aux ressources.
2.5.2. Développement d’un itinéraire clinique pour la prise en charge des patientes ayant une pré-éclampsie sévère

Un itinéraire clinique pour la prise en charge des patientes ayant une pré-éclampsie sévère a été développé pour la maternité de l’Hôpital Central de Yaoundé. Cet itinéraire clinique a été validé par un échantillon de professionnels de la santé (gynécologues, anesthésistes, infirmiers, sages-femmes, résidents et étudiants) travaillant dans cette institution.

2.5.3. Représentation d’un itinéraire clinique, des guidelines, des ressources et le contexte et leurs interactions sémantiques en se basant sur l’ontologie ShaRE-CP

L’ontologie ShaRE-CP a été utilisée pour instancier l’itinéraire clinique pour la prise en charge des patientes ayant une pré-éclampsie sévère. Cette instanciation a permis de valider l’utilisation de cette ontologie comme modèle de représentation sémantique d’un itinéraire clinique en tenant compte des guidelines, des ressources et du contexte. Par ailleurs, cette instanciation a permis d’améliorer la dite ontologie.

2.5.4. Cas d’utilisation et démonstration du fonctionnement de l’ontologie ShaRE-CP

Une démonstration du fonctionnement de cette ontologie a été effectuée ainsi qu’une analyse de la compatibilité sémantique qui existe entre les concepts et les propriétés associés à cette ontologie. Le but était de vérifier la consistance des relations sémantiques contenues dans ce modèle d’ontologie, d’identifier et d’évaluer des inérences permettant de générer des nouvelles connaissances associées à ce modèle d’ontologie.

Sur la base de certains cas d’utilisation, les approches utilisées ont consisté en: la réalisation des tests de raisonnement, la mise en place des règles SWRL et enfin, l’implémentation des requêtes SPARQL.
Chapitre 3
Etat de l’art et travaux similaires

3.1. Les itinéraires cliniques
3.1.1. Introduction

Provenant initialement du milieu de l’industrie et de l’ingénierie [10, 31–33], les itinéraires cliniques ont été utilisés pour la première fois au milieu des années quatre-vingt (entre 1985 et 1987) au New England Medical Center Hospital de Boston (Massachusetts, USA) en réponse à l’introduction des DRG (Diagnosis-Related Groups) en 1983 [34–37]. Ce concept a été introduit également en Angleterre, au début des années 90 [37, 38], puis s’est répandu de la fin des années 90 au début des années 2000 à travers le monde [32, 33, 37].

Le terme itinéraire clinique (en anglais, clinical pathway) quant à lui, a été introduit en 1996 au sein du MeSH (Medical Subject Headings, thésaurus supporté par la bibliothèque nationale de médecine (NLM) des Etats-Unis) [4].

A l’origine, l’introduction des itinéraires cliniques s’est faite initialement dans le domaine des soins infirmiers et des procédures chirurgicales (non médicales) avec pour but de réduire les coûts de la santé à travers la réduction de la variabilité des soins, la réduction de la durée des séjours et de l’optimisation de l’utilisation des ressources (efficience) [39, 40]. C’est bien après que l’approche multidisciplinaire a permis de favoriser la mise en place d’itinéraires cliniques englobant entièrement tous les soins destinés aux patients [41].

3.1.2. Définition opérationnelle

On peut définir un itinéraire clinique comme la planification d’un certain nombre de procédures médicales et de soins y compris les tests diagnostiques, les traitements et les consultations dans le but de coordonner et de rendre efficace la prise en charge des patients [4]. En d’autre termes, il s’agit d’un plan de soins structuré, multidisciplinaire qui identifie et décrit les étapes du processus de soins pour une maladie et dans un contexte donné, les délais dans lesquels les événements clés (interventions) et les outcomes des patients devraient avoir lieu durant un épisode de soins afin d’optimiser l’utilisation des ressources et la durée du séjour dans un contexte donné [42, 43].

Bien que ce concept soit reconnu internationalement dans le monde entier de nos jours, il faut souligner que la connaissance de ce que constitue en pratique un itinéraire reste assez confus aussi bien chez les professionnels que chez les chercheurs dans le domaine de la santé [44].

C’est dans l’optique de remédier à ces confusions que des auteurs ont proposé une définition opérationnelle. Un itinéraire clinique doit avoir les quatre critères suivants : (1) l’intervention est un plan de soins structuré et multidisciplinaire ; (2) l’intervention est utilisée pour traduire les recommandations ou les preuves au sein des structures locales ; (3) l’intervention détaille les étapes d’un traitement ou d’un soin en terme de plan, chemin, algorithme, recommandation ou protocole en associant des délais ou une progression basée sur des critères ; et (4) l’intervention vise à standardiser les soins pour une population spécifique [44, 45].

3.1.3. Enjeux des itinéraires cliniques
3.1.3.1. Un outil pour l’amélioration de la qualité des soins

Le but premier des itinéraires cliniques est d’organiser et améliorer les processus de soins (pratique des professionnels) afin d’améliorer la qualité des soins [46–48]. En tant qu’outil pour l’amélioration de la qualité des soins [49] et en s’appuyant sur le concept des soins centrés sur le patient qui intègrent la spécificité de la maladie et l’implication du patient dans le processus de soins [50], un itinéraire clinique détaillle les étapes essentielles des soins de patients ayant un problème clinique spécifique» [6]. Autrement dit, il permet de modéliser les groupes de patient ayant des niveaux de prédicibilité différents [51] et définir pour eux, un plan de prise en charge idéale pour un problème de santé ou une
maladie donnée [6], en s’appuyant d’une part, sur les meilleures preuves actuelles pour les intégrer dans la pratique clinique [49, 52] et d’autre part, sur l’expérience clinique des experts du domaine et la disponibilité des ressources locales [45]. Cette standardisation des processus cliniques vise donc à réduire la variabilité (réduction des variances) entre les soins dispensés à des patients ayant la même pathologie, ce qui entrainerait une réduction des erreurs médicales [36, 53]. C’est un outil utile pour la prise de décision mutuelle et l’organisation des soins prédictibles d’un groupe de patients [51]. Compte tenu de sa dimension pluridisciplinaire, les itinéraires cliniques ont le potentiel de promouvoir le travail en équipe dans les soins aux prodigués patients [6]. Les équipes formées de personnes interdépendantes y compris les administratifs intégrés dans l’organisation des soins travaillant régulièrement ensemble pour fournir des soins à des groupes de patients spécifiques [54]. L’itinéraire clinique permet ainsi de mettre en exergue les objectifs et les points clefs de la prise en charge d’une population de patients donnée [49]. Ainsi, les attentes vis-à-vis de l’évolution clinique des patients y sont précisées [49, 55, 56].

En plus, cet outil facilite la communication, la coordination et la planification des activités d’une équipe de soins multidisciplinaires et des patients [49] en favorisant les interactions entre les services de santé (soins primaires, soins aigus, soins chroniques) [6].

Il permet également de documenter, de suivre et d’évaluer les variances qui surviennent au cours des processus de soins afin d’y apporter les solutions [49].

Un autre objectif majeur des itinéraires cliniques est celui de l’amélioration des indicateurs cliniques et la satisfaction des patients. L’hypothèse qui est faite est celle selon laquelle, plus les interventions sont faites comme il le faut c’est-à-dire selon une séquence et un timing bien codifié en se basant sur des preuves scientifiques, l’expérience clinique et le contexte, alors, plus de patients atteindront les résultats attendus au cours de leur soins et cela augmentera leur satisfaction.

3.1.4.1. Itinéraire clinique et approche basée sur le papier

A l’aube de l’introduction des itinéraires cliniques en médecine, son développement et son implémentation dans la pratique des soins s’est surtout fait en se basant sur du papier. Il s’agissait surtout d’une matrice tache-temps (jours par jours ou même heures par heures) encore appelée modèle de chaîne (ou diagramme de Gantt) [60]. Ce modèle a surtout été utilisé dans les soins ayant un haut degré de prédictibilité comme par exemple une chirurgie élective ou une chimiothérapie. Par la suite, les supports ont évolués pour gérer des processus de soins à faible niveau de prédictibilité ou non prédictibles. Ici la matrice tache-temps est changée en matrice tache-objectif ou tâche-objectif-temps [51]. Le temps ici peut être modifié en passant par exemple d’une base journalière à une base hebdomadaire ou même mensuelle. Ce modèle quant à lui a surtout été utilisé pour des diagnostics complexes ou pour des groupes de patients ayant d’importantes comorbidités comme en médecine interne ou en soins de réhabilitation.

Compte tenu de toutes ces évolutions, la gestion des itinéraires cliniques en se basant sur du papier (checklist) a éprouvé et éprouve de nombreuses limites, surtout en tant qu’outil pour la gestion de l’information et l’aide à la décision [61, 62]. Une étude réalisée avec 61 infirmières (unité de soins coronariens et médico-chirurgicaux aigus) en Australie en 1997 met en évidence les limites du papier en tant qu’outil pour la mise en œuvre des itinéraires cliniques [61]. Parmi les limites inhérentes au papier, on peut citer le caractère fastidieux que représente la gestion manuelle des nombreuses checklists d’un itinéraire clinique [63].
Il faut soulever la limitation de la quantité d’information que l’on peut collecter due à la surface limitée du papier [62]. Cette contrainte liée à la surface du papier a favorisé la mise en place d’une documentation dite d’exception. Au cours du processus de soins, celle-vise à documenter seulement les variances aussi bien positives que négatives sur ce qui est attendu en termes d’interventions et d’évolution clinique du patient [61].

Une autre difficulté identifiée liée au support papier est l’impossibilité de lier de manière efficace les problèmes de santé du patient, les interventions réalisées, les résultats attendus et l’évaluation des résultats atteints [62]. Il est donc difficile de voir de manière dynamique et en temps réel les changements de l’état clinique du patient après une intervention donnée [61, 62]. Ceci est dû au fait qu’il n’y a pas de connexion entre les tâches de la checklist (interventions) et les outcomes cliniques du patient [61]. L’analyse des informations contenues dans l’itinéraire clinique y compris les variances ne se fait alors que de manière rétrospective [61]. Ceci a pour conséquence de limiter l’amélioration en temps réel de la qualité des soins pour les patients chez qui la variance s’est produite et de favoriser une approche non spécifique au patient car les données issues de cette approche sont agrégées pour les statistiques (fréquence des variances, types, causes probables) et non pour soutenir les soins [61]. Or, c’est le lien entre ces deux dimensions qui reflétera au mieux l’évolution de l’état du patient et qui fournira des informations utiles pour l’aide à la décision [62]. Toutefois, il est vrai que ces données contenues sur le papier même si elles sont analysées rétrospectivement peuvent contribuer à l’amélioration de la qualité des soins pour des patients futurs [61].

C’est dans l’optique de remédier à ces limites qu’une étude réalisée avec 61 infirmières (unité de soins coronariens et médico-chirurgicaux aigus) en 1997 en Australie a permis d’identifier les besoins fonctionnels critiques nécessaires pour le bon fonctionnement d’un itinéraire clinique [61]. Il s’agit :

- De la planification des soins du patient et des modifications dynamiques y afférentes
- Des alertes sur les échéances suivantes, sur des résultats d’évaluation hors des limites normales, les interactions médicamenteuses, le dosage anormal des médicaments
- De l’évolution de l’état clinique du patient et de la mise en évidence de la relation entre les interventions et les outcomes du traitement
- L’accès aux protocoles de traitement et aux informations sur les médicaments.

3.1.4.2. Itinéraire clinique : vers l’informatisation

Parmi les différents systèmes de gestion informatisée des itinéraires cliniques, on peut citer : (1) des systèmes qui permettent de gérer les itinéraires cliniques basés ou initialement créés sur support papier ou une application [63, 69]; (2) des applications web reprenant le modèle d’itinéraire clinique sur support papier [70]; (3) et des systèmes qui collectent les données sur les variances générées à partir d’itinéraires cliniques en support papier [39, 71, 72]. Outre une meilleure précision et rapidité des itinéraires cliniques informatisés, ces systèmes pour la plupart reprennent (clonet) tout simplement de manière électronique le modèle papier (checklist) sans véritable modélisation des interventions, des outcomes et de leurs relations au sein d’un itinéraire clinique [2].

Par la suite des approches plus évoluées ont été développées à l’instar : (1) de l’utilisation des graphes de précédence qui associent les outcomes attendus et les interventions lesquels sont connectés à travers des liens visuels [62]; (2) des processus basés sur les évènements (en anglais, event-driven process) [73]; (3) et des systèmes basés sur le modèle de gestion et de notation des cas [74], etc.

Un peu plus tard encore, des approches se basant sur les technologies du web sémantique (ontologies) ont été proposées afin : de fournir une meilleure représentation du domaine de connaissance des itinéraires cliniques ; de favoriser l’implémentation des itinéraires cliniques.
adaptables qui incorporent les données cliniques, du flux (workflow) et de l’organisation ; et enfin d’améliorer leur interopérabilité sémantique [64, 75–78].

3.1.5. Gestion des variances dans un itinéraire clinique
3.1.5.1. Définition et intérêt de la variance

L’amélioration des pratiques à travers un itinéraire clinique passe par une bonne compréhension de la différence entre ce qui est prévu au cours du processus de soins d’un patient (interventions et outcomes cliniques attendus) et ce qui se déroule effectivement (interventions et outcomes cliniques effectués). Cette différence ou écart s’appelle la variance.

La variance peut être définie comme toute déviation (événement inattendu) qui survient par rapport à ce qui est prédit durant le processus de soins dans un itinéraire clinique [79, 80]. Autrement dit, c’est l’écart entre les événements attendus et les événements réels dans le plan de soins d’un patient [81].

L’intérêt pour la gestion et le suivi continu des variances dans un itinéraire clinique a été boosté au début des années quatre-vingt-dix aux États-Unis grâce à la pression exercée par la commission fédérant les organismes d’accréditation en santé, qui demandait plus de preuves en termes d’amélioration des processus et de la collaboration de la part des institutions ayant implémenté les itinéraires cliniques [39]. La gestion des variances est un processus dynamique et cyclique - ce d’autant plus que les connaissances et le contexte évoluent continuellement - qui vise à améliorer les processus, l’utilisation des ressources et les outcomes des patients. Les interventions utiles et pertinentes sont identifiées pour développer un itinéraire clinique tandis que l’implémentation de cet itinéraire clinique et sa mise en service, permettent d’identifier de nouvelles interventions qui permettent d’améliorer continuellement cet itinéraire clinique lui-même. Cette gestion des variances lorsqu’elle est bien conduite constitue donc une stratégie pour l’amélioration continue et incrémentale de la qualité des soins [39, 82, 83].

3.1.5.2. Classification des différents types de variances

Les variances qui surviennent au cours d’un itinéraire clinique portent sur les processus de soins (réalisation ou non de l’intervention), les outcomes des patients (atteinte ou non de l’outcome attendu) et même sur les délais (réalisation de l’intervention ou atteinte de l’outcome dans les limites de temps prévus ou non) [84].

Il n’existe pas de consensus autour de la classification des variances dans un itinéraire clinique. Par conséquent, il existe plusieurs types de classifications des variances qui ont été proposés.

La première d’entre elles est celle qui classe les variances en trois catégories : les variance corrigeables (variances pouvant être corrigées immédiatement et sans effet sur les outcomes cliniques), les variances incorrigibles (variances ne pouvant être corrigées ou obsolètes) et les variances non détectées (variances découvertes après la sortie des patients de l’hôpital) [70].

Deuxièmement, une autre classification classe les variances qui surviennent au cours d’un itinéraire clinique en cinq catégories : les variances survenant avant l’admission (admission en urgence ou élective, confort du patient), les variances relatives au patient (complications cliniques, changement de thérapie), les variances relatives au médecin (retard de prescription et de soins), les variances relatives à l’hôpital (panne ou surcharge de l’équipement), les variances relatives à la sortie (manque de soutien approprié à la maison, problème de santé non résolu), et les variances survenant après la sortie (transfert vers une autre institution, refus du patient) [70].

Une troisième classification répartit les variances en deux grandes catégories principales : les variances qui surviennent sur les interventions encore appelées « départs » et les variances qui surviennent sur les outcomes intermédiaires ou finaux encore appelées « déviations » [85].

Par ailleurs, une autre classification des variances quant à elle a été proposée et se base sur les effets de ces variances et se catégorise comme suit : les variances qui affectent la durée des séjours uniquement, les variances qui affectent les coûts de séjours uniquement, les variances qui affectent la durée et les coûts des séjours, et enfin les variances qui n’affectent pas la durée et les coûts des séjours [86].
Toutefois, d’autres classifications (habituellement utilisées) existent et permettent de classer les variances selon leurs causes ou sources, lesquelles sont multifactorielles [79]. Dans ce sens, une étude classe les variances qui surviennent dans un itinéraire clinique en quatre catégories : celles relatives au patient ou à la famille, celles relatives au personnel de santé, celles relatives à l’hôpital ou au système et enfin, celles relatives à la communauté (extrahospitalier) [79, 82]. Les variances relatives au patient ou à la famille : il s’agit de toute cause relative au patient ou à la famille qui entraîne une variance dans l’itinéraire clinique (complications infectieuse)[87]. Les variances relatives au personnel de santé : il s’agit de toute cause relative au personnel de santé qui entraîne une variance de l’itinéraire clinique (retard dans l’administration d’un traitement selon le plan de soin) [87]. Les variances relatives à l’hôpital ou au système : il s’agit de toute cause relative à l’hôpital ou au système qui entraîne une variance de l’itinéraire clinique (impossibilité de programmer un patient en raison d’une défaillance d’un appareil) [87]. Les variances relatives à la communauté : il s’agit de toute cause relative à des soins fournis en dehors de l’hôpital et qui entraîne une variance de l’itinéraire clinique (manque de certains spécialistes pour fournir certains soins requis à la maison) [87]. Une étude antérieure à cette étude avaient plutôt classé les causes des variances en trois catégories : celles provenant du patient ou la famille, celles provenant des fournisseurs de soins et celles provenant du système de soins [88].

Toujours en accord avec les causes ou les sources, une autre étude les classe en quatre catégories, différentes de ce qui est proposé par les deux premières : celles relatives au patient ou à la famille (comportement des patients différents de ce qui est attendu dans l’IC), celles relatives à l’équipe médicale (décisions, comportements ou changement dans les compétences des professionnels de la santé), celles relatives aux ressources en soins de santé (événements pertinents qui affectent l’exécution des interventions cliniques et ou les prestations de soins de santé), et enfin, les variances cliniques (situations anormales concernant le traitement ou l’état du patient) [89].

Par ailleurs, les variances peuvent aussi être classées comme positives ou négatives [80, 82, 85, 90, 91]. Une variance est dite positive quand le patient atteint un outcome avant la ligne de temps établie (ex : sortie anticipée d’un patient), ou encore, si les interventions produisent un meilleur résultat que celui attendu [85]. Une variance est dite négative (effet indésirable) quand le patient a un retard dans l’atteinte d’un outcome par rapport à la ligne de temps établie ou lorsqu’il y a des tâches supplémentaires (ex : reprise d’une chirurgie), ou encore, si les interventions produisent un résultat moindre que celui attendu. Cette classification des variances s’appuie sur le temps ou sur la progression clinique du patient [85].

3.1.5.3. Méthodes de collecte des données sur les variances

Plusieurs méthodes sont utilisées pour collecter les données sur les variances dans un itinéraire clinique. On peut citer des approches basées sur du papier, des approches semi-informatisées ou des approches informatisées.

3.1.5.3.1. Approches basées sur du papier

Cette approche se base sur l’utilisation des formulaires papiers pour collecter les données sur les variances au cours d’un itinéraire clinique. Globalement, on peut citer trois grandes approches : (1) la collecte des données directement sur le document de l’itinéraire clinique ; (2) l’utilisation de formulaires séparés pour la collecte des données et enfin, (3) la revue rétrospective des dossiers médicaux.

Dans la première approche, le document décrivant l’itinéraire clinique contient une section dédiée qui permet de documenter directement la variance [82]. C’est l’une des approches les plus utilisées. Comme ce document est très souvent lié au dossier médical et qu’il ira aux archives une fois que le patient est sorti, alors des papiers carbones peuvent être utilisés pour conserver un double pour les besoins du gestionnaire de l’itinéraire clinique [82].

La deuxième approche consiste en l’utilisation de formulaires séparés pour la collecte des données sur les variances et les réponses y apportées (actions prises) au cours d’un itinéraire clinique [82, 92–94]. Ces données sont remplies et suivies par des infirmières [82, 92]. Les formulaires sont ensuite
envoyés chez le gestionnaire de l’itinéraire clinique pour exploitation, analyse et rédaction des rapports.

La troisième approche consiste à revoir sur une base régulière et de manière rétrospective, les dossiers (dossiers médicaux, notes de suites, dossiers de soins infirmiers) afin d’identifier les variances qui sont survenues [82, 95]. Toutefois, cette technique de collecte nécessite de disposer d’un mécanisme standard d’audit des dossiers pour garantir la cohérence du processus de collecte [82]. Cette approche étant laborieuse, il peut être astucieux de ne collecter que les données de variances portant uniquement sur les patients ayant des itinéraires cliniques critiques pour des outcomes comme : la durée de séjours, le coût, la satisfaction des patients, la satisfaction des professionnels, le taux de réadmission, etc. [82].

3.1.5.3.2. Approches semi-informatisées

Il s’agit d’approches associant à la fois l’utilisation des supports papiers et des supports informatiques. On peut citer l’utilisation des formulaires papiers inclus dans le dossier médical pour la collecte des données sur les variances, lesquelles sont ensuite saisies dans un tableur Excel lors de l’audit des dossiers [52] ou dans une base de données [80].

Une variante de cette approche a consisté en la mise en place d’un outil graphique (papier) pour la collecte des données de la variance [84]. Le but était de suivre simultanément les variances et les comorbidités, et de détecter rapidement les variances portant sur les interventions afin de mieux adapter les itinéraires cliniques à certains types de patients et de réaliser rapidement les actions adéquates [84]. Sur l’axe des abscisses, était mentionné les journées d’hospitalisation post-opératoires et sur l’axe des ordonnées, les outcomes (indicateurs ou interventions critiques) [84]. Une variance qui interviendrait entraînerait une ligne de déviation vers la droite avec la notation de la cause de cette déviation. Dans ce cas, l’attention des soignants est ainsi attirée et cela leur permet d’apporter des réponses appropriées en temps opportun [84]. Une fois les patients sortis de l’hôpital, les variances collectées après la sortie (au cours du suivi ambulatoire) des patients ainsi que celles collectées pendant la période d’hospitalisation sont stockées au sein d’une base de données.

Une autre approche a été l’utilisation des formulaires papiers spécifiques et indépendants pour collecter les données sur la variance au cours d’un IC par les cliniciens au point des soins [39, 71, 72]. Dans certains cas, les scanners numériques étaient utilisés pour numériser et transmettre via le réseau à une base de données, les données contenues dans ces formulaires papiers [71].

3.1.5.3.3. Approches informatisées

Dans cette catégorie, on peut citer l’utilisation d’applications permettant de collecter à l’aide d’un formulaire numérique et structuré (codification des variances par catégories, type, etc.), les variances qui surviennent au cours du processus de soins [63, 90]. Ces applications sont indépendantes du dossier patient [90]. Pour chaque type de variance survenant chez un patient donné, l’utilisateur peut faire des comparaisons avec des données d’autres patients inclus dans le même itinéraire clinique et analyser les similitudes [90].

On peut citer aussi l’implémentation d’une application web d’itinéraire clinique pour les patients requérant une néphrectomie radicale [70]. Les données saisies par les utilisateurs à travers un formulaire étaient transmises à un serveur web.

Enfin, une autre approche a été l’utilisation du stylo et du papier numérique pour la collecte des données sur les variances [79]. Les données ainsi collectées sont transmises à une base de données et les cliniciens peuvent générer des rapports analytiques graphiques de manière prospective (au cours de soins) [79].
3.1.5.4. Gestion, analyse et évaluation des variances

3.1.5.4.1 Buts

Les buts de l’analyse et la gestion des variances sont multiples : collecter les données sur les processus en cours, documenter les variances qui surviennent et identifier les causes ou facteurs ayant contribué à leur survenue [71, 96, 97]; analyser de manière critique l’itinéraire clinique [98, 99] et évaluer ce qui marche et ce qui a besoin encore d’amélioration ou de correction [82]; réduire la fréquence des variances non désirées [100, 101] en mettant en place des actions pour inverser surtout les variances négatives [80, 100].

La gestion de la variance permet aussi de mesurer l’efficacité du processus de soins délivré au patient dans un itinéraire clinique [79], de tester la validité des recommandations d’un itinéraire clinique, de les corréler aux outcomes cliniques du patient [101] afin de maintenir ou d’améliorer la qualité de l’IC (contrôle du processus en lui-même) ou de la pratique clinique [91, 100], d’améliorer l’efficacité et l’efficience des soins [80]. Par ailleurs, elle permet aussi d’analyser les tendances (caractéristiques des patients, utilisation des ressources, coûts, etc.) et d’organiser le feedback avec les professionnels de la santé impliqués dans la prise en charge des patients [80, 84, 100].

A l’échelle du patient, le but de la gestion de la variance est de prévenir et de minimiser les effets secondaires des variances [100], d’optimiser l’individualisation des soins et d’améliorer ses outcomes cliniques [98].

3.1.5.4.2 Méthodes

En fonction des objectifs visés, la gestion des variances collectées au sein d’un itinéraire clinique peut se faire, soit de manière différée ou rétrospective, soit alors de manière simultanée ou prospective. La gestion différée ou rétrospective des variances (qui est le mode le plus utilisé) quant à elle, consiste en l’agrégation et l’analyse d’un ensemble de variances portant sur les outcomes intermédiaires et finaux [71, 72, 82, 85, 100]. Elle aide à l’identification des tendances, des domaines qui nécessitent une amélioration et des interventions à valeur ajoutée qui contribueraient à l’atteinte de meilleurs outcomes pour un groupe de patients [71, 72, 82, 85, 100]. Cette gestion rétrospective des variances aide donc à améliorer continuellement et objectivement la qualité d’un itinéraire clinique [85] et constitue un support pour la recherche appliquée dans le domaine de la qualité des soins [100]. Toutefois, dans ce mode de gestion, un lien évident et direct n’est pas toujours fait entre la survenue d’une variance au niveau des interventions et sa répercussion ou la survenue d’une variance au niveau des outcomes.

La gestion simultanée ou prospective des variances consiste à détecter rapidement les variances négatives ou positives [85]. Il s’agit typiquement de la détection (mesure et enregistrement) des variances relatives aux interventions (variables indépendantes) pour chaque patient par le professionnel de la santé au cours des soins [85]. Ces variances ainsi observées au niveau des interventions devraient être mises en relation avec les variances observées au niveau des outcomes intermédiaires [85]. Cela aiderait le professionnel de la santé, soit à initier des interventions ou actions correctives pour éviter la détérioration de l’état clinique d’un patient et améliorer les outcomes s’il s’agit d’une variance intermédiaire négative [85, 102], soit à documenter simplement la variance s’il s’agit d’une variance intermédiaire positive [85]. Cette gestion de la variance aide donc à individualiser les soins de manière prospective, permet de diminuer le risque de complications et aide à la consommation optimale des ressources [55, 82].

Les données une fois qu’elles sont collectées doivent être analysées avec des outils appropriés. Les analyses les plus souvent réalisées sont les analyses à visée statistique [89, 90]. Les méthodes scientifiques les plus souvent utilisées pour évaluer la survenue ou l’effet des variances sur certains outcomes dans un itinéraire clinique portent très souvent sur : (i) les études descriptives décrivant les résultats pour une période donnée [71, 82, 93–95, 98], (ii) les études pré et post interventions (comparaison entre la période avant et la période après l’itinéraire clinique) [84], (iii) les études contrôlées (comparaison entre les patients inclus dans l’itinéraire clinique versus les patients qui ne sont pas inclus) [80].
3.1.5.4.3. Rédaction des rapports et feedback sur les variances

Après l’analyse des données collectées sur les variances au cours d’un itinéraire clinique, elles doivent ensuite être interprétées et faire l’objet de rédaction des rapports à l’intention de tous les professionnels impliqués dans la prise en charge des patients au sein de cet itinéraire clinique [82]. Les feedbacks doivent se faire selon une base régulière (par ex : mensuellement) et associer toutes disciplines et les professionnels de la santé (infirmiers, médecins, thérapeutes, pharmaciens) impliqués dans la prise en charge des patients [82]. Ces séances de feedback doivent pouvoir faire le lien entre la survenue des variances, leur analyse, les résultats qui en découlent et leur utilité pour l’amélioration de la pratique clinique [82]. En fonction des besoins, des sessions de formation supplémentaires peuvent être également organisées à l’endroit des utilisateurs (cliniens) [90].

Tout ce processus de collecte, de suivi, d’analyse, d’évaluation et de rédaction des rapports sur les variances doit se faire sous la responsabilité du gestionnaire de cas (responsable de la gestion de l’IC au sein du service).

3.1.6. Evaluation de l’efficacité et de l’efficience itinéraires cliniques

La mise en évidence des effets bénéfiques (outcomes) des itinéraires cliniques se fait à travers les mesures continues des indicateurs. Ces indicateurs sont : (1) les indicateurs cliniques (taux de complication, taux de réadmission, taux de mortalité ou de morbidité, durée des séjours, nombre de réadmissions ou de ré-interventions, suivi des symptômes comme l’évolution de la douleur) ; (2) les indicateurs de processus (nombre d’examens cliniques, nombre d’variances du processus de soins) ; (3) les indicateurs financiers (coût des durées de séjour, coûts des ressources utilisées) ; (4) les indicateurs d’équipe (communication, satisfaction des professionnels) et les indicateurs de service (satisfaction des patients) [103]. Certains indicateurs peuvent être spécifiquement utilisés dans certains domaines à l’instar du temps de reprise de l’alimentation entérale ou du retour du transit gastro-intestinal (défécation) dans le cas de la chirurgie gastro-intestinale [104]. Une étude réalisée en 2004 a montré que les indicateurs les plus utilisés dans pour évaluer les itinéraires cliniques sont les indicateurs cliniques et financiers [105].

Sur le plan de la pratique professionnelle, on sait aussi que les itinéraires cliniques ont un impact sur l’organisation des processus de soins. Une étude a trouvé une interaction positive entre les itinéraires cliniques et la coordination des processus de soins comme étant des facteurs déterminants sur la réduction de la durée des séjours et du temps de sortie (temps écoulé entre le jour où le patient est prêt pour la sortie et le jour de la sortie effective) [106]. Une étude montre une réduction significative des délais de prise en charge dans le cas de la gestion des pathologies aigues et urgentes [107]. Par ailleurs, il existe quelques preuves qui montrent que les itinéraires cliniques seraient efficaces dans le changement de comportement notamment dans les contextes où il existe des lacunes dans la prestation de services [108]. Cependant, leur plus-value reste peu « claire » dans les contextes où le travail interprofessionnel est bien implémenté [108]. Toutefois, il est prouvé que les itinéraires cliniques améliorent significativement la quantité et la qualité de la documentation des soins dans les dossiers médicaux (OR : 11.95 ; CI : 4.72-30.30) [43]. Une revue systématique un peu plus récente a pu mettre en évidence les effets positifs qu’apportent les itinéraires cliniques au travail en équipe des professionnels de la santé [109]. Sur les 20 indicateurs de travail en équipe qui ont été identifiés par les auteurs, 17 indicateurs étaient concernés. Les plus grands effets positifs étaient retrouvés pour les indicateurs tels que : les connaissances de l’équipe, la documentation interprofessionnelle, la communication de l’équipe et les relations de l’équipe [109]. L’association positive entre une équipe de travail multidisciplinaire bien coordonnée ayant une bonne communication d’une part, et les outcomes des patients d’autre part, a été retrouvée dans certaines études [46, 110, 111]. Ce résultat montre qu’une bonne coordination et communication entre les différents acteurs d’un processus de soins est indispensable pour qu’un itinéraire clinique soit efficace [51].

On note également la plus-value qu’apportent les itinéraires cliniques dans l’amélioration de la fluidité de la prise en charge des patients et l’administration des traitements dans les unités de soins. Ils contribuent à diminuer les variances dans les pratiques [6].

En matière d’indicateurs cliniques et financiers, l’on a observé dans une méta-analyse conduite en 2010 qu’il existe suffisamment de preuves qui montrent que les itinéraires cliniques permettent dans un hôpital de réduire les complications (infections de la plaie, saignements, pneumonie, thromboses de veines profondes) à l’hôpital (OR : 0.58 ; IC à 0.95% : 0.36-0.94) comparé aux hôpitaux qui n’ont pas mis en place des itinéraires cliniques [43]. Dans cette méta-analyse, plusieurs études ont
également rapporté des résultats statistiquement significatifs sur la capacité des itinéraires cliniques à réduire la durée des séjours [112–117] et à réduire les coûts hospitaliers [58, 114, 118]. Ces résultats sont confirmés par une autre méta-analyse qui observe les mêmes tendances résultats [59]. Les itinéraires cliniques ont aussi un impact positif sur la mortalité hospitalière comme cela a été observé dans cette étude [107].

3.2. Les recommandations pour les bonnes pratiques
3.2.1. Introduction
Les recommandations pour les bonnes pratiques (RBP) (en anglais, guidelines) sont définies comme une déclaration systématique d’un ensemble de directives, de recommandations, de principes ou de règles actuelles ou futures sur un problème ou une activité de santé donné afin de faciliter une prise de décision appropriée lors des soins du patient et pour une situation clinique donnée [13, 119]. Autrement dit, ce sont des « propositions développées méthodiquement pour aider le praticien et le patient à rechercher les soins les plus appropriés dans des circonstances cliniques données » [12]. Les recommandations pour les bonnes pratiques favorisent l’implémentation d’une pratique de la médecine basée sur les preuves [15]. En s’appuyant principalement sur la littérature scientifique, elles assistent les professionnels de la santé et les patients dans la prise de décision dans un contexte donné [120, 121]. Ce sont des synthèses des connaissances pour des questions données et à un temps donné. Pour qu’elles soient pertinentes et crédibles, l’établissement de ces recommandations ou directives, lesquelles peuvent concerner tous les domaines de la santé (santé publique, formation, soins), nécessite une démarche et une méthodologie explicite et rigoureuse.

Elles orientent la conduite des activités de soins de santé. Les bénéfices attendus sont: l’amélioration de la qualité de la pratique et décisions cliniques; l’amélioration des outcomes cliniques les patients, la promotion des activités cliniques ayant des bénéfices prouvés et la dissémination des connaissances à jour [14, 15].

3.2.2. La médecine fondée sur les preuves
La médecine fondée sur les preuves ou médecine factuelle ou en anglais « Evidence-Based Medicine, EBM) est définie comme l’utilisation rigoureuse et judicieuse des meilleures données actuelles et disponibles pour la prise de décisions dans les soins à prodiguer aux patients [11, 12]. Ce concept repose sur certains principes clés à savoir : l’auto-évaluation de la pratique (identification des problèmes de patients, définition des informations requises), la capacité à chercher efficacement la littérature médicale et scientifique, la capacité à l’analyser de manière critique, et enfin, la capacité à appliquer les nouvelles connaissances et compétences acquises dans les soins délivrés aux patients [122, 123]. Son but de fournir aux professionnels de la santé les meilleures alternatives en termes d’interventions et de décisions pour une meilleure qualité de soins [124].

Le concept d’EBM nécessite d’identifier toutes les meilleurs sources de données qui permettent de répondre aux problèmes cliniques qui font l’objet d’un questionnement [123]. Les données en question peuvent provenir des sciences fondamentales (nématique, microbiologie, virologie, immunologie) et des sciences cliniques à travers plusieurs types d’études (essais cliniques randomisé, méta-analyses, études de cohorte, études cas-témoins, etc.) [12].

3.2.3. Développement et implémentation des recommandations pour les bonnes pratiques
Les recommandations pour les bonnes pratiques sont généralement développées par les agences internationales ou gouvernementales, les associations professionnelles ou les experts d’un domaine

D’une manière générale, les éléments importants et pertinents à considérer pour le développement des recommandations pour les bonnes pratiques sont : son développement par des groupes multidisciplinaires; le fait de reposer sur une revue systématique des preuves scientifiques ; l’explicitation des liens entre les recommandations et les preuves d’une part, et leur gradation en fonction de la force des preuves d’autre part [131, 132].

L’implémentation des recommandations pour les bonnes pratiques peut se faire différemment selon la structure concernée à l’instar du « Scottish Intercollegiate Guideline Network (SIGN) » qui a proposé un processus en quatre étapes. Ce processus comprend : (1) l’évaluation de la méthodologie utilisée pour aboutir à une preuve (la combinaison entre le type d’étude et l’évaluation de la méthodologie permet d’obtenir le niveau de preuves); (2) la synthèse des preuves (table de preuves issues des études pertinentes et relatives à la question spécifique) ; (3) le jugement éclairé (juger l’impact clinique et l’applicabilité de l’intervention) ; et enfin, (4) la gradation de la recommandation qui se base sur la force et la qualité des preuves [129, 131].

3.2.4. Méthodologie d’évaluation du niveau de preuves, gradation des recommandations et qualité

La rédaction des recommandations pour les bonnes pratiques fiables et de bonne qualité reposent sur une bonne analyse de la littérature, l’avis des experts et l’expérience issue de la pratique des professionnels de santé [133]. Il existe plusieurs méthodologies qui permettent d’évaluer le niveau des preuves et de grader la force des recommandations [12, 134]. L’existence de toutes ces différentes méthodologies entraîne par conséquence une grande variabilité d’appréciation et de jugement des niveaux de preuve et de la force des recommandations. On peut citer, les méthodologies suivantes [12]:

- Le Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group [134–138];
- La Haute Autorité de santé [12];
- Le New Zealand Guidelines Group [128];
- L’American Academy of Pediatrics [139];
- Le National Institute for Health and Clinical Excellence [127];
- L’US Preventive Services Task Force [140];
- La Scottish Intercollegiate Guidelines Network [129];
- Le National Health and Medical Research Council [141];
- L’American College of Physicians’ system [142].

3.2.4.1. Grading of Recommendations Assessment, Development and Evaluation (GRADE)

La méthode GRADE a été initiée la suite d’une analyse effectuée par le groupe de travail GRADE, laquelle mettait en évidence les limites des systèmes de gradation existants [143]. C’est ainsi que cette méthode fut développée en 2004 [134, 136, 137]. Ses buts sont, d’une part, de rendre plus global et transparent l’élaboration des recommandations fiables, utilisables et évolutives en santé dans un contexte donné [134, 137]. D’autre part, d’aider les utilisateurs à évaluer les jugements qui sous-tendent les recommandations [134]. C’est cette méthodologie qui est utilisée par l’Organisation Mondiale de la Santé pour émettre ses recommandations [12].
La méthode GRADE propose des étapes à suivre pour l’élaboration des recommandations pour les bonnes pratiques à savoir [134] :

- La définition du thème
- La recherche documentaire et bibliographique
- L’identification des critères de jugement
- L’identification des groupes et sous-groupes pertinents de patients
- La cotation du niveau de preuve de chaque étude pertinente
- L’appréciation du niveau de preuve global pour chaque critère du jugement
- L’appréciation de la balance bénéfice/risque
- L’appréciation de la balance coût/risque
- La formulation des recommandations
- La diffusion des recommandations
- L’application des recommandations
- L’évaluation des recommandations
- La mise à jour des recommandations

3.2.4.1.1. La qualité des preuves

La qualité des preuves (ou niveau de preuves) se définit comme le niveau de confiance qu’on a en l’évaluation de l’effet d’une intervention [134]. Autrement dit, c’est la capacité d’une étude à répondre à la question posée [133].

La qualité des preuves scientifiques commence par la cotation du niveau de preuve de chaque étude (type et caractéristiques générales des études) et comporte deux niveaux [133] :

- Le niveau haut (high, pour les essais randomisés et les méta-analyses)
- Le niveau bas (low, pour les études observationnelles/cohorte/cas-témoins)
- Le niveau très-bas (very low, pour les autres sources de données, ex : série de cas)

Après cette étape, une appréciation de la qualité globale des preuves pour chaque critère de jugement est faite. Le tableau de synthèse de l’ensemble des études pertinentes est le moyen qui est le plus souvent utilisé. Il s’agit de considérer les limites potentielles des études incluses. Cette qualité globale des preuves dépend : du design (plan) de l’étude, de la qualité scientifique de l’étude (méthodologie et exécution de l’étude), de la cohérence entre les études et du caractère direct des preuves scientifiques [133, 134].

L’analyse critique des certains critères permettra donc de moduler la qualité globale des preuves. De ce fait, la méthode identifie cinq facteurs peuvent diminuer la qualité globale des preuves scientifiques dans le cadre d’essais contrôlés randomisés et d’études observationnelles [135] :

- Le risque de biais
- L’hétérogénéité des résultats
- Le caractère indirect des données scientifiques
- L’imprécision des données
- Le biais de publication

De même, trois facteurs peuvent augmenter la qualité globale des preuves scientifiques dans le cadre d’études observationnelles ont été identifiés [135] :

- La force de l’association.
- Un gradient dose-réponse.
- La présence de facteurs de confusion plausibles qui auraient réduit l’effet observé.

Ainsi, la qualité globale des preuves pour un critère de jugement est classée comme suit [135] :

- Modérée : nous avons une confiance modérée en l’estimation de l’effet : celle-ci est probablement proche du véritable effet, mais il est possible qu’elle soit nettement différente.
- Très faible : nous avons très peu confiance en l’estimation de l’effet : il est probable que celle-ci soit nettement différente du véritable effet.

3.2.4.1.2. La force des recommandations

Les recommandations quant à elles font le compromis entre les bénéfices et les risques d’une intervention dans un contexte et une population donnée. La force des recommandations se définit comme le niveau de confiance que l’on a sur le fait que l’adhérence ou l’application de cette recommandation apportera plus de bénéfices au patient que d’événements indésirables [133, 134]. Il existe 4 facteurs qui influencent la force des recommandations [133, 136, 138]:

- L’ampleur du rapport (différence) entre les bénéfices et les risques en tenant compte des paramètres comme la taille de l’échantillon, l’ampleur de l’effet, l’intervalle de confiance et la valeur relative de chaque résultat ;
- La qualité des données et des preuves scientifiques disponibles ;
- L’incertitude sur la variabilité des valeurs et des préférences (valeurs de groupes spécifiques (de travail, patients) sur les bénéfices ;
- L’applicabilité (opérationnalisation de la preuve pour une situation clinique donnée et dans un contexte donné, coût).

Le groupe de travail GRADE classe les recommandations de la manière suivante [133, 136]:

- Recommandation forte
 o Pour une action donnée : le groupe de travail est confiant dans le fait que les effets souhaitables (bénéfices) l’emportent nettement sur les effets indésirables (risques ou inconvénients)
 o Contre une action donnée : le groupe de travail est confiant dans le fait que les effets indésirables (risques) l’emportent nettement sur les effets souhaitables (bénéfices)
- Recommandation faible ou optionnelle
 o pour une action donnée : les effets souhaitables (bénéfices) l’emportent probablement ou un peu sur les effets indésirables (risques) mais le groupe de travail est moins confiant.
 o contre une action donnée : les effets indésirables (risques) l’emportent probablement ou un peu sur les effets souhaitables (bénéfices) mais le groupe de travail est moins confiant.

3.2.4.2. Evaluation de la qualité du processus d’élaboration des recommandations

Pour évaluer les recommandations qui sont produites par les différents organismes à travers le monde, un outil appelé « Appraisal of Guidelines Research and Evaluation » (AGREE) a été développé. Cet outil permet d’une part, d’évaluer la validité (qualité du processus et du contenu) des recommandations pour les bonnes pratiques déjà développées et d’autre part, permet aux développeurs de recommandations pour les bonnes pratiques, de développer des recommandations pour les bonnes pratiques plus pertinentes [144, 145]. Cet outil comprend vingt-trois critères organisés en six domaines [145]. Chaque domaine décrit une dimension spécifique de la qualité des recommandations pour les bonnes pratiques :

(1) le champ et les objectifs : il décrit l’objectif global d’une guideline ;
(2) la participation des groupes concernés : évalue le niveau de prise en considération des points de vue parties prenantes, notamment des utilisateurs potentiels ;
(3) la rigueur dans l’élaboration : examine le processus de recherche et de synthèse des preuves scientifiques et d’élaboration des recommandations ;
(4) la clarté et la présentation : évalue la formulation et le format des recommandations ;
(5) l’applicabilité : évalue le niveau de considération des conséquences générées (ex : changement d’organisation, coûts, etc.) par une guideline ;
(6) et enfin, l’indépendance éditoriale : vérifie l’indépendance des auteurs et les possibles conflits d’intérêt.
3.2.5. Méthodes de représentation et informatisation des recommandations pour les bonnes pratiques

Plusieurs travaux ont montré que les institutions mettaient beaucoup d’efforts dans le développement des recommandations pour les bonnes pratiques. Cependant, malgré leur potentiel à améliorer la pratique clinique et la qualité des soins, beaucoup de difficultés émanent aussi bien du développement que de l’implémentation pouvant influencer négativement l’utilisation effective de ces recommandations [146]. Historiquement, les recommandations pour les bonnes pratiques ont souvent été fournies sous forme de documents textuels ou narratifs posant ainsi un problème de compliance et de leur utilisation effective par les professionnels de la santé au cours des soins délivrés aux patients [16, 147]. De plus, il faut ajouter à cela d’autres problèmes comme leur complexité sémantique et leur difficulté à être formalisées car composées souvent d’assertions ambiguës et/ou contradictoires [148].

La maintenance (mise à jour et gestion des versions) de ces recommandations reste également un problème majeur ainsi que leur adaptation dans des contextes locaux différents. Ainsi certaines de ces recommandations restent très souvent peu utilisées dans le cadre des soins cliniques [16].

C’est pour y remédier que de nombreux modèles de représentation informatisés des connaissances dans les recommandations pour les bonnes pratiques ont été proposés. La plupart de ces modèles se basent sur les modèles de réseau de tâches lesquels décomposent les guidelines en réseaux de tâches se déroulant à travers le temps [149] et intègrent la gestion des workflows cliniques [66, 150]. Les objectifs poursuivis par cette informatisation sont de favoriser l’implémentation et la dissémination des recommandations pour les bonnes pratiques à travers leur exécution via un ordinateur/informatique au lieu des soins.

3.2.5.1. La syntaxe d’Arden pour les modules logiques médicaux

La syntaxe d’Arden est un langage conçu pour représenter les connaissances médicales (connaissances spécifiques aux tâches) afin de favoriser leur partage (entre le personnel, les systèmes d’information et les institutions) et la mise en place de systèmes d’aide à la décision pour leur utilisation en soins cliniques (alertes cliniques, rappels, score diagnostiques, interprétations de données, suggestions de traitement, assurance qualité, etc.) [17, 151–154]. Ce langage a été développé en 1989 par la « Arden Homestead Conference » en Harriman (New York) lors des discussions qui portaient le partage des bases de connaissances médicales électroniques [154]. Cette syntaxe publiée en 1992, a été adopté comme standard par l’ASTM (American Society for Testing and Materials) [152, 154, 155]. Par la suite, ce standard a été intégré et supporté par le groupe HL7 (standard d’échange de données médicales) [156, 157].

3.2.5.1.1. Structure de la base de connaissance de la syntaxe d’Arden

La base de connaissances de la syntaxe d’Arden est composée de connaissances médicales relativement indépendantes et de règles appelées modules logiques médicaux (MLM) [151–154]. Un MLM est un fichier texte qui contient plusieurs types d’informations organisées en trois composants à savoir: maintenance, bibliothèque et connaissances [151–154]. Les MLM représentent deux types de logique. La première logique (la plus utilisée) est basée sur des règles encodées et prédéfinies dans un MLM, lui permettant de réaliser une décision unique (par exemple générer une alerte) [154]. Les MLM sont déclenchés par les événements cliniques qui s’exécutent selon ces règles [153]. La figure 1 ci-dessous montre quelques types d’événements basés sur les règles) [154].

La deuxième logique est celle qui requiert des arbres de décisions plus complexes dans un plan de soin d’un patient (ex : implémentation d’un protocole ou guideline clinique) [154].
Figure 1. Syntaxe d’Arden : types d’événements basés sur des règles [154]

Maintenance
Ce composant contient tout ce qui concerne la maintenance de l’information et qui n’est pas lié aux connaissances médicales [151–153]. Ses attributs sont : le titre, le nom du fichier, la version, l’institution, l’auteur, le spécialiste (le responsable de la validation du MLM), les dates de création et de révision, la validation, etc.

Bibliothèque
Ce composant contient tout ce qui concerne la maintenance de l’information et qui est lié aux connaissances médicales [151–153]. Ses attributs sont : le but (commentaire), les mots clefs (termes UMLS), les références, les liens (livres électroniques, etc.).

Connaissances
Ce composant contient les connaissances médicales du MLM [151–153, 157]. C’est elle qui décrit la logique du MLM [157]. Ses attributs sont :
- le type : identification de la manière dont le MLM est utilisé
- les données : permet d’obtenir les valeurs du concept mentionné dans le MLM depuis le système d’information clinique (par exemple : par une requête de la base de données)
- l’évocation : les conditions (événements) sous lesquelles le MLM devrait s’exécuter (opérations sur la base de données, événements temporels, notification externe)
- la logique : la règle ou la condition médicale à valider pour déclencher une action (If… Then…))
- l’action (ce qu’il faut réaliser si la condition ou la règle médicale est satisfaite [envoi de message au professionnel de la santé, ajouter une interprétation au dossier du patient, retourner un résultat au MLM, évoquer un autre MLM, etc.]) [157].

La figure 2 ci-dessous présente les différents composants de la syntaxe d’Arden [151].

3.2.5.1.2. Syntaxe d’Arden et guidelines

La syntaxe d’Arden conçue pour partager des connaissances modulaires, uniques et indépendantes à l’instar des rappels ou des alertes [146]. À la base, cette syntaxe n’est pas conçue pour la gestion des décisions multiples et complexes comme par exemple dans le cas des recommandations pour les bonnes pratiques (ex : protocole de traitement) [146, 158, 159]. Il n’y a donc pas une approche standard permettant d’interpréter et d’exécuter des recommandations pour les bonnes pratiques [146]. Toutefois, certains auteurs ont développé des approches spécifiques permettant d’exécuter des recommandations pour les bonnes pratiques où chaque recommandation est représentée comme un MLM effectuant une décision unique [157]. C’est le cas avec les recommandations pour les bonnes pratiques portant sur le diagnostic et le traitement de la maladie de Lyme (böréliose de Lyme) [160]. Dans cet exemple, les protocoles cliniques de trois institutions (allemande, suisse et autrichienne) ont été agrégés en un diagramme d’activité et de décision (flow chart) permettant ainsi de mieux mettre en exergue les décisions et les recommandations critiques à chaque nœud du processus [160]. Ces règles et recommandations ont été ensuite implémentées dans un serveur d’application de MLMs (syntaxe d’Arden). Dans une approche client-serveur, l’application permettait de lire les données des patients contenues dans la base de données du système d’information clinique et d’exécuter les modules MLMs en fonction des données de patients à disposition [160]. Cette syntaxe a été également implémentée dans plusieurs autres systèmes d’informations cliniques à l’instar des systèmes HELP [161], RMRS [162], ALERTS [163] et Hepaxpert [156].

```plaintext
maintenance:
title: Agranulocytosis and Trimethoprim/Sulfamethoxazole;
filename: anctms.m;
version: 2.00;
institution: Zoo University;
author: Dr. Benson;
specialist: ;
date: 7/20/1989, 7/23/1990;
validation: testing;

library:
purpose: Display the Arden Syntax;
keywords: granulocytopenia; agranulocytosis; trimethoprim; sulfamethoxazole;
citations:
links: MeSH agranulocytosis/ci and sulfamethoxazole/ae;

knowledge:
type: data-driven;
data:
/* neutrophile count in #/mm3 */
anc := read last 2 from (query for ANC where it occurred within the past 1 week);
pt_taking_tms := read exist (query for TMS order);
evoke: on storage of {ANC};
logic:
if pt_taking_tms /*1*/ and last anc < 1000 and decrease of anc > 0 then conclude true
else conclude false;
action: store "Caution: The patient’s relative granulocytopenia may be exacerbated by trimethoprim/sulfamethoxazole.";
```

Figure 2. Syntaxe d’Arden : les différents composants d’un MLM (modèle domino du processus clinique) [151]
3.2.5.2. PROforma

PROforma est un langage de représentation des connaissances et de modélisation de l'exécution des processus conçu et développé pour capturer et structurer les connaissances médicales au cours des processus cliniques de manière à les exécuter électroniquement via un ordinateur [18, 164–166]. Ce langage a été utilisé pour développer et déployer des recommandations pour les bonnes pratiques, des systèmes d'aide à la décision, et d'autres applications cliniques [18]. Il permet de représenter les procédures et les décisions médicales, la connaissance médicale et les données des patients [164]. PROforma a pour but d'assister les cliniciens pour le suivi des procédures recommandées et de fournir un support pour l'amélioration de la qualité des soins à travers la gestion du workflow (la planification des actions à travers le temps, le suivi des effets indésirables) et la prise de décision [164–166].

3.2.5.2.1. Les fondements du langage PROforma

La vue orientée processus : le modèle domino

Le langage PROforma s'appuie aussi sur le modèle généralisé de gestion des tâches (workflow) et de prise de décision au cours d'un processus de soins cliniques appelé encore « modèle domino » [165–167].

Le modèle domino est une méthode qui permet de définir des règles spécifiques et des connaissances requises pour instancier des inférences dans un processus clinique donné [164]. Dans ce modèle, les nœuds représentent les situations cliniques particulières (histoire du patient, activités actuelles ou soins planifiés) et les flèches représentent les inférences (prédicat) [164]. Les principaux prédicats sont [164]:

- « triggers » (1) : déclenchement de la survenue d'un problème clinique donné
- « problem solving » (2) : identification des solutions possibles ou alternatives
- « argumentation » (3) : évaluation des forces et faiblesses des solutions alternatives pour un problème clinique donné
- « accept » (4) / « adopt » (5) : validation de l'hypothèse diagnostique et adoption d'un plan de soin
- « scheduling » (6) : planification de la séquence d'actions ou de tâches
- « data acquisition » : collecte et interprétation des données

La figure 3 ci-dessous illustre ce modèle de gestion des processus[166].

![Figure 3. PROforma : le modèle domino du processus clinique [166]](image)

NB : Les nœuds représentent les concepts et les flèches représentent les inférences logiques.
Le fonctionnement de ce modèle est le suivant [166]. Si une donnée anormale est ajoutée au niveau des données du patient (ex : perte de poids), cela sera défini comme problème (flèche 1). Après, en utilisant la connaissance médicale générale, le système établit les diagnostics probables (flèche 2). Puis, en utilisant les connaissances spécifiques du patient et les connaissances médicales générales, le système identifie les arguments pour ou contre chacun des diagnostics alternatifs formulés (flèche 3). Si un diagnostic est retenu, le système le valide dans le dossier du patient (flèche 4). La validation du diagnostic génère un autre problème (flèche 1) : comment traiter cette pathologie ? Puis, à partir des connaissances médicales générales, quelles sont les solutions possibles pour le traitement (flèche 2) ? En accord avec les données du patient, les arguments en faveur ou non chaque solution sont évaluées (flèche 3). Si une solution est retenue, le système valide une procédure thérapeutique donnée (flèche 5). La mise en œuvre de cette procédure peut nécessiter plusieurs étapes (ex : prescriptions médicales, demande d’examens de contrôle, suivi du traitement) fonction (flèche 6). Cette dernière étape qui consiste à planifier les tâches selon un certain ordre (gestion du workflow) nécessite l’utilisation des connaissances temporelles, des contraintes logiques, des ressources et la gestion de l’état du patient (ex : situation du patient après une intervention critique donnée).

La vue orientée objet : les tâches cliniques
Le langage PROforma repose sur un ensemble de composants ou de classes (ensemble d’objets de recommandations pour les bonnes pratiques, voir figure 4 ci-dessous) [18].

Figure 4. Ensemble de composants du langage PROforma [18]

On peut citer, la classe :

- « Task » : utilisée pour décrire les tâches cliniques et contient quatre sous-classes.
- « Candidate » : utilisée pour décrire les options ou solutions alternatives.
- « Argument » : utilisée pour décrire les arguments en faveur ou contre une solution alternative (candidate) donnée.
- « Warning conditions » : utilisée pour décrire les conditions à vérifier quand une valeur est fournie pour une donnée de la classe « Data item ».
- « Parameter » : utilisé pour conserver les données spécifiques à une instance donnée de la classe « tache ».
- « Sources » : utilisé pour décrire les informations qui doivent être recueillies/collectées par la sous-classe « enquiry »

Comme on peut le voir sur la figure ci-dessus, le formalisme du langage PROforma repose essentiellement sur la « tâches cliniques ». Les recommandations pour les bonnes pratiques sont donc modélisées comme un ensemble de taches : prise de décision, planification des actions, rappels de données patients à collecter, surveillance des événements indésirables [164–166].

25
Dans le modèle PROforma, la tâche clinique (classe primaire) est composée de quatre sous-classes comme l’illustre la figure 5 ci-dessous [166].

![Diagramme de PROforma](image)

Figure 5. PROforma : formalisme basé sur la tâche [166]

NB : Par convention, la classe « Plan » est représentée par un rectangle arrondi, la classe « Decision » par un cercle, la classe « Action » par un carré et la classe « Enquiry » par un losange.

Ces quatre sous-classes sont les suivantes [18, 164, 166] :

- « Plan » : elle contient l’ensemble des tâches à réaliser pour atteindre les objectifs cliniques (histoire, diagnostic, traitement, suivi). Les tâches sont généralement organisées selon des contraintes logiques ou temporelles et disposent des conditions qui peuvent faire avorter ou terminer un plan.

- « Enquiry » : elle contient les actions qui retournent des informations (cliniques, administratives, etc., exemple, la taille du patient). Les spécifications de cette sous-classe sont : la description des informations requises pour faire une intervention ou prendre une décision (type, intervalle, résultats, etc. des paramètres cliniques) et la méthode pour l’obtention de cette information (création d’un formulaire de saisie de données, requête sur le dossier du patient ou sur une base de données de laboratoire distant).

Les détails de l’ontologie PROforma sont accessibles dans la documentation appropriée [18, 164].
3.2.5.2.2. PROforma : une combinaison des deux approches

Le langage PROforma résulte de la combinaison des tâches (objets formels) et de leur association logique au sein d’une recommandation pour la pratique clinique (voir figure 6 ci-dessous) [165]. Ce système contextualise des règles au sein de modèles explicites et intuitifs des processus cliniques. Ainsi, pour qu’une condition logique (tâche) soit mise en pratique, il faut : savoir à quel processus elle appartient (diagnostic, prescription, etc.), vérifier les préconditions ou des contre-indications à un médicament particulier [165].

Le but est de combiner la richesse de l’approche procédurale (algorithme) avec la logique de l’expression déclarative des connaissances [165]. Ce donc un langage qui combine les caractéristiques d’un langage formel de programmation (génie logiciel) et les caractéristiques d’un langage de représentation des connaissances (intelligence artificielle) [165].

Figure 6. PROforma : relation entre le modèle domino des processus cliniques et le modèle des tâches l’ontologie de la tâche [165]

NB : Les nœuds représentent les concepts et les flèches représentent les inférences logiques.

3.2.5.2.3. L’exécution d’un moteur PROforma

D’une manière générale, le modèle PROforma s’appuie sur 3 types de connaissances : (1) les connaissances spécifiques au patient (données personnelles, problèmes, symptômes, traitements en cours, etc.) ; (2) les connaissances médicales générales (maladie, ses symptômes, les examens paracliniques requis et les traitements) ; (3) les connaissances sur les procédures médicales (qu’est ce qui doit être fait, à quel moment). L’application permet d’exécuter des tâches définies dans des recommandations pour les bonnes pratiques ou un protocole. En accord avec toutes les règles établies (préconditions, contraintes temporelles, etc.), l’édition d’une recommandation clinique via l’éditeur de l’application permet de notifier aux utilisateurs les tâches activées, de fournir des informations sur les décisions qui doivent être prises, et de demander des données ou des actions à mener [166].

Le langage PROforma a été utilisé dans l’implémentation de certaines applications cliniques à savoir [18]:

- Arezzo (constituée d’un éditeur graphique visuel et d’un moteur d’exécution compatible Windows). Les applications cliniques qui ont dérivé du système Arezzo sont les suivantes : ORAMA (évaluation de la prise en charge optimale de l’anémie rénale) ; Retrogram (pour le
traitement du HIV) ; MACRO (pour la gestion des essais cliniques) ; ARNO (pour le suivi de la douleur dans le cancer) ; RAGs (évaluation des risques dans les cancers génétiques) ; ERA (assistance des médecins généralistes pour l’orientation rapide des suspicions de cancers) ; CAPSULE (aide à la décision pour les médecins généralistes dans la prescription des médicaments en soins primaires) ; e-Asma (aide à la décision pour la prise en charge de l’asthme) ; et enfin, le projet d’intégration d’un système d’aide à la décision intégrant les preuves cliniques (avec la collaboration du BMJ) [18].

Et, Tallis (application web java constituée d’un éditeur graphique visuel et d’un moteur d’exécution et qui peut s’intégrer avec d’autres applications). Quant au système Tallis, les applications cliniques qui ont dérivé sont: LISA (système d’aide à la décision intégré à une base de données cliniques pour le respect des doses de médicaments par les médecins dans le suivi des enfants ayant une leucémie lymphoblastique aiguë) ; CREDO (essai clinique sur la prise de décision et la gestion du workflow dans les soins des patients à risque ou ayant un cancer du sein) ; et HOMEY (développement des interfaces de langage naturel et vocal pour le suivi des patients à domicile et dans les services cliniques) [18].

3.2.5.3. GuideLine Interchange Format (GLIF)

GuideLine Interchange Format (GLIF) est un langage de représentation des recommandations pour les bonnes pratiques [20, 168]. Ce langage a été créé par un groupe de recherche (InterMed collabroatory) formé par trois universités américaines (Harvard, Columbia et Stanford) [20, 169]. Le but était que ce langage serve comme format de représentation commun des recommandations pour les bonnes pratiques afin de favoriser leur partage entre les institutions et adapter leur utilisation aux différents contextes [168–170].

3.2.5.3.1. GLIF 2.0

La version 2.0 [20] a été publiée en 1998 et était constituée d’un modèle d’objet GLIF (constitué des classes hiérarchiques et d’attributs) et d’une syntaxe [20, 168]. La figure 7 ci-dessous illustre les différentes classes et attributs du modèle de représentation GLIF 2.0 des recommandations pour les bonnes pratiques [20].

![Figure 7. GLIF 2.0 : composants (classes et attributs) du modèle de représentation [20]](image-url)
Les limites observées sur cette version ont suscité chez les concepteurs et les développeurs le développement d’une version 3.0 [168]. Parmi ces limites, on observe [168–170]: (1) la non spécification de la structure de certains attributs des classes (ex : « Guideline » et « Guideline Step ») ; (2) le faible niveau de contrôle des flux entre les concepts par exemple (ex : pas de classes spécifiant les itérations, l’état du patient, les exceptions sur les conditions, ou les événements.) ; (3) le manque de spécifications sur l’établissement des liens conceptuels entre des recommandations pour les bonnes pratiques développée avec GLIF 2.0 et les données du patient saisies dans un système d’information clinique, ce qui rend difficile son intégration dans un système d’information clinique ; (4) la faiblesse de son modèle de décision (exprimé à l’aide, soit des conditions if-then-else/condition step, soit sous la forme d’un « branch step » sans pouvoir exprimer une préférence sur l’une ou l’autre alternative) ; (5) et enfin, l’ambiguïté sémantique de la sous-classe « action step » qui peut être utilisée aussi bien pour représenter le parallélisme (exécution de plusieurs actions parallèles) que pour la prise de décision (choix d’une décision parmi un ensemble d’ alternatives).

3.2.5.3.2. GLIF 3

GLIF 3 (voir figure 8 ci-dessous) est un modèle orienté-objet extensible constitué de classes, d’attributs et de relations entre ces classes dont la syntaxe repose sur le langage RDF (Resource Description Framework) [170]. Cette version 3 qui est l’évolution de la version 2 permet une meilleure représentation des connaissances contenue dans des recommandations pour les bonnes pratiques avec moins d’ambiguïté comparé à la version 2 [171]. GLIF 3 permet de représenter des recommandations pour les bonnes pratiques selon trois niveaux de spécification [158, 168]:

- le niveau conceptuel : les recommandations pour les bonnes pratiques sont représentées sous forme de digramme (flow chart) ;
- le niveau informatique : la syntaxe, la définition des données des patients, les actions cliniques et l’algorithme relatif aux recommandations pour les bonnes pratiques sont définis ;
- le niveau implémentation : les recommandations pour les bonnes pratiques sont adaptées au contexte dans lequel il sera déployé et donc peut contenir certains éléments de données spécifiques à ladite institution.

Figure 8. GLIF 3 : composants (classes, relations) du modèle de représentation [170]

NB : Ligne avec triangle : généralisation/héritage; ligne avec losange : composition
Dans ce nouveau modèle GLIF 3, on a [170]:

- La classe « Guideline » qui permet de représenter les recommandations pour les bonnes pratiques (spécification détaillée des étapes). Cette classe contient les attributs relatifs à la maintenance de l’information (auteurs, encodeurs, statut, date de la dernière modification et la version), les intentions des recommandations pour les bonnes pratiques, les critères d’éligibilité, les références pertinentes ou le matériel didactique, l’ensemble des exceptions pouvant entraîner l’interruption de l’exécution de ces recommandations.

- La classe « Algorithm » qui est une instance de la classe « Guideline ». Elle contient l’attribut « first_step » qui indique le point de départ de l’algorithme (voir figure 9 ci-dessous) en conjonction avec la sous-classe « Patient_State_Steps ».

Figure 9. GLIF 3 : Algorithme de traitement de la toux chronique [170]

NB : L’étape « Chronic Cough » est la première étape de l’algorithme.

- La classe « Guideline_Step » qui est une instance de la classe « Algorithm » et représente les recommandations pour les bonnes pratiques comme un diagramme de nœuds temporellement ordonnés). Cette classe contient les sous-classes suivantes :
 o La sous-classe « Decision_Step » : elle permet de représenter les points de décision de l’algorithme. Cette classe contient un attribut booléen appelé « automatic_decision » différenciant les décisions qui sont exécutées automatiquement (ex : recherche automatique de certaines données ou invocation de
certaines sous-classes) des décisions qui doivent être prises par un agent externe tel qu’un professionnel de la santé.

- Les options de décision associent la classe « Guideline_Step » (via l’attribut « Destination_Step ») et les critères de sélection (la sous-classe « Decision_Condition »).
- La classe « Decision_Condition » contient deux sous-classes : la sous-classe « Rule_In_Choice » et la sous-classe « Weighted_Choice ». La sous-classe « Rule_In_Choice » permet aux encodeurs de spécifier les règles (rule-in, strict-rule-in, rule-out, strict-rule-out) pour ou contre la sélection d’une décision. La sous-classe « Weighted_Choice » contient une gamme de critères associés chacun à un poids. Le poids total d’une décision est la somme totale des poids de tous les critères évalués comme vrai. Le poids total de chaque décision permet de classer les décisions dans la classe « Decision_Step ».

o La sous-classe « Action_Step » : permet de représenter les actions recommandées à faire.
 - La sous-classe « Action_Step » a des attributs qui permettent de spécifier la force des recommandations des tâches, la force des preuves soutenant ces tâches et le matériel didactique associé. Elle contient aussi des attributs portant sur l’exécution des tâches : l’itération, la durée à l’intérieur de laquelle la tâche doit être exécutée, les événements qui déclenchent l’exécution de la tâche, les exceptions qui interrompent l’exécution d’une tâche, la tâche suivante (« next-step ») après avoir exécuté la tâche précédente.
 - Les actions recommandées sont spécifiées comme un ensemble dans la sous-classe « Action_Specification ».

o La sous-classe « Branch_Step » et la sous-classe « Synchronization_Step » : elles permettent de représenter les chemins parallèles au cours de l’exécution de l’algorithme.

Dans la version 3, on note aussi l’évolution dans la gestion du workflow. On a :

- Les itérations d’actions ou de décisions (via les attributs « iteration_info » et « Iteration_Expression » de la sous-classe « Iteration_Specification » des classes « Action_Step » et « Decision_Step »).

3.2.5.4. EON

EON est un langage de représentation des recommandations pour les bonnes pratiques, basé sur les composants [19]. Ce langage définit deux types de recommandations pour les bonnes pratiques : les « consultation guidelines » (les actions et les décisions ont des répercussions qui ne sont pas suivies à travers le temps) et les « management guidelines » (les actions et les décisions entraînent des changements sur l’état clinique du patient à travers le temps) [172]. Ces variantes permettent donc de représenter plusieurs types de recommandations pour les bonnes pratiques selon leurs besoins spécifiques, ce qui lui confère une certaine flexibilité [172].
Son modèle consiste en la modélisation sous forme d’un algorithme clinique d’une séquence d’actions, de prise de décision et de leur exécution dans des recommandations pour les bonnes pratiques (voire figure 10 ci-dessous) [172].

Les différents composants de ce modèle sont [172] :

- La décision. C’est un ensemble de choix à faire parmi plusieurs alternatives concurrentes. Le modèle de décision est implémenté par deux manières : (1) les décisions via les conditions « if-then-else » pour déterminer le choix, (2) les décisions nécessitant des choix heuristiques parmi des alternatives pré-énumérées et mises en place via les conditions « rule-in » et « rule-out ». La condition « rule-in » qui renvoie vrai marquerait l’option de la décision comme étant le choix préféré tandis que la condition « rule-out » rejette l’option alternative.
- La séquence d’actions et la synchronisation. Une action est un ensemble de spécifications d’actions intégrées dans l’algorithme clinique. Ces actions y sont ordonnées à travers la propriété « followed-by ». Certaines actions peuvent être exécutées en parallèle (« branching and synchronisation »), ou encore se répéter (itération).
- L’activité et les spécifications de l’action. Une activité (prescription de médicament qui contient les attributs de son état qui sont la dose, la fréquence d’administration, etc.) est un processus qui a lieu au fil du temps. Son état peut changer au fil du temps et ce changement (stopper, débuter ou changer l’activité) peut être la résultante d’actions effectuées au cours de l’exécution des recommandations pour les bonnes pratiques.
- Les exceptions. Cette classe permet de gérer les situations exceptionnelles (non prévues). Elle contient deux sous-classes : les exceptions « réparables » (celles qui conduisent le patient à revenir vers le scénario couvert par les recommandations pour les bonnes pratiques) et les exceptions « non réparables » (celles qui ne permettent pas au patient de revenir vers le scénario couvert par les recommandations pour les bonnes pratiques).

Figure 10. Partie d’un algorithme de prise en charge du cancer du sein [172]

NB : Les flèches représentent la relation « followed-by » entre les décisions et les actions.

La représentation sémantique des données se fait selon deux approches : (1) l’abstraction basée sur la classification des concepts (ex : la zidovudine est un type de médicament antirétroviral) et (2) la définition des termes en se basant sur des conditions logiques (ex : si une personne a plus de 65 ans alors cette personne a un risque élevé d’avoir une infection de grippe).
Un modèle (figure 11 ci-dessous) utilisant l’approche EON a été proposé pour favoriser l’intégration des recommandations pour les bonnes pratiques avec les données du patient clinique [173]. Ce modèle s’appuie trois composants essentiels que sont le modèle d’information des données des patients, le modèle de la connaissance médicale concernée et le modèle du processus des recommandations pour la pratique.

Figure 11. Exemple d’architecture EON pour l’application de recommandations pour les bonnes pratiques [173]

3.2.5.5. Autres modèles de représentation des recommandations pour les bonnes pratiques

Plusieurs autres modèles de représentations ont été élaborés.

3.2.5.5.1. Prodigy (Prescribing RatiOnally with Decision Support In General Practice StudY)

Ce modèle a été développé en 1995 par le Centre Sowerby d’informatique en Santé de l’Université de Newcastle pour soutenir la pratique de la médecine générale en Grande Bretagne [174]. C’est un système d’aide à la décision utilisé en consultation et qui fournit au médecin généraliste des conseils cliniques, des recommandations thérapeutiques (médicamenteuses et non médicamenteuses) et des brochures d’information pour le patient en fonction des situations cliniques (diagnostic) [174–176].

3.2.5.5.2. Asbru

C’est une modélisation de représentation des recommandations pour les bonnes pratiques basé sur leurs intentions sous-jacentes [177]. En effet, ce langage se focalise sur l’application des recommandations, et sur la comparaison entre les intentions de ces recommandations et celles des fournisseurs de soins à partir de leurs actions et en tenant compte de l’état du malade [178].

3.2.5.5.3. Prestige

C’est un projet européen qui a connu la participation de 30 organisations dans 8 pays. Son but était de mettre en place un système informatique basé sur un modèle générique facile à intégrer dans des systèmes d’information cliniques différents afin de soutenir la dissémination et l’application des recommandations pour les bonnes pratiques dans les soins cliniques de routine [179, 180].

On peut citer encore d’autres des systèmes comme le système Guidelines Element Models qui identifié les principaux concepts associés aux recommandations pour les bonnes pratiques (GEM) [181–184] et le système SMART [185].
3.3. Le contexte
3.3.1. Introduction

Le contexte est un concept qui est utilisé dans plusieurs domaines de la société (exemple : littérature, psychologie, communication, informatique, etc.). Lors des interactions entre les humains (par exemple au cours d’une conversation), des informations portant sur la situation au moment de l’interaction (lieu, personnes et objets autour, temps, etc.) sont utilisées pour améliorer leurs interactions [186]. Cette connaissance implicite des données sur la situation de l’environnement (ou contexte) lors de cette conversation par les humains, améliore la qualité des interactions et des différents échanges qui existent entre eux.

En informatique, l’utilisation du concept du contexte repose sur l’idée de développer des outils qui s’adaptent à leur environnement d’exécution (par exemple, l’adaptation de la luminosité de l’écran en fonction des applications utilisées et de l’autonomie de la batterie) ou global (adaptation de la luminosité de l’écran en fonction des applications utilisées, de l’autonomie de la batterie, de la lumière du jour et mêmes des personnes autour de l’appareil) [187]. Le but est de faire intervenir l’utilisateur le moins possible dans la reconfiguration du système et de lui permettre de tirer parti de la modification dynamique de son environnement [187].

Le contexte est donc un concept dynamique et en perpétuel évolution. Il intègre les aspects tels que : où vous êtes, avec qui vous êtes, et quelles sont les ressources à proximité [188]. Bien qu’il soit compris par tout le monde, le contexte est un concept qui a beaucoup de significations ce qui le rend souvent difficile à illustrer ou à maîtriser [186, 187]. C’est un domaine d’étude en perpétuelle évolution et des contributions à sa meilleure compréhension se font de progressivement.

3.3.2. Définition

Le terme contexte vient du terme « co-texte » qui signifie étymologiquement, « l’ensemble du texte qui entoure un extrait et qui éclaire son sens » [187]. La signification de ce concept a évolué avec le temps et l’on dénombre de nos jours plusieurs définitions qui ont été proposées. Selon le dictionnaire Larousse, on peut définir le contexte comme étant un « ensemble des circonstances dans lesquelles se produit un événement, se situe une action ». Ses synonymes sont : environnement, circonstances, situation, phase, position, posture, attitude, lieu, emplacement, etc. [189].

Des définitions basées sur des exemples précis ont été proposées par plusieurs auteurs [190–194]. Elles associent au contexte, des notions telles que : le lieu de l’utilisateur, les personnes ou les objets autour, les changements qui se produisent autour, le temps, la date, la saison, la température, l’état émotionnel et l’attention de l’utilisateur, etc.

Une autre définition du contexte a été proposée en mettant en exergue la notion de pertinence associée au contexte. Selon cette étude, le contexte peut être considéré comme n sous-ensembles d’états physiques et conceptuels (logiques) qui ont un intérêt pour une entité [195].

En considérant les notions d’informations passives ou préférences (informations qui décrivent le comportement à avoir ou données qui représentent les souhaits de l’utilisateur) et actives (informations qui déclenchent ledit comportement ou données obtenues par l’observation de l’environnement à l’aide de dispositifs particuliers), une autre définition a été proposée [187]. Selon elle, « le contexte est un ensemble d’états et de paramètres qui, soit détermine le comportement d’une application, soit dans lequel un événement d’application de produit et est intéressant pour l’utilisateur » [196].

Une autre définition a été fournie un peu plus tard. Elle définit le contexte comme toute information qui peut être utilisée pour caractériser la situation d’une entité (personne, lieu ou objet) qui est considéré comme pertinent pour une interaction entre un utilisateur et une machine, y compris l’utilisateur et la machine eux-mêmes [194, 197, 198]. Cette définition met l’accent sur le fait qu’un élément donné est considéré comme faisant partie du contexte si et seulement si cet élément permet de caractériser la situation d’une personne, d’un utilisateur ou d’un objet au cours d’une tâche ou d’une interaction.
Enfin et plus récemment, une définition du contexte a été proposée. Elle tient compte des notions de temps et d’état. « Le contexte d’une entité est une collection de mesures et de connaissances déduites qui décrivent l’état et l’environnement dans lequel une entité existe ou a existé » [199].

3.3.3. Catégories de contexte pour une application

Des auteurs ont identifié quatre types primaires qui permettent de caractériser la situation d’une entité particulière: l’identité (identifiant unique), le lieu (position, orientation, relations spatiales entre les entités), le temps (utile pour exploiter la valeur de l’information historique) et le statut ou l’activité (caractéristiques de l’entité qui peuvent être détectées. exemple : température ou luminosité pour un lieu, facteurs physiologiques ou activité réalisée pour une personne) [186, 194]. Ces quatre types primaires peuvent être utilisés pour identifier les types secondaires. A titre d’exemple, à travers l’identité d’une entité (une personne), on peut obtenir des informations telles que l’adresse, le numéro de téléphone, la date de naissance tandis qu’à travers le lieu et l’activité, on peut déterminer les personnes ou les objets situés à proximité de l’entité ainsi que ce qui (l’activité) se passe sur ou autour d’une entité donnée.

3.3.4. L’informatique sensible au contexte

En informatique, il existe un domaine appelé l’informatique contextuelle (en anglais, context-aware computing). Le principe consiste à développer des applications qui s’adaptent au contexte dans lequel elles sont utilisées [186]. Par exemple, le lieu d’utilisation, les personnes ou les objets proches ainsi que les changements qui s’opèrent au fil du temps. Dans le cadre de l’informatique contextuelle, les dimensions (qui, ou, quand, quoi [action en train d’être effectuée par l’utilisateur]), relatives à une entité sont explorées et utilisées pour déterminer « pourquoi » une situation donnée a lieu et pour mettre en œuvre des actions [186].

Un système est sensible au contexte, s’il utilise les éléments du contexte pour fournir des informations et/ou des services pertinents à l’utilisateur, où la pertinence dépend de la tâche de l’utilisateur [186, 198]. Les caractéristiques d’une application sensible au contexte ont été décrites dans une étude [195]. Il s’agit de : (1) la détection contextuelle (capacité du système à détecter des informations contextuelles et à les présenter à l’utilisateur) ; (2) l’adaptation contextuelle (capacité du système à exécuter ou à modifier un service automatiquement en se basant sur le contexte en cours) ; (3) la découverte contextuelle des ressources (possibilité pour l’application de localiser et exploiter les ressources et les services pertinents pour le contexte de l’utilisateur) ; (4) et enfin, l’augmentation contextuelle (capacité pour l’utilisateur d’ajouter des nouvelles données relatives au contexte en cours). Une autre catégorisation des caractéristiques requises pour une application sensible au contexte est faite par un plébiscite et identifie trois catégories à savoir : (1) être capable de présenter les informations et les services à un utilisateur ; (2) exécuter de manière automatique un service pour un utilisateur ; (3) ou enfin, être capable de marquer (tagger) le contexte avec des informations pouvant permettre une recherche d’information ultérieure [186, 198].

3.4. Les Systèmes d'Information Hospitaliers (SIH)

Le développement des premiers Systèmes d’Information Hospitaliers (SIH) remonte aux années 1970 notamment aux États-Unis et quelques pas d’Europe comme les Pays-Bas, la Suède et la Suisse [200, 201].

35
Un SIH peut être défini comme un système d’information intégré (ensemble de ressources y compris des ressources informatiques) qui permet de gérer efficacement les informations y compris celles des patients, de manière à améliorer la gestion de l’hôpital et la qualité des soins délivrés aux patients au travers de l’accroissement des connaissances des utilisateurs et de la réduction des incertitudes (décisions rationnelles basées sur les informations fournies) [202–204]. Cette définition met en exergue deux points importants qui sont essentiels pour un SIH, à savoir: (i) les informations qui sont contenues dans ce SIH doivent être intégrées et (ii) les informations requises doivent être exactes et délivrées dans des formats utilisables et en temps opportun pour que les professionnels concernés puissent prendre des bonnes décisions [202].

L’architecture d’un SIH peut être décrite sous un angle structurel ou sous un angle fonctionnel [205]. Du point de vue structurel, elle permet de décrire les départements ou les services d’un hôpital qui sont couverts par un SIH. On peut citer les services administratifs (direction, services des ressources humaines), les départements cliniques (consultations externes, urgences, services médicaux, soins intensifs, rééducation), des services médico-techniques (laboratoires, radiologie, pharmacie, autres services d’exploration), des services logistiques (cuisines, blanchisseries, branccardage) et enfin, les services de gestion de l’information (archives, statistiques, assurance qualité), etc. Du point de vue fonctionnel, cette architecture décrit les principales fonctions qui permettent d’assurer le pilotage de l’hôpital et la prise en charge des patients au sein de cet hôpital. En ce qui concerne la prise en charge du patient, on a d’une part la gestion administrative du patient (la gestion de l’identification ; la gestion de l’admission, du transfert et de la sortie ; la gestion de la facturation et des règlements, etc.) et d’autre part la gestion clinique du patient (la gestion du diagnostic [interrogatoire, examen clinique, prescription des examens complémentaires et ‘reporting’ des résultats], la gestion de la thérapeutique [prescription des traitements, réalisation des soins et des interventions, surveillance, pronostic]. La figure 12 ci-dessous illustre le modèle conceptuel d’un système d’information hospitalier [204].

Toutefois, il est important de souligner que le fonctionnement harmonieux d’un SIH passe par la mise en place des référentiels communs à tous les métiers qui existent au sein d’un hôpital, à l’instar des mécanismes d’identification des patients, des vocabulaires et autres nomenclatures utilisés (diagnostic, actes médicaux ou infirmiers, observations de laboratoires, médicaments), desressources (matériels, logiciels) opérant et de leur interopérabilité, des processus et de management de l’organisation, etc. [200].

Figure 12. Modèle conceptuel d’un Système d’Information Hospitalier (SIH) [204]
De plus, un des éléments important qui est associé à l’amélioration de la qualité des soins dans un SIH est la gestion des processus notamment du flux de travail (en anglais, workflow) [206]. Cette gestion de processus liés aux patients peut concerner tout ou une partie des processus dans lesquels ils sont impliqués lors d’un séjour à l’hôpital, à savoir les processus médicaux ou chirurgicaux, les processus infirmiers, etc. De nos jours, cette gestion efficace des processus basée sur une définition claire des activités à réaliser et de leur séquence, une identification des acteurs ainsi que leurs différents rôles et des ressources à utiliser se fait à travers la mise en place des itinéraires cliniques [207]. Ces itinéraires cliniques lorsqu’ils sont informatisés peuvent être intégrés ou indépendants des SIH.

3.5. Travaux similaires

Les ontologies d’itinéraires cliniques définissent les concepts généraux d’un itinéraire clinique (interventions, outcomes, variances) ainsi que la structure et la connaissance des processus de soins qui y sont liés. Ces approches de développement d’itinéraires cliniques basées sur les technologies du web sémantique (ontologies) ont été proposées afin de fournir une meilleure représentation du domaine de connaissance des itinéraires cliniques; de favoriser leur intégration au sein des processus de soins (gestion du workflow) dans une institution de soins; et enfin, d’améliorer leurinteropérabilité sémantique avec les différents éléments requis au cours de la prise en charge des patients [64].

3.5.1. Le Web sémantique (ontologie) et les itinéraires cliniques

3.5.1.1. Utilisation du langage sémantique OWL (Web Ontology Language) et ses dérivés pour la modélisation des itinéraires cliniques

Des différents travaux parcourus, la modélisation sémantique des itinéraires cliniques s’est faite en utilisant : (i) soit le langage OWL uniquement [1, 22, 23], (ii) soit le langage OWL couplé à l’ontologie pour les services Web (OWL-S) [2, 26], (iii) soit enfin, les diagrammes d’activité UML couplés à l’ontologie pour les services Web (OWL-S) [25].

(i) S’agissant des approches basées sur le langage OWL, une étude s’appuyant sur l’analyse de près de 140 itinéraires cliniques a permis d’identifier les classes, les sous-classes et les propriétés principales requises pour le développement d’une ontologie [23]. Cette ontologie a par la suite permis de construire par extension une ontologie spécifique à la lobectomie pulmonaire [23].

Il y a également l’ontologie d’itinéraire clinique SEMPATH (SEMantic PATHway) qui a permis d’intégrer un itinéraire clinique, d’une part aux processus d’assurance qualité dans le domaine des soins, et d’autre part, aux processus financiers et d’affaires aussi bien à l’intérieur qu’à l’extérieur de l’institution (gestion des interactions avec d’autres prestataires de soins, les fournisseurs et les assurances) [1, 209]. Le but étant de fournir une ontologie qui s’adapte au cours de son exécution non seulement au sein d’un hôpital mais aussi pour des processus hors de l’hôpital à l’instar des collaborations avec d’autres organisations.

En plus, l’on peut citer l’ontologie d’itinéraire clinique développée pour la coordination des soins et le traitement des patients souffrant de cancer de la prostate au Canada [22, 210]. Le modèle de cette ontologie a été développé en intégrant trois précédents itinéraires cliniques développés pour trois institutions de soins différentes afin d’obtenir une ontologie d’itinéraire clinique unifiée [210]. Un moteur a par la suite été développé afin de favoriser l’exécution de cette ontologie au lit du malade.

Enfin, plusieurs autres ontologies ont été développées utilisant le langage sémantique OWL [27, 211].

(ii) S’agissant des approches basées sur l’utilisation des langages OWL et OWL-S [212], on peut citer le développement d’une ontologie qui visait à fournir un modèle sémantique commun, extensible
et réutilisable pour la représentation de tout itinéraire clinique donné ceci en modélisant les concepts tels que les interventions, les outcomes, les ressources (humaines, matérielles), les rôles, l’organisation [2, 26].

3.5.1.2. Représentation des règles d’exécution sémantiques à l’aide du langage SWRL

Une des approches qui a été utilisée pour représenter certaines règles sémantiques, notamment en ce qui concerne la gestion et l’exécution du workflow est celle qui repose sur l’utilisation du langage SWRL (Semantic Web Rule Language) [208].

3.5.1.2.1. Le langage SWRL et la représentation des relations temporelles

La représentation des connaissances temporelles constitue un élément important dans la description sémantique du workflow d’un itinéraire clinique. Le modèle d’itinéraire clinique proposé par Ye importe l’ontologie du temps [213] et permet ainsi de représenter trois types de modèles temporels [2, 26].

Il s’agit premièrement, de la période du séjour (durée attendue du séjour) et les intervalles de temps compris dans cette période de temps (premier jour postopératoire). Deuxièmement, il s’agit des temps pour une intervention unique : date de début, date de fin. Enfin, il s’agit de la relation temporelle entre deux interventions. Ici, on retrouve 2 variantes. La première variante est la relation temporelle relative qui situe les exécutions de deux interventions sur un axe de temps. Cela peut correspondre à la relation entre deux intervalles si l’on considère l’exécution d’une intervention comme un intervalle [214]. La deuxième variante est la comparaison entre une période de temps donné et l’intervalle entre les temps de début et de fin de deux interventions (ex : un examen diagnostique doit être fait dans les 24h après l’administration d’un traitement). Les trois premiers aspects temporels ont été adressés par le développement d’un modèle sémantique d’ontologie d’itinéraire clinique hiérarchique en utilisant le langage OWL tandis que le dernier aspect temporal a été considéré via la construction de règles temporelles basées sur le langage SWRL. Voir l’exemple ci-dessous tiré de l’article de Ye [2].

« Considérons 2 interventions A et B, l’intervention A devrait se terminer dans les 10 minutes avant l’intervention B alors cette relation peut être représentée en SWRL de la manière suivante :

\(\text{ends}(A, ?t1) \land \text{begins}(B, ?t2) \land \text{swrlb:subtractDateTimesYieldingDayTimeDuration}(?t, ?t2, ?t1) \Rightarrow \text{swrlb:lessThan}(?t, T10M) \)

Dans cette règle, l’atome avec la relation \(\text{swrlb:subtractDateTimesYieldingDayTimeDuration} \) représente le temps de début de l’intervention B (\(?t2\)) moins le temps de fin de l’intervention A (\(?t1\)), laquelle différence produit une durée (?t) et l’atome avec la relation \(\text{swrlb:lessThan} \) exprime que cette durée ?t est inférieure à 10min. »

3.5.1.2.2. Le langage SWRL et la prise de décision clinique

Le langage SWRL a été également utilisé pour définir des règles de prise de décision clinique. Dans le cadre de l’exécution d’un itinéraire clinique développé pour gérer la prise en charge des patients après la réalisation d’un test de dépistage du HPV (Human Papilloma Virus) [1], ces règles permettaient de fournir un arbre décisionnel aux médecins afin de fournir les meilleurs diagnostics et options de traitement possibles pour chaque patient impliqué dans l’itinéraire clinique [1]. Il était ainsi possible de sélectionner la prochaine activité ou intervention la plus appropriée à réaliser dans le cadre de l’exécution de l’itinéraire clinique [1, 209].
Dans la ontologie de l’itinéraire clinique portant sur la lobectomie pulmonaire [23], les règles SWRL implémentées ont permis d’identifier par exemple : les patients éligibles pour l’itinéraire clinique (ex : existence à la fois d’une cardiopathie et d’une maladie respiratoire) ; les patients présentant une fièvre et qui ne devaient pas recevoir l’intervention chirurgicale ; et enfin, les patients ayant atteint les outcomes attendus (pas de fièvre, pas de dyspnée, saignement inférieur à 200 ml).

Dans le cadre de l’ontologie d’itinéraire clinique développée pour la coordination des soins et le traitement des patients souffrant de cancer de la prostate au Canada [22, 210], un moteur d’exécution basé sur les règles SWRL a été développé en s’appuyant sur une technique appelée l’« abstraction des propriétés ». En considérant d’une part l’ontologie de l’itinéraire clinique comme un graphe à état où les nœuds représentent les concepts et les arêtes représentent les propriétés entre les concepts, et d’autre part les comportements de ces propriétés, ces propriétés étaient séparées en deux catégories : les propriétés d’exécution utilisées dans le graphe à état pour exécuter l’itinéraire clinique et les propriétés d’information qui fournissent les informations aux utilisateurs pour un état donné. Le paramètre principal d’exécution de l’itinéraire clinique était une instance de la classe « PATHWAY_REGION », ce qui permettait de déterminer la localisation du patient et de choisir l’itinéraire clinique correspondant. Pour chaque état, ce moteur était à mesure : de collecter et d’enregistrer les données du patient, de proposer des décisions correspondantes en fonction des contraintes institutionnelles locales et enfin, de fournir des informations requises aux utilisateurs. La validation d’une décision entrainait le passage aux étapes suivantes de l’itinéraire clinique. On pouvait ainsi avoir un aperçu des états parcourus, en cours ou à parcourir par le patient au sein de l’itinéraire clinique, l’historique des décisions cliniques ainsi que les options pour la prise de décision.

Enfin les règles SWRL ont été également utilisées dans d’autres ontologies pour : (i) aider à la prise de décisions cliniques à partir des données médicales et contextuelles [27] et (ii) mettre en place des rappels et alertes cliniques à l’aide d’une ontologie connectée à une base de donnée sémantique des données des patients [77].

3.5.2. Le web sémantique, les itinéraires cliniques et le contexte

Plusieurs travaux ont eu recours aux technologies du web sémantique (ontologies) pour développer des modèles de contexte en soins de santé en général [215–217].

En ce qui concerne la représentation des itinéraires cliniques à travers les technologies du web sémantique et leur intégration dans les contextes respectifs dans lesquels ils sont déployés, plusieurs auteurs ont mis en évidence des liens qui existent entre les concepts de l’itinéraire clinique et ceux du contexte.

Dans la perspective de pouvoir réaliser des soins personnalisés aux patients, Dang et al. ont développé une ontologie dont le but était de faciliter la gestion du flux de travail en permettant aux utilisateurs (professionnels de la santé, administratifs, etc.) de gérer ou créer des nouveaux flux de travail médicaux adaptés au contexte [211]. Cette ontologie a identifié des concepts liés au contexte tels que : le rôle (médecin, infirmier, etc.), l’organisation (service de l’Hôpital) et les ressources (équipement, médicaments, etc.). De plus, elle permettait de capturer des données provenant de plusieurs sources hétérogènes dans un hôpital, à savoir les données sur les taches médicales et administratives, sur les soins délivrés aux patients, leurs polices d’assurance, leurs prescriptions et leur compliance, etc.

On citera également l’ontologie développée par Ye [2]. Cette ontologie visait à fournir un modèle sémantique commun d’itinéraire clinique, extensible et réutilisable. La structure de cette ontologie, basée sur la modélisation sémantique hiérarchique contient 2 niveaux interconnectés : un niveau « outcomes » qui peut être subdivisé en deux couches (outcomes abstraits et outcomes réels) et un niveau « intervention » qui représente le flux des interventions qui se déroulent à travers le temps. Ce dernier niveau peut être aussi être subdivisé en trois ou plusieurs couches selon les niveaux d’abstraction désirés. Cette ontologie a mis en évidence les interactions entre les éléments de l’itinéraire clinique et ceux du contexte tels que le service d’un hôpital, le rôle (différents corps de métiers existant à l’hôpital) et les ressources. Les relations telles que définies entre ces éléments de l’itinéraire clinique et ceux du contexte étaient les suivants : un service est responsable (responsible-
D’autres auteurs (Hurley et al.) dans leur modèle d’ontologie d’itinéraire clinique ont identifié des concepts similaires et en ont rajouté d’autres : le rôle (Role), partie à qui incombe la responsabilité d’une tâche (soit un service, soit un professionnel de la santé) ; les sources de connaissance (les connaissances dont dérivent un itinéraire clinique) ; la population cible (TargetPopulation), patients pour qui l’itinéraire clinique est destiné ; le contexte (setting), lieu dans lequel l’itinéraire clinique sera déployé [24].

Des travaux un peu plus récents développés par Yao et al. ont permis de développer une ontologie dénommée CONFlexFlow [27]. Cette ontologie avait pour but d’intégrer des itinéraires cliniques au sein de systèmes d’aide à la décision clinique en utilisant les connaissances médicales sous forme de règles ainsi que les connaissances issues du contexte. Dans son modèle, la sous-ontologie du contexte a permis de définir des classes telles que : le patient - Patient-related context - (son histoire médicale, son âge, son genre, ses données physiologiques), les résultats de ses examens paracliniques, etc.) ; les fournisseurs de soins - Clinical staff-related context – (médecins, infirmiers, etc.) ; les ressources - Resource-related context – (les ressources matérielles nécessaires pour réaliser un flux de travail) et enfin, le lieu - Location-related context – (le lieu actuel des personnes, des appareils et autres dispositifs captés par un système basé sur le RFID (Radio-Frequency Identification) [218].

Enfin, dans l’ontologie d’itinéraire clinique SEMPATH (SEMantic PATHway), des connaissances de l’itinéraire clinique ont été également connectées aux données contextuelles issues, d’une part des processus d’assurance qualité dans le domaine des soins, et d’autre part des processus financiers et d’affaires aussi bien à l’intérieur qu’à l’extérieur de l’institution [1, 209].

3.5.3. Intégration entre les itinéraires cliniques et les Systèmes d’Information Cliniques

La problématique de la modélisation des connaissances et des flux dans un itinéraire clinique et leur intégration avec un Système d’Information Clinique (SIC) existant a également été un défi pour certains auteurs. Plusieurs approches ont été développées pour adresser cette problématique [23, 25, 77, 219].

Une approche a consisté en l’utilisation d’une application web d’itinéraire clinique connectée au dossier patient électronique [219]. Les événements saisis dans le dossier médical du patient étaient représentés dans l’outil de gestion de l’itinéraire clinique sous forme de graphe de nœuds et d’arcs. Un nœud correspondait à une étape dans l’itinéraire du patient tandis qu’un arc correspondait à une transition (ex : temps requis entre deux événements). L’analyse des données dans un tel système a permis de calculer des variables telles que : la durée de chaque événement ; le temps entre les événements ; le nombre de patients entrant et quittant chaque nœud ; la proportion de patients suivant certaines branches de l’itinéraire clinique (itinéraire attendu versus effectué), etc. Une variante de cette approche a consisté à décrire et à envelopper les opérations et les fonctions du SIC comme étant des services web basés sur le langage WSDL, lesquelles étaient intégrées dans le workflow de l’itinéraire clinique en utilisant l’ontologie OWL-S [25].

Une autre approche a consisté au développement d’un connecteur ou médiateur pour permettre le ‘mapping’ entre la base de données du SIC et celle de la base de connaissance de l’ontologie[23]. Dans ce modèle, l’interface de l’itinéraire clinique à travers le SIC permettait d’organiser les activités de l’itinéraire clinique en fonction des règles sous-jacentes et à travers les modules tels que afficher, enregistrer, prescrire et éditer. L’exécution des activités requises pour l’itinéraire clinique se faisait à travers le SIC. Cette approche qui intègre un médiateur a l’avantage de réduire la dépendance du système au vocabulaire local ou au modèle de donnée et facilite son intégration [23].

Enfin, la dernière approche retrouvée est celle qui intègre dans un modèle d’interopérabilité sémantique, une ontologie d’itinéraire clinique avec un SIC sémantique contenant les informations cliniques du patient (antécédents, état de santé actuel du patient) [77]. La méthode proposée avait pour but de favoriser la personnalisation de l’itinéraire clinique (application de l’itinéraire clinique selon certaines conditions qui tiennent compte des informations cliniques réelles ou de l’histoire des patients contenues dans le SIC) à travers une auto-adaptation dynamique de l’itinéraire clinique en fonction de...
certaines événements (par exemple, si la température d’un patient dans le SIC était au-delà des limites autorisées alors l’itinéraire clinique était mis en état de pause en attendant l’action du clinicien qui devra prendre la décision qu’il faut pour résoudre le problème) [77].

3.5.4. Problèmes et manques observés

Les différents travaux observés montrent que plusieurs efforts ont été faits pour décrire et représenter les connaissances contenues dans les itinéraires cliniques à travers des ontologies. Un modèle formel standard a été développé et a permis d’identifier les concepts communs relatifs à tout itinéraire clinique [2]. Dans la plupart des cas, ces ontologies ont été développées pour : améliorer la gestion des itinéraires cliniques [1, 22, 209, 210]; faire de l’aide à la décision clinique [27] et adapter les processus de soins des patients (soins personnalisés) en tenant compte des données médicales et/ou contextuelles [77, 211] au cours de l’exécution d’un itinéraire clinique. La mise en place de telles approches permet d’une manière générale : de mieux coordonner les processus, de suivre le niveau d’exécution des activités, de suivre l’évolution du statut clinique des patients et de favoriser de manière dynamique des changements en temps réel [211]. ces systèmes qui s’appuient sur les technologies du web sémantique (OWL, SWRL, etc.), sont des systèmes centrés sur la gestion sémantique des flux de travail cliniques (clinical workflow) [2, 27, 211, 220].

Toutefois, la représentation de ces itinéraires cliniques nécessite très souvent de représenter certains aspects du contexte pour leur meilleure intégration dans les processus d’une institution de soins. C’est ce que nous observons à travers quelques travaux [1, 2, 24, 27, 209, 211].

Comme on peut le remarquer, à part une exception, la plupart de ces travaux évoquent très souvent les notions de contextes seulement pour résoudre des problématiques spécifiques dans l’exécution des soins aux patients via un itinéraire clinique. On ne retrouve aucun travail menant une analyse formelle et exhaustive sur les éléments du contexte qui peuvent avoir des liens avec les itinéraires cliniques. De plus, aucune étude (à notre connaissance) n’a été faite sur la représentation des liens sémantiques qui existeraient à la fois entre le domaine de connaissance relatif aux itinéraires cliniques d’une part, et les domaines de connaissance relatifs au contexte et aux guidelines.

Une telle formalisation des concepts et relations sémantiques entre les différents domaines de connaissance pourrait être utile pour raisonner non seulement pendant ou après l’exécution d’un itinéraire clinique mais aussi, pour raisonner avant son exécution, en se posant par exemple la question de savoir si un itinéraire clinique donné peut-il être exécuté dans un contexte donné ? Si non, que faut-il faire pour pouvoir l’exécuter ?
4.1. Introduction

L’amélioration de la qualité des soins couplée à l’optimisation de l’utilisation des ressources compte parmi les défis majeurs de toute institution de santé moderne délivrant des soins aux patients. L’atteinte de ces objectifs passe entre autre, par l’intégration de l’approche des soins basée sur les itinéraires cliniques. Un itinéraire clinique est un protocole clinique qui définit de manière détaillée le schéma thérapeutique, le plan de soins et le suivi des patients ayant une pathologie clinique donnée, réduisant ainsi la variabilité de la pratique clinique [221]. Les itinéraires cliniques sont de plus en plus utilisés à travers le monde. Ils représentent aussi un moyen pour l’opérationnalisation des recommandations pour la pratique clinique (guidelines). En effet, ils permettent d’implémenter des guidelines médicaux dans un environnement donné [6, 221]. Leur conception et leur développement nécessite la prise en compte de plusieurs éléments du contexte dans lequel celui-ci sera déployé à savoir : la coordination des processus entre tous les acteurs, la disponibilité des ressources matérielles (équipements, médicaments), le niveau de compétences du personnel, le niveau d’éducation des patients, les contraintes administratives et/ou réglementaires de l’environnement, la gestion des déviations ou variances, etc. La conception et le développement d’itinéraires cliniques pertinents pour un contexte donné nécessite donc, que les développeurs de ces itinéraires aient des outils qui les aident à mettre en évidence les interactions possibles qui peuvent exister entre un itinéraire clinique d’une part, les guidelines et le contexte dans lequel il sera déployé d’autre part. Par ailleurs, le fait d’expliciter de telles interactions peut être utile pour le partage et la réutilisation d’un itinéraire clinique d’un contexte donné à un autre.

La mise en évidence des liens qui existent entre tous ces domaines de connaissance nécessite avant tout une description et une représentation formelle des concepts et des relations sémantiques des connaissances de chacun des domaines. Cette représentation peut se faire à l’aide d’une ontologie, définie comme une représentation formelle et explicite de la connaissance. Elle permet de définir les termes et concepts, de préciser les relations sémantiques et les contraintes associées [2, 222]. En santé, les spécialistes de l’ingénierie de la connaissance font de plus en plus recours aux ontologies pour conceptualiser et modéliser la connaissance de certains domaines : modélisation les flux de travail cliniques (clinical workflow) et/ou modélisation des contextes cliniques donnés. En plus, cette approche basée sur les ontologies favorise le partage et la réutilisation des connaissances de manière entre différents systèmes [2]. Dans le domaine des itinéraires cliniques en particulier, les ontologies d’itinéraires cliniques définissent les concepts d’un itinéraire clinique (interventions, outcomes, variances, etc.) ainsi que la structure et la connaissance des processus de soins qui y sont liés. Elles permettent non seulement de fournir une meilleure représentation du domaine de connaissance des itinéraires cliniques mais aussi favorisent leur intégration au sein des processus de soins (gestion du workflow) dans une institution de soins et améliorent leur interopérabilité sémantique avec les différents éléments requis au cours de la prise en charge des patients [64].

En se basant sur les technologies du Web sémantique (développement d’une ontologie), nous présentons une approche qui inclut la gestion du workflow dans un itinéraire clinique et les différentes interactions (ressources requises, connaissances la soutenant, préconditions, contraintes) qu’ont les activités d’un itinéraire clinique avec les domaines de connaissance du milieu dans lequel il est déployé. Le modèle que nous proposons est une ontologie domaine [29, 30] basée sur une approche modulaire dénommée ShaRE-CP (Shareable and Reusable Clinical Pathway Ontology). Cette ontologie identifie d’une part, les concepts, les termes et les relations qui existent au sein de quatre domaines de connaissance que sont : les itinéraires cliniques, les guidelines, les ressources et le contexte. D’autre part, elle identifie et met en évidence les liens et autres interactions qui existent entre les concepts issus des différents domaines de connaissance.
4.2. Développement de l'ontologie ShaRE-CP

Le développement de l’ontologie de domaine ShaRE-CP s’est basé sur le modèle proposé par Uschold et al. pour le développement des ontologies [223]. Ce modèle comprend quatre étapes principales : (i) l’identification des buts de l’ontologie ; (ii) le développement de l’ontologie ; (iii) l’évaluation et (iv) la documentation. Le développement de l’ontologie quant à lui comprend trois sous-étapes aussi à savoir : la capture (l’identification des concepts clefs et leurs relations), le codage (la représentation des concepts et relations à travers un langage formel et l’intégration d’ontologies existantes.

4.2.1. But de l’ontologie ShaRE-CP

L’ontologie ShaRE-CP a pour but de représenter de manière plus explicite les liens et les interactions sémantiques qui existent entre les concepts de l’itinéraire clinique d’une part et les concepts des domaines de connaissance associés (guidelines, ressources, contexte) d’autre part. L’intérêt d’une telle approche est d’optimiser les mécanismes de mise à jour des itinéraires cliniques de manière cohérente avec l’évolution des connaissances et du contexte et de favoriser le partage et de réutilisabilité des itinéraires cliniques d’un contexte donné à un autre. Cette formalisation pourrait être utile pour raisonner (détecter les inconsistances, générer de nouvelles connaissances) non seulement pendant ou après l’exécution d’un itinéraire clinique mais aussi avant son exécution, en se posant par exemple de savoir la question de savoir tel ou tel itinéraire clinique peut être exécuté dans un contexte donné. Si non, que faut-il faire pour pouvoir l’exécuter ? Etc.

4.2.2. Processus de développement de l’ontologie ShaRE-CP

4.2.2.1. La capture (identification des concepts clefs et leurs relations)

La capture des concepts clefs et des relations s’est faite sur la base de l’exploration et l’analyse des sources d’information suivantes : (i) l’importante littérature scientifique publiée portant sur les domaines des itinéraires cliniques, des guidelines, des ressources en santé et du contexte ; (ii) les modèles d’ontologie existant précédemment notamment l’ontologie des itinéraires cliniques développée par Yan Ye [2]et les connaissances empiriques et tacites existant sur les différents domaines. Ce processus itératif nous a permis d’identifier les concepts et les relations principales nécessaires pour le développement de l’ontologie ShaRE-CP.

4.2.2.2. Le codage (représentation des concepts et relations à travers un langage formel)

L’ontologie ShaRE-CP a été développée à l’aide de l’éditeur d’ontologies Protégé. Protégé est un logiciel gratuit et open source qui permet d’éditer des ontologies. Il supporte plusieurs formats dont les formats RDF, RDFS, OWL, XML, Turtle, etc. [224]

OWL2 est un langage représentation des connaissances qui appartient à la famille des langages basés sur la logique de description. Ce sont des langages qui permettent de représenter la connaissance d’un domaine (concepts et relations) de manière formelle et structurée. Ainsi, une représentation d’un domaine de connaissance via ce langage permet que l’on puisse à partir d’un moteur de raisonnement, détecter des inconsistances et générer des nouvelles connaissances [211].

4.2.2.3. Ontologies et domaines de connaissances importés ou associés

Le développement de l’ontologie ShaRE-CP a nécessité l’intégration de plusieurs ontologies connexes. A titre illustratif, l’ontologie des itinéraires cliniques a importé l’ontologie pour les services Web (OWL-S) [212] et l’ontologie du temps [213]. L’ontologie des guidelines quant à elle a importé
l’ontologie Dublin Core [226]. D’autres domaines de connaissances ont été également été intégrés pour une meilleure pertinence de ce modèle d’ontologie dans le contexte réel.

4.2.2.3.1. L’ontologie pour les services Web (OWL-S)

4.2.2.3.1.1. Description générale de l’ontologie pour les services Web (OWL-S)

L’ontologie pour les services Web (OWL-S) [212] est une ontologie qui a été développée à l’aide du langage OWL (Web Ontology Language) [225, 227, 228]. Cette ontologie a remplacé l’ancienne ontologie appelée DAML-S (DARPA Agent Markup Language for Services) [229]. Elle décrit complètement les ressources et les processus d’un service Web (sites Web qui ne fournissent pas simplement des informations statiques mais qui permettent d’effectuer des actions ou des changements dans le monde, à l’instar de la vente de produits, etc.) de manière à améliorer l’accès aux ressources. Ainsi, cela favorisera qu’un utilisateur ou un composant informatique puisse accéder aux services sur le Web par le contenu plutôt que par les mots-clés comme traditionnellement. Il pourra ainsi être capable d’accéder, de localiser, de sectionner, d’utiliser et même de monter ces ressources à travers le Web.

OWL-S est une ontologie composée de trois ontologies: le profil du service (pour la publicité et la description des services) représenté par la classe `ServiceProfile`, le modèle de processus (pour la description du fonctionnement d’un service) représenté par la classe `ServiceModel` et les fondements (pour les détails sur les protocoles de transport et la manière d’interagir avec un service notamment via des messages) représenté par la classe `ServiceGrounding` [212]. Ainsi, un service Web qui est une instance de la classe `Service`, est associé à la classe `ServiceProfile` par la propriété `presents`, à la classe `ServiceGrounding` par la propriété `supports` et à la classe `ServiceModel` par la propriété `describedby`. Les figures 13, 14, 15 et 16 ci-dessous illustrent la structure globale et les composants principaux de cette ontologie OWL-S [212].

![Figure 13. Structure globale de l’ontologie des services OWL-S (haut niveau d’abstraction) [212]](image-url)
Figure 14. Classes et propriétés de l’ontologie ServiceProfile [212]

Figure 15. Classes et propriétés de l’ontologie ServiceModel (Process) [212]
Figure 16. Correspondance entre OWL-S et WSDL (Web Services Description Language) [212]

4.2.2.3.1.2. Termes, concepts et propriétés importés de l’ontologie OWL-S

La classe process:AtomicProcess définit les actions déclenchées par un client (via la propriété process:hasClient) et qui peuvent être exécutées par un service/serveur (via la propriété process:performedBy) par une interaction unique. En d’autres termes, c’est un processus directement invoquable (qui peut recevoir un message) qui attend un (qui peut être complexe) message (Input) et retourne un (qui peut être complexe également) message (Output) comme réponse. Un processus atomique n’a pas de sous-processus et l’exécute en une étape unique.

La classe process:SimpleProcess quant à elle, est un mécanisme d’abstraction qui permet de fournir des multiples vues d’un même processus : soit pour fournir une vue de certains processus atomiques, soit pour simplifier la représentation de certains processus composites. C’est un processus non invoquable mais qui, comme un processus atomique, s’exécute en une seule étape.

La classe process:ControlConstruct, spécifie la manière (dans certains cas l’ordre) dont est décomposé un processus composite. Chaque élément de cette classe est associée à la propriété process:components dont le range appartient soit à la classe process:ControlConstructList, soit à la classe process:ControlConstructBag, qui elles-
mêmes sont des sous-classes de la classe ObjectList:List. La classe process:ControlConstruct est composée de plusieurs sous-classes. Il s'agit de la classe process:Sequence qui définit une liste d'actions à faire dans l'ordre. La classe process:Split définit un sac d'actions à exécuter simultanément ; ici, le processus est achevé lorsque toutes les actions sont programmées. La classe process:Split-Join définit l'exécution simultanée d'un groupe d'actions dans un sac donné avec une synchronisation de barrière (c'est-à-dire que le processus est achevé lorsque toutes les actions sont terminées). La classe process:Any-Order permet aux composants du processus (spécifié comme un sac) d'être exécutés dans un ordre non spécifié mais pas simultanément. L'exécution et l'achèvement de tous les composants d'un processus défini avec la classe process:Any-Order sont requis. La classe process:Choice permet de choisir une seule action parmi dans un sac donné. Toute action contenue dans ce sac peut être choisie pour être exécutée. La classe process:If-Then-Else définit les conditions dans lesquelles certaines actions contenues dans un sac donné doivent être exécutées. Cette classe est associée aux propriétés process:ifCondition, process:then et process:else. Sa syntaxe est la suivante: 'Test If-condition; if True do Then, if False do Else.' La classe process:Iterate est définie comme la superclasse des classes process:Repeat-While, process:Repeat-Until et d'autres classes spécifiques à certains autres types d’itérations qui peuvent être conçues au besoin. C’est une classe abstraite qui ne fait aucune supposition ni sur le nombre d’itérations effectuées ni sur quand initier, terminer ou reprendre une action. Les classes process:Repeat-While and process:Repeat-Until permettent de faire des itérations jusqu’à ce qu’une condition devienne fausse ou vraie. Ainsi, la classe process:Repeat-While teste la condition, s’arrête si cette condition est fausse sinon s’exécute en boucle si elle est vraie tandis que la classe process:Repeat-Until execute l’opération, teste la condition, s’arrête si elle est vraie sinon s’exécute en boucle si elle est fausse. La classe process:ControlConstruct contient également la sous-classe process:Perform. Cette dernière peut être considérée comme l’équivalent de la fonction Call dans un programme informatique et permet de référencer un processus dans un processus composite.

La classe ObjectList:List est une classe qui a comme sous-classes, les classes process:ControlConstructList et process:ControlConstructBag. Un individu appartenant à ces deux sous-classes est associé à un processus atomique appartenant à la fois à la classe process:AtomicProcess et à la classe process:Perform par la propriété ObjectList:first et soit à la classe ControlConstructList soit à la classe ControlConstructBag par la propriété ObjectList:rest.

4.2.2.3.2. L’ontologie du temps
4.2.2.3.2.1. Objectif général et fondements de l’ontologie du temps

L’ontologie OWL-Time est une ontologie développée en OWL dont le but est de décrire les propriétés temporelles de tout type de ressource du monde réel y compris les pages Web [213, 230].

La structure de base cette ontologie du temps s’appuie sur l’algèbre des relations binaires entre les intervalles (par exemple : meets, during, finishes, etc.), développée par Allen pour représenter les informations temporelles et permettre ainsi un raisonnement sur celles-ci [231, 232].
4.2.2.3.2.2. Termes, concepts et propriétés importés de l'ontologie du temps

Cette ontologie comprend une superclasse TemporalEntity (toute activité ou événement) qui est associée à certaines propriétés (par exemple: hasBeginning, hasEnd, hasTemporalDuration, hasTime). Cette classe comprend deux sous-classes, la classe Interval (quelque chose qui a un écart ou distance entre son début et sa fin) et la classe Instant (un intervalle dont l’écart est de zéro c’est-à-dire dont le début et la fin sont les mêmes). La classe Interval, elle-même contient une sous-classe appelée ProperInterval (un intervalle dont le début et la fin sont distincts). Cette classe est donc disjointe de la classe Instant. La classe ProperInterval quant à elle, contient également une sous-classe appelée DateTimeInterval. La figure 17 ci-dessous illustre les principales entités temporelles utilisées dans l’ontologie du temps [213].

Figure 17. Modèle de base des entités temporelles [213]

L’ontologie du temps fournit un vocabulaire qui permet de décrire : (i) les relations temporelles topologiques (ordre temporel) telles que les instants, les intervalles, (ii) les durées et (iii) les relations temporelles de position (date et heure) [213].

Les relations temporelles topologiques (relations entre les intervalles) qui s’appuient sur le modèle d’Allen, sont définies dans cette ontologie à travers 13 propriétés (figure 18), lesquelles permettent de définir toutes les relations possibles qui existent entre les entités temporelles [213]. Ces 13 propriétés sont complétées par 2 autres également incluses dans l’ontologie du temps à savoir les propriétés : In (union des propriétés During, Starts et Finishes) et Disjoint (union des propriétés Before et After).
Les relations temporelles de position permettent de fournir une représentation compacte des positions du temps en utilisant le calendrier grégorien [233] et l’horloge de 24h. Il s’agit des propriétés de type Datatype en OWL 2 telles que `xsd:dateTime`, `xsd:dateTimeStamp` [225] ou des propriétés en XSD telles que `xsd:date`, `xsd:gYear` et `xsd:gYearMonth` [234] qui sont également utilisées en OWL. Les relations temporelles de position dans cette ontologie sont décrites en utilisant les classes suivantes (figure 19) [213]:

(i) la classe TemporalPosition (super classe) qui permet d’indiquer le système de référence temporel via la propriété `hasTRS`.

(ii) La classe TimePosition qui permet de décrire la position temporelle en utilisant un nombre (par exemple : une coordonnée temporelle) ou une chaine de caractère (par exemple : une période géologique, une ère archéologique, etc.). Cette classe est associée à deux propriétés : `numericPosition` et `nominalPosition`.

(iii) La classe GeneralDateTimeDescription à travers ses propriétés, permet de spécifier la date et l’heure en utilisant le calendrier et l’horaire de 24h.

(iv) La classe DateTimeDescription quant à elle, fixe le système de référence temporel au calendrier grégorien.
La durée d’un intervalle quant à elle est décrite en utilisant les classes suivantes (figure 20) [213]:

(v) La classe TemporalDuration (super classe) définit la durée d’un intervalle de temps.

(vi) La classe Duration décrit la durée en utilisant un nombre décimal mis à l’échelle par une unité temporelle (individus de la classe Temporal Unit utilisés pour définir l’unité d’une durée en année, mois, semaine, jour, heure, minute ou seconde).

(vii) La classe GeneralDurationDescription qui spécifie la durée en utilisant le calendrier et l’horaire de 24h

(viii) La classe DurationDescription quant à elle, fixe le système de référence temporel au calendrier grégorien.
Figure 20. Classes pour la définition de la durée [213]

4.2.2.3.3. L’ontologie Dublin Core

Le Dublin Core est un schéma générique de métadonnées qui a été développé par l’organisation Dublin Core Metadata Initiative en 2003 et qui permet de décrire les ressources numériques ou physiques [226]. Il est utilisé par plusieurs institutions ou organisations internationales dont l’Organisation Mondiale de la Santé. Il est également utilisé par plusieurs gouvernements. Ce schéma générique contient 15 éléments de description à savoir [226]:

- Le titre (titre principal de la ressource ou document)
- Le créateur (personne physique ou morale à l’origine de la ressource)
- Le sujet (mots clefs représentant le sujet de la ressource)
- La description (description de la ressource)
- L’éditeur (personne physique ou morale à l’origine de la publication de la ressource)
- Le(s) contributeur(s) (personne(s) physique(s) ou morale(s) ayant contribué(s) à l’élaboration de la ressource)
- La date (date d’un événement dans le cycle de vie de la ressource)
- Type (nature ou type de ressources)
- Format (format de la ressource)
- Identifiant (référence unique à la ressource dans un contexte donné)
- Source (provenance de la ressource)
- Langue (langue de la ressource)
- Relation (ressource associée)
- Couverture spatiale (caractéristiques spatiales – pays, régions, etc. - de la ressource)
- Droits (droits de propriété y compris de propriété intellectuelle associés à la ressource)

4.2.2.3.4. Autres ressources importées d’autres domaines de connaissance
4.2.2.3.4.1. SNOMED-CT

SNOMED-CT ou SNOMED Clinical Terms [235] est une terminologie multilingue des soins de santé qui contient les termes médicaux, leurs codes, leurs définitions et leurs synonymes. Cette terminologie est utilisée dans la gestion de la documentation clinique à travers le monde. Son but principal est de représenter et d’encoder de manière standardisée la signification des termes médicaux de manière à soutenir l’enregistrement efficace des données et d’améliorer ainsi les soins des patients [235]. Cette terminologie peut s’interfaçer avec les dossiers patients électroniques et offrir ainsi la possibilité aux
fournisseurs de soins, de capturer de manière structurée et cohérente les informations provenant des patients et permettre ainsi des analyses automatiques et faciliter ainsi la mise en place de systèmes d'aide à la décision. Cette terminologie couvre de nombreux domaines tels que : les symptômes et signes cliniques, les diagnostics, les procédures, les structures corporelles, les produits pharmaceutiques, etc. [236]

4.2.2.3.4.2. Classification Suisse des Interventions Chirurgicales (CHOP)
La Classification Suisse des Interventions Chirurgicales (CHOP) [237] est une classification disponible en trois langues (allemand, français, italien). Elle tire ses origines de la version américaine de Classification Internationale des Maladies version 9 (CIM-9) appelée ICD-9-CM et créée par les CMS (Centers for Medicare and Medicaid Services) à Baltimore (USA) [237]. Cette classification est utilisée pour le codage des interventions et procédures chirurgicales au sein d’un hôpital. Elle couvre tous les domaines de la chirurgie à savoir les chirurgies : des systèmes nerveux ; systèmes endocriniens ; des yeux ; des oreilles ; du nez, de la bouche et du pharynx ; du système respiratoire ; du système cardiovasculaire ; du système hématique et lymphatique ; du système digestif ; du système urinaires ; des organes génitaux masculins ; des organes génitaux féminins ; de la sphère obstétricale ; du système musculo-squelettique ; du système tégumentaire et du sein ; et des procédures et interventions non classées. Cette classification est mise à jour annuellement par le groupe de travail CHOP. La distribution de cette classification se fait sous deux formats : soit en version CSV (Comma-separated values), soit en version imprimable (PDF).

4.2.2.3.4.3. Classification des Interventions de Soins Infirmiers
La Classification des Interventions Infirmières (en anglais, Nursing Interventions Classification, NIC) est langage normalisé des interventions infirmières [238]. Elle décrit les activités qu’un personnel infirmier exécute au cours des activités de soins chez un patient. Cette classification qui est à sa 6ème version a comme but principal, celui de standardiser la pratique infirmière et faciliter ainsi l’informatisation des dossiers de soins et fournir par conséquent une base de connaissance standardisée utile pour les statistiques et l’amélioration de la qualité. La taxonomie de cette classification répartit les différentes interventions dans des domaines et des classes. Chaque intervention (plus de 500) contenue dans cette classification comporte une définition, l’ensemble d’activités spécifique à l’intervention et une bibliographie [239]. Il y est également associé une estimation du temps de réalisation et du niveau de qualification requis pour chaque intervention.

4.2.2.3.4.4. Classification des Résultats des Soins Infirmiers
La Classification des Résultats des Soins Infirmiers (en anglais, Nursing Outcomes Classification, NOC) est une classification qui décrit les résultats attendus chez les patients au cours des soins infirmiers. Le but est de pouvoir évaluer l’efficacité des interventions infirmières au cours des processus de soins. Chaque outcome (environ 330) contenu dans cette classification comporte une définition, un ensemble d’indicateurs et de mesures permettant de déterminer l’atteinte de cet outcome [240].

52
4.3. Description de l’ontologie ShaRE-CP

4.3.1. Description générale de l’ontologie ShaRE-CP et formalisme utilisé

ShaRE-CP est une ontologie de domaine qui définit les termes et les concepts relatifs aux domaines de connaissance que sont : le domaine des itinéraires cliniques, le domaine des guidelines, le domaine des ressources et le domaine du contexte. Cette ontologie représente d’une part, les relations qui existent entre ces concepts à l’intérieur de chaque domaine de connaissance et d’autre part, elle représente les relations et les interactions sémantiques qui existent entre les concepts appartenant à des domaines de connaissance différents.

De manière structurelle, l’ontologie ShaRE-CP est composée de quatre modules (figure 21) : l’ontologie des itinéraires cliniques dont le préfixe est ‘cp’, l’ontologie des guidelines dont le préfixe est ‘gdl’, l’ontologie des ressources dont le préfixe est ‘res’, l’ontologie du contexte dont le préfixe est ‘cont’ et des interactions sémantiques qui existent entre toutes ces ontologies.

Figure 21. Modèle général de l’ontologie ShaRE-CP

Le formalisme que nous avons utilisé pour représenter les différentes relations est le suivant.

Soit les classes C et D, soit la propriété p, soit les restrictions ∀ et ∃:

- \(C \quad \forall p \quad D \); équivaut à \(C \subseteq \text{(SubclassOf)} \quad p \quad \text{only} \quad D \)
- \(C \quad \exists p \quad D \); équivaut à \(C \subseteq p \quad \text{some} \quad D \)
- \(C \quad \forall \exists p \quad D \); équivaut à \(C \subseteq p \quad \text{only} \quad D \quad \text{and} \quad C \subseteq p \quad \text{some} \quad D \)
- \(C \quad \equiv \quad D \); équivaut à \(C \quad \text{Equivalent} \quad D \)
- \(C \quad \text{is-a} \quad D \); équivaut à \(C \subseteq D \)
- \(C \quad \text{or} \quad D \); équivaut à \((C \quad \text{or} \quad D) \)
- \(C \quad \text{and} \quad D \); équivaut à \((C \quad \text{and} \quad D) \)
En termes de métrique, l’ontologie ShaRE-CP indique les paramètres suivants :

- Classes : 254
- Propriétés d’objet (‘Object Properties’) : 225
- Propriétés de données (‘Data Properties’) : 53
- Individus : 1’082
- Axiomes : 6’873
- Axiomes logiques : 4’726

La consistance de cette ontologie a été vérifiée à l’aide de plusieurs raisonneurs OWL à l’instar des raisonneurs HermiT 1.3.8 et 1.3.8.413.

Les rubriques qui suivent dans cette section visent à décrire de manière détaillée l’ontologie ShaRE-CP.

4.3.2. Les différents modules de l’ontologie ShaRE-CP
4.3.2.1. Module 1 : L’ontologie des itinéraires cliniques
4.3.2.1.1. Description de l’ontologie des itinéraires cliniques

L’ontologie des itinéraires cliniques décrit le domaine de connaissance relatif aux itinéraires cliniques. Son développement s’est inspiré du modèle d’ontologie développé par Ye et al [2]. Cette ontologie contient les différents termes, concepts et les relations que l’on retrouve dans les itinéraires cliniques et formalise la sémantique en utilisant les technologies Web sémantiques telles que principalement : le langage d’ontologie Web (OWL2) [225], l’ontologie pour les services Web (OWL-S) [212] et l’ontologie du temps (Time-OWL) [213]. Cette ontologie comprend des classes et propriétés propres au domaine des itinéraires cliniques et des classes et propriétés importées des d’autres ontologies.

En termes de métrique, l’ontologie des itinéraires cliniques indique les paramètres suivants :

- Classes : 138
- Propriétés d’objet (‘Object Properties’) : 131
- Propriétés de données (‘Data Properties’) : 44
- Individus : 27
- Axiomes : 1’542
- Axiomes logiques : 674

La figure 22 représente le modèle général de l’ontologie des itinéraires cliniques (dont le préfixe est cp) et l’intégration des classes propres du domaine des itinéraires cliniques avec les classes de l’ontologie pour les services Web (dont le préfixe est process). La figure 23 quant à elle, illustre quelques classes de l’ontologie des itinéraires cliniques et leur intégration avec les classes provenant de l’ontologie du temps (dont le préfixe est time).
Figure 22. Modèle sémantique de l'ontologie des itinéraires cliniques : termes, concepts, propriétés et relation avec l'ontologie OWL-S
Figure 23. Modèle sémantique de l'ontologie des itinéraires cliniques : termes, concepts, propriétés et relation avec l'ontologie du temps
4.3.2.1.2. Représentation sémantique de l’ontologie des itinéraires cliniques

4.3.2.1.2.1. Termes, concepts et propriétés de l’ontologie des itinéraires cliniques

La classe cp:Clinical_Pathway représente l’ensemble des itinéraires cliniques conçus pour la prise en charge des patients ayant des conditions cliniques spécifiques. Cette classe est associée aux classes cp:Clinical_Condition, cp:Expected_LOS (length of stay), cp:Procedure et cp:Outcome par les propriétés cp:designed-for ; cp:sets, cp:has-intervention et cp:has-outcome respectivement. Un individu de la classe Clinical_Pathway peut contenir 1 à plusieurs interventions et 1 à plusieurs outcomes.

La classe cp:Clinical_Condition définit la situation clinique pour laquelle un itinéraire clinique donné a été conçu et développé. Cette classe contient deux sous-classes : la classe Disease (trouble organique ou fonctionnel pouvant entraîner des signes et symptômes chez un individu) et la classe Procedure (séquence d’actions ou activités planifiées au cours d’interventions médico-chirurgicales spécifiques : par exemple, une césarienne, une gastrectomie ou une kystectomie).

La classe cp:Expected_LOS définit la durée de séjour prévue au cours de la prise en charge d’un patient dans un itinéraire clinique donné. C’est une sous-classe de la classe time:Interval de l’ontologie du temps. Cette classe est associée à la classe cp:Care_Calendar (calendrier de soins) par la propriété cp:associated-with-calendar. Le calendrier de soins lui-même est associé à la classe cp:Care_Calendar_Limits par une date de début (via la propriété time:hasBeginning) et par une date de fin (via la propriété time:hasEnd). La classe cp:Care_Calendar_Limits, qui est une sous-classe de la classe time:GeneralDateTimeDescription, permet quant à elle de représenter les différentes dates de début et de fin d’un itinéraire clinique en utilisant le modèle du calendrier grégorien et un modèle de représentation de l’heure sur 24h.

La classe cp:Clinical_Process quant à elle est une sous-classe de la classe process:Process. Elle représente les actions ou activités cliniques génériques (définies sans tenir compte des objectifs (outcomes) ou des paramètres temporels (position temporelle, durée et délais de réalisation) liés à leur exécution) qui peuvent être exécutées au cours d’un processus de soins donné. La classe cp:Clinical_Process est composée de plusieurs sous-classes correspondant aux différentes catégories de processus cliniques à savoir : cp:Assessment-Monitoring qui représente les activités d’évaluation et de suivi cliniques des patients ; cp:Diagnostic Tests qui représente les activités liées aux examens et tests diagnostiques de type laboratoire, radiologie, pathologie, etc ; cp:Treatment qui représente les activités liées aux traitements médicamenteux et non-médicamenteux ; cp:Consult_Referral qui représente les activités liées aux demandes d’expertise ou au transfert des patients ; cp:Patient_Education qui représente les activités liées au conseil et à l’information des patients ; cp:Diet_Nutrition qui représente les activités liées à la nutrition des patients ; et enfin, cp:Discharge_Planning pour les activités liées à la sortie des patients de l’hôpital et à leur retour vers la communauté. La classe cp:Clinical_Process est l’équivalent de l’union entre les classes process:CompositeProcess et process:AtomicProcess (process:CompositeProcess or process:AtomicProcess).
Cette classe est associée à la classe cp:Intervention par la propriété cp:is-performed-by quand un processus clinique est exécuté par une intervention. Ainsi, dans le cadre de cette ontologie, le processus composites ou atomiques sont associés à la classe cp:Intervention par la propriété cp:is-performed-by. La propriété cp:is-performed-by, est elle-même contient deux sous propriétés : process:collapsesTo quand il s’agit d’un processus composite qui est exécuté par un individu de la classe cp:Intervention et process:realizes quand il s’agit d’un processus atomique. Par ailleurs, les processus considérés comme atomiques peuvent avoir des alternatives qui sont des processus atomiques eux-mêmes et être associés par la propriété cp:has-alternative. Ces processus atomiques peuvent être également associés, par la propriété cp:process-id, à des ressources externes permettant ainsi une meilleure description de ceux-ci à savoir : la terminologie SNOMED-CT pour les processus médicaux [236], la Classification Suisse des Interventions Chirurgicales (CHOP) pour les processus chirurgicaux [237] et la Classification des Interventions Infirmières (abrégé en anglais NIC) pour les processus infirmiers [238], etc. La super propriété cp:process-id a comme sous propriétés cp:medical-processes, cp:surgical-processes et cp:nursing-processes. La figure 24 illustre en détails la représentation sémantique d’un processus au sein de l’ontologie des itinéraires cliniques.

La classe cp:Outcome représente les objectifs ou les résultats cliniques attendus chez un patient (ou auprès de sa famille, et/ou de sa communauté) après l’exécution des interventions propres à un itinéraire clinique donné. Elle est associée à la classe cp:Clinical_Pathway par la propriété cp:is-outcome-of. Elle est également associée à la classe cp:Intervention par la propriété cp:performed-by. Ces résultats cliniques prédéfinis à l’avance sont souvent attendus pour une phase de soins donnée, associant ainsi la classe cp:Outcome à la classe cp:Care_Phase par la propriété cp:expected-for. La classe Outcome contient des individus considérés comme des outcomes primaires (outcomes abstraits correspondant à une journée ou à une phase de soins) qui peuvent être eux-mêmes composés de plusieurs outcomes secondaires ou spécifiques (outcomes concrets) via la propriété cp:made-up-of. Par exemple, un outcome primaire Oday1 attendu le premier jour des soins peut être composé d’outcomes spécifiques Oday1X (outcome spécifique X du premier jour) et Oday1Y (outcome spécifique Y du premier jour). Les outcomes secondaires ont des conditions (via la propriété cp:has-condition-outcome) qui doivent être satisfaites afin de poursuivre l’itinéraire clinique tel que prévu. Enfin, un individu de la classe cp:Outcome peuvent être associés par la propriété cp:outcome-id à une terminologie comme la Classification des Résultats de Soins Infirmiers (Nursing Outcomes Classification, NOC) [240] pour une meilleure description de celui-ci.

La classe cp:Care_Phase qui est une sous-classe de la classe time:Interval, représente les différentes phases de soins d’un itinéraire clinique. La classe cp:Care_Phase est composée de deux sous-classes : la classe cp:Care_Step (adaptée aux itinéraires cliniques organisés en étapes de soins dont les durées ne sont pas prédéfinies) et la classe cp:Care_Period (adaptée aux itinéraires cliniques organisés en périodes de temps dont les durées sont prédéfinies). La classe cp:Care_Period définit les différentes périodes et sous-périodes d’un itinéraire clinique. La durée d’une période est déterminée par une propriété de type DatatypeProperty à l’instar des propriétés time:hours, time:days, time:weeks ou time:months. Les relations temporelles de position entre les différentes périodes ou étapes peuvent être décrites à l’aide des propriétés telles que : time:IntervalStarts, time:IntervalFinishes, time:intervalEquals, time:intervalMeets, etc. En plus, une phase de soins a toujours lieu à l’intérieur d’une durée de séjour. Ainsi, la classe cp:Care_Phase est associée à la classe cp:Expected_LOS par la propriété time:IntervalIn de l’ontologie du temps. La propriété time:IntervalIn a comme sous-propriétés les propriétés time:IntervalStarts, time:IntervalDuring et time:IntervalFinnishes. La classe cp:Care_Phase est également associée à la classe cp:Care_Calendar (calendrier des soins) par la propriété cp:associated-with-calendar.
La classe \textit{cp:Variance} définit toute variance (déviation) qui peut survenir au cours de l'exécution d'un itinéraire clinique. C'est une sous-classe de la classe \textit{time:Instant} de l'ontologie du temps. Elle est associée à la classe \textit{cp:Intervention} par la propriété \textit{cp:occurs-during}. Un individu de la classe \textit{cp:Variance} est associé à 1 ou plusieurs individus de la classe \textit{cp:Variance_Date_Time} par la propriété \textit{cp:detecting-variance-date-time}. La classe \textit{cp:detecting-variance-date-time}, qui est une sous-classe de la classe \textit{time:GeneralDateTimeDescription}, permet quant à elle de représenter le moment (date et heure) de survenue d'une variance en utilisant le modèle du calendrier grégorien et un modèle de représentation de l'heure sur 24h.

La classe \textit{cp:Repeat_Every} est définie comme une sous-classe de la classe \textit{process:Iterate}, qui elle-même est une sous-classe de la classe \textit{process:ControlConstruct}. Elle permet de définir les modalités pour l'exécution de manière répétitive d'un processus clinique. Elle est associée aux classes \textit{process:AtomicProcess} (pour un processus atomique) ou \textit{process:ControlConstruct} (pour un processus composite) par la propriété \textit{cp:repeat-process}. Elle est également associée à la classe \textit{cp:Repeat_Period} (sous classe de la classe \textit{time:DurationDescription} de l'ontologie du temps) par la propriété \textit{cp:repeat-period}. C'est cette propriété qui définit la durée au bout de laquelle un processus clinique doit être répété. Enfin, le nombre d'itérations prévus peut également être défini par la propriété de type \textit{DatatypeProperty} intitulée \textit{cp:number-of-iteration}. La figure 25 illustre l'utilisation de la classe \textit{cp:Repeat_Every} au sein de la représentation sémantique d'un processus dans l'ontologie des itinéraires cliniques.

La classe \textit{cp:TemporalConstraints_Between_Interventions}, qui est une sous-classe de la classe \textit{time:TemporalEntity} permet de définir les contraintes de temps (durée de temps avant ou après) qu'il peut y avoir entre deux interventions (figure 26). Cette classe contient des individus (After, Before, During, etc.) qui permettent de positionner sur une ligne de temps, une intervention par rapport à une autre. Par exemple, une intervention B doit avoir lieu 10 min après l'intervention A. Cette classe est associée à la classe \textit{cp:Intervention} par deux propriétés (\textit{cp:temporal-contraint-intervention-1} et \textit{cp:temporal-contraint-intervention-2}). La première propriété identifie l'intervention 1 et la deuxième propriété l'intervention 2. Par convention, on commencera toujours à lire la règle à partir de l'intervention 1 et elle servira de point de référence par rapport à l'intervention 2. La classe \textit{cp:TemporalConstraints_Between_Interventions} est également associée à la classe \textit{cp:Temporal_Constraints_Duration} (sous-classe de la classe \textit{time:DurationDescription}) par les propriétés \textit{cp:minTime} (minimum time) et \textit{cp:maxTime} (maximum time), permettant ainsi de définir les durées de temps minimum et maximum entre 2 interventions. La propriété \textit{cp:minTime} a comme sous-propriétés \textit{cp:minTimeAfter} et \textit{cp:minTimeBefore} tandis que la propriété \textit{cp:maxTime} a comme sous-propriétés \textit{cp:maxTimeAfter} et \textit{cp:maxTimeBefore}. Par ailleurs, les différentes durées sont instanciées par les individus de la classe \textit{cp:Temporal_Constraints_Duration} et associés aux propriétés de type \textit{DatatypeProperty}: \textit{time:minutes}, \textit{time:hours}, \textit{time:days}, \textit{time:weeks}.

59
Figure 24. Modèle sémantique de l'ontologie des itinéraires cliniques : représentation détaillée d'un processus
Figure 25. Modèle sémantique de l’ontologie des itinéraires cliniques : représentation détaillée d’un processus incluant la classe Repeat_Every
Figure 26. Modèle sémantique de l’ontologie des itinéraires cliniques : représentation des contraintes temporelles entre deux interventions.

4.3.2.1.2.2. Les axiomes de l’ontologie des itinéraires cliniques

Dans l’objectif de formaliser davantage cette ontologie et de la rendre consistante, nous avons défini une suite d’axiomes. Ces axiomes représentent des contraintes (de domaine et d’intégrité) qui sont appliquées au domaine des itinéraires cliniques. La liste de ces axiomes peut être consultée à l’annexe 1. Les axiomes relatifs à cette ontologie sont illustrés (sur les figures ou sur les documents annexes) à travers les symboles suivants : ∀ (only) pour la restriction universelle, ∃ (some) pour la restriction existentielle ; ≡ pour l’équivalence et ⊆ (sous-classe de) pour la subsumption.

4.3.2.2. Module 2 : L’ontologie des recommandations pour les bonnes pratiques

4.3.2.2.1. Description de l’ontologie des recommandations pour les bonnes pratiques

Les recommandations pour les bonnes pratiques (RBP) (en anglais, guidelines) sont définies comme une déclaration systématique d’un ensemble de directives, de recommandations, de principes ou de règles actuelles ou futures sur un problème ou une activité de santé donné afin de faciliter une prise de décision appropriée lors des soins du patient et pour une situation clinique donnée [13, 119]. L’ontologie des recommandations pour les bonnes pratiques ou guidelines (figure 27) décrit de manière formelle quelques éléments de ce domaine de connaissance. Cette ontologie intègre la terminologie de l’ontologie Dublin Core (dont le préfixe est dcterms) [226] pour décrire les métdonnées et les ressources associées à la production des guidelines.

En termes de métrique, l’ontologie des recommandations pour les bonnes pratiques (guidelines) indique les paramètres suivants :

- Classes : 18
- Propriétés d’objet (‘Object Properties’) : 21
- Propriétés de données (‘Data Properties’) : 8
- Axiomes : 93
- Axiomes logiques : 43
4.3.2.2.2. Représentation sémantique de l’ontologie des recommandations pour les bonnes pratiques

4.3.2.2.2.1. Termes, concepts et propriétés de l’ontologie des recommandations pour les bonnes pratiques

La classe gdl:Guidelines est la super classe de cette ontologie. Elle représente la ressource qui contient le recueil de toutes les recommandations ou directives formulées par un organisme donné et qui portent un sujet de santé spécifique. Cette classe est associée à plusieurs classes qui permettent de la décrire. Elle est associée aux classes gdl:Subjects (sujet), gdl:Creators (créateur(s)), gdl:Contributors (contributeur(s)) et gdl:Publishers (éditeur(s) ou organisme ayant publié les guidelines) par les propriétés dcterms:subject, dcterms:creator, dcterms:contributor et dcterms:publisher respectivement. Les classes gdl:Creators, gdl:Contributors et gdl:Publishers sont des sous-classes de la classe dcterms:terms:Agent (définie comme une ressource qui agit ou qui a le pouvoir d’agir). Un individu de la classe gdl:Guidelines peut être associé à plusieurs individus de chacune des classes sus-citées.

Par ailleurs, les individus des classes gdl:Creators et gdl:Contributors sont associées à la propriété gdl:has-institution (propriété de type DataTypeProperty), ce qui permet ainsi de décrire les institutions d’appartenance de tous les acteurs ayant participé à la rédaction de ces guidelines. Les individus de la classe gdl:Subject quant à eux, sont reliés aux individus de la classe mesh:MeSH_RDF_ID (Medical Subject Headings RDF [241]) par la propriété SameAs. Medical Subject Headings RDF est la représentation formelle du thésaurus MeSH [242] développé par la bibliothèque nationale américaine en utilisant le langage RDF (Resource Description Framework [243]).

En plus, la classe gdl:Guidelines est également associée à d’autres classes qui permettent de la décrire telles que les classes dcterms:Location, dcterms:LinguisticSystem et dcterms:BibliographicResource via les propriétés dcterms:coverage (pour la couverture), dcterms:language (pour la langue(s)) et dcterms:source (pour la source). La classe dcterms:BibliographicResource quant à elle est associée à deux propriétés (dcterms:bibliographicCitation et gdl:has-url) de type DataTypeProperty qui permettent respectivement de citer une source et de fournir le lien web de cette source si elle est disponible en ligne.

S’agissant encore de la description, la classe gdl:Guidelines est associée à des propriétés (terms:dcterms:identifier et terms:dcterms:available) de type DataTypeProperty qui permettent respectivement d’attribuer un identifiant à un individu de la classe gdl:Guidelines et de lui associer une date de publication.

Enfin, la classe gdl:Guidelines contient un ensemble de recommandations ou de directives pour un problème ou domaine de santé donné. Elle est ainsi associée à la classe gdl:Guidelines_Recommendations par la propriété gdl:has-recommendations. Ainsi, un individu de la classe gdl:Guidelines peut être lié à plusieurs individus de la classe gdl:Guidelines_Recommendations.

La classe gdl:Evidence_Grading_Method définit le système de gradation des preuves utilisé pour produire des guidelines. Elle est associée à la propriété gdl:has-description (DataTypeProperty), ce qui permet de décrire de manière plus détaillée ladite méthode de gradation des preuves. Comme mentionné dans la revue de la littérature, il en existe plusieurs. Le système adopté par l’OMS est le système GRADE (Grading of Recommendations Assessment, Development and Evaluation) [135].

La classe gdl:Guidelines_Recommendations décrit chaque recommandation ou directive contenue dans des guidelines. Cette classe est associée à d’autres classes de l’ontologie : la classe
gdl:Guidelines_Recommendations_Status pour définir le statut (recommandé ou non recommandé) d’une recommandation via la propriété gdl:has-status; la classe gdl:Recommendation_Evidence_Quality pour préciser le niveau de preuves associé à une recommandation via la propriété gdl:has-evidence-quality et la classe gdl:Recommendation_Strength pour préciser la force de la recommandation via la propriété gdl:has-strength. Bien plus, la classe gdl:Guidelines_Recommendations est également associée à la classe gdl:Related_Interventions par la propriété gdl:has-intervention. C’est cette dernière classe qui identifie les interventions associées à une recommandation. Ceci dit, une recommandation peut contenir plusieurs interventions. Enfin, la classe gdl:Guidelines_Recommendations est associée à la classe gdl:Recommendation_Conditions par la propriété gdl:has-recommendation-conditions, permettant ainsi de préciser les conditions requises pour l’exécution d’une recommandation. Par ailleurs, à chaque recommandation, est associé un identifiant via la propriété de type DataTypeProperty : dcterms:identifier.

4.3.2.2.2. Les axiomes de l’ontologie des recommandations pour les bonnes pratiques

Les axiomes représentant les contraintes (de domaine et d’intégrité) qui sont appliquées à ce domaine de connaissance peuvent être consultés en détail à l’annexe 2. Ces axiomes sont illustrés (sur les figures ou sur les documents annexes) à travers les symboles suivants : ∀ (only) pour la restriction universelle, ∃ (some) pour la restriction existentielle ; ≡ pour l’équivalence et ⊆ (sous-classe de) pour la subsumption.
Figure 27. Modèle sémantique de l'ontologie des recommandations pour les bonnes pratiques (guidelines)
4.3.2.3. Module 3 : L’ontologie des ressources
4.3.2.3.1. Description de l’ontologie des ressources

Une ressource est définie comme un facteur qui concourt à l’amélioration de la santé de la population, soit par le biais du diagnostic et du traitement des affections pathologiques des individus, soit par la prévention de celles-ci [244].

L’ontologie des ressources en santé (figure 28) décrit de manière formelle quelques éléments de ce domaine de connaissance. Elle se focalise principalement sur les ressources dont on a besoin pour réaliser une intervention en santé, plus particulièrement dans le domaine des soins.

En termes de métrique, l’ontologie des ressources indique les paramètres suivants :
- Classes : 21
- Propriétés d’objet (‘Object Properties’) : 5
- Propriétés de données (‘Data Properties’) : 1
- Axiomes : 58
- Axiomes logiques : 31

4.3.2.3.2. Représentation sémantique de l’ontologie des ressources
4.3.2.3.2.1. Termes, concepts et propriétés de l’ontologie des ressources

La super classe res:Health_Resources définit les principales ressources. Elle contient plusieurs sous-classes.

La classe res:Human_Resources définit les caractéristiques des ressources humaines. Cette classe a elle-même une sous-classe appelée res:Skills qui définit les compétences des ressources humaines.

La classe res:Equipment_Consumable définit les équipements et les consommables médicaux. Elle a comme sous-classes, les classes res:Medical_Equipment et res:Medical_Consumable.

La classe res:Infrastructure définit l’infrastructure. Elle a comme sous-classes : la classe res:Place_Functionalities qui décrit les fonctionnalités du lieu de l’intervention ; la classe res:Place_Fluids qui décrit les fluides nécessaires pour la réalisation d’une intervention ; la classe res:Information_System_Functionalities qui décrit les fonctionnalités du système d’information et la classe res:Information_System_Material qui décrit le matériel du système d’information qui est utilisé pour une intervention.

La classe res:Drug, quant à elle définit les médicaments utilisés pour une intervention. Un individu de la classe res:Drug est associé à plusieurs individus appartenant à d’autres classes et qui permettent de mieux le définir. Ainsi, la classe res:Drug est associée respectivement : à la classe res:Drug_INN (International Nonproprietary Name ou Dénomination Commune Internationale en français) via la propriété res:has-drug-inn ; à la classe res:Drug_Galenic_Form (type de présentation du médicament, par exemple : crème, injectable, spray, comprimé, sirop, suppositoire, etc.) via la propriété res:has-drug-galenic-form ; à la classe res:Drug_Administration_Route (voie d’administration du médicament, par exemple : perfusion, voie intraveineuse, voie intramusculaire, voie orale ou per os, voir anale, etc.) via la propriété res:has-drug-administration-route ; et à la classe res:Drug_Dosage (dosage du médicament) via la propriété res:has-drug-dosage. Enfin, la propriété de type DatatypeProperty res:has-description permet de donner une description élaborée du médicament appartenant à la classe res:Drug à travers la connexion aux sites web ou aux bases de données médicamenteuses comme le VIDAL [245] ou le COMПENDIUM [246].
Enfin, la classe res:Other_Resources définit toutes les ressources autres qui peuvent être nécessaires. Elle a comme sous-classes : la classe res:Data_Knowledge_Based_Resources qui décrit les ressources de type données ou connaissance (par exemple, disposer de certaines données ou d’une certaine connaissance peut être nécessaire pour une intervention donnée); la classe res:Environmental_Resources qui définit les ressources environnementales (par exemple : à défaut d’avoir une couveuse, il peut être nécessaire pour un nouveau-né présentant un ictere néonatal de l’exposer au soleil); la classe res:Financial_Resources (la réalisation d’une intervention donnée peut nécessiter certaines ressources financières ou financements spécifiques), etc.

4.3.2.3.2.2. Les axiomes de l’ontologie des ressources

Les axiomes représentant les contraintes (de domaine et d’intégrité) qui sont appliquées à ce domaine de connaissance peuvent être consultés en détail à l’annexe 3. Ces axiomes sont illustrés (sur les figures ou sur les documents annexes) à travers les symboles suivants : ∀ (only) pour la restriction universelle, ∃ (some) pour la restriction existentielle ; ≡ pour l’équivalence et ⊆ (sous-classe de) pour la subsumption.
Figure 28. Modèle sémantique de l’ontologie des ressources en santé (domaine des soins)
4.3.2.4. Module 4 : L'ontologie du contexte
4.3.2.4.1. Description de l'ontologie du contexte

La notion de contexte est un concept qui est utilisé dans plusieurs domaines de la société (littérature, psychologie, communication, informatique, etc.). Selon le dictionnaire Larousse, on peut définir le contexte comme étant un « ensemble des circonstances dans lesquelles se produit un événement, se situe une action ».

En informatique, l'utilisation de la notion de contexte, repose par exemple sur l'idée de développer des outils qui s’adaptent à leur environnement d’exécution (adaptation de la luminosité de l’écran en fonction des applications utilisées et de l’autonomie de la batterie) ou global (adaptation de la luminosité de l’écran en fonction des applications utilisées, de l’autonomie de la batterie, de la lumière du jour et mêmes des personnes autour de l’appareil) [187]. Pour favoriser de telles interactions entre l’humain et la machine et améliorer la pertinence des résultats issus de ces interactions, il est important de mettre en place des approches qui visent à favoriser une meilleure description et connaissance du contexte [186].

En rapport avec le but de connecter certains aspects relatifs aux itinéraires cliniques, aux guidelines et aux ressources, l’ontologie du contexte (figure 29) ci-dessous décrit de manière formelle quelques éléments y relatifs de ce domaine de connaissance.

En termes de métrique, l’ontologie du contexte indique les paramètres suivants :
- Classes : 45
- Propriétés d’objet (‘Object Properties’) : 52
- Propriétés de données (‘Data Properties’) : 0
- Axiomes : 188
- Axiomes logiques : 91

4.3.2.4.2. Représentation sémantique de l’ontologie du contexte
4.3.2.4.2.1. Termes, concepts et propriétés de l’ontologie du contexte

La classe cont:Patient_Care_Stay_Encounter est une sous-classe de la classe time:Entity de l’ontologie du temps. Elle permet de décrire le séjour (épisode) de soins ou la visite (pour une consultation par exemple) d’un patient donné. Cette classe est associée à la classe cont:Patient par la propriété cont:is-carestayencounter-of (inverse de la propriété cont:has-carestayencounter). Elle est également associée à la classe cont:Patient_Status par la propriété cont:has-patient-status pour déterminer le statut du patient y compris son statut clinique pendant les soins relatifs à l’itinéraire clinique. Par ailleurs, la classe cont:Patient_Care_Stay_Encounter peut être connectée à un dossier médical électronique.

La classe cont:Community décrit la famille ou la communauté à laquelle appartient un patient de l’itinéraire clinique. Cette classe permet de définir des groupes de personnes ayant des valeurs, des intérêts et si possible des ressources communes. Les critères qui permettent de définir ou de regrouper des individus en une communauté sont variés. Il peut s’agir d’une communauté basée sur la famille, l’ethnicité, la culture, la religion, la race, etc. La classe cont:Community est associée à la classe cont:Community_Status_Regulation via la propriété cont:has-status.

La classe cont:Health_Institution définit l’institution de santé (hôpital, dispensaire, centre de santé, clinique) dans laquelle s’applique l’itinéraire clinique. Une institution de santé a un statut et est également située dans un contexte donné. Cette classe est ainsi associée aux classes cont:Health_Institution_Status_Regulation et cont:Setting via les propriétés
La classe \texttt{Cont:Setting} définit le contexte dans lequel est déployé un itinéraire clinique. Le contexte peut être défini ici comme une entité physique dans laquelle les éléments qui le constituent peuvent avoir en commun certaines conditions, à savoir : le territoire, les ressources, les infrastructures, les conditions politiques, les lois, le niveau de développement économique et social, les conditions environnementales et climatiques, etc. Sur cette base, on peut avoir des contextes définis à l'échelle d'un pays (par exemple : Cameroun, Suisse), à l'échelle d'une sous-région (par exemple : Afrique centrale, Afrique de l'Est), à l'échelle d'une région ou continent (par exemple : Afrique, Europe), à l'échelle du niveau de développement (par exemple : pays en développement, pays développé), à l'échelle d'un espace communautaire ou économique (par exemple : Union Européenne, Communauté des Etats de l'Afrique Centrale), etc. La classe \texttt{Cont:Setting} est associée à la classe \texttt{Cont:Setting_Status_Regulation} via la propriété \texttt{cont:has-status}.

La classe \texttt{Cont:Status_Regulation} est la super classe qui définit le statut et règles en vigueur des principales composantes d'un contexte donné. Cette classe est associée à la classe \texttt{Cont:Context_Related_Preconditions} par deux propriétés : \texttt{cont:satisfies-preconditions} et \texttt{cont:does-not-satisfy-preconditions}. La classe \texttt{Cont:Status_Regulation} contient comme sous-classe : la classe \texttt{Cont:Patient_status}; la classe \texttt{Cont:Community_Status_Regulation}; la classe \texttt{Cont:Health_Institution_Status_Regulation}; et la classe \texttt{Cont:Setting_Status_Regulation}. La classe \texttt{Cont:Patient_status} décrit les différents paramètres qui permettent de donner les caractéristiques d'un patient donné sur les plans administratif (âge, sexe, etc.), clinique (indicateurs cliniques), socio-économique et financier (niveau d'éducation, revenu mensuel, etc.), de son histoire médicale (allergie connue à un médicament), etc. Si l'hôpital dispose d'un dossier patient électronique, la classe \texttt{Cont:Patient_status} peut être connectée à la classe \texttt{Cont:Health_Institution_Status_Regulation} via la propriété \texttt{cont:is-connected-to} afin de collecter automatiquement certaines informations. La classe \texttt{Cont:Community_Status_Regulation} définit le statut d'une communauté donnée. Il s'agit de la situation de fait, de la position par rapport à la société ou des règles qui sont établies pour les membres de cette communauté. La classe \texttt{Cont:Health_Institution_Status_Regulation} définit le statut d'une institution de santé donnée. Il s'agit de l'ensemble de normes et des règles explicites et/ou implicites établies pour son fonctionnement. La classe \texttt{Cont:Setting_Status_Regulation} définit le statut d'un contexte donné. Il s'agit de l'ensemble de normes et des règles explicites et/ou implicites établies pour un contexte donné.

La classe \texttt{Cont:Context_Related_Preconditions} définit les conditions qui doivent être satisfaites pour qu'un processus atomique lié à un itinéraire clinique puisse avoir lieu. Cette classe comprend quatre sous-classes : la classe \texttt{Cont:Individual_Related_Preconditions} (conditions relatives à l'individu ou patient), la classe \texttt{Cont:Community_Related_Preconditions} (conditions relatives à la communauté), la classe \texttt{Cont:Institution_Related_Preconditions} (conditions relatives à l'institution de santé) et la classe \texttt{Cont:Setting_Related_Preconditions} (conditions relatives au contexte). La classe \texttt{Cont:Individual_Related_Preconditions} contient quatre sous-classes relatives aux conditions telles que : (i) les comportements, les expériences, les préférences et à l'alimentation du patient; (ii) le niveau d'éducation du patient; (iii) le revenu financier du patient; et enfin, (iv) le statut clinique (médical, chirurgical, histoire familiale) du patient. La classe \texttt{Cont:Community_Related_Preconditions} quant à elle contient deux sous-
classes relatives aux conditions telles que : (i) les croyances et les valeurs religieuses d'une communauté et (ii) les valeurs socio-culturelles d'une communauté. La classe cont:Health_Institution_Related_Preconditions contient quatre sous-classes relatives aux conditions telles que : (i) l'équipement, les consommables et les médicaments dans une institution de santé ; (ii) les ressources humaines et les compétences ; (iii) l'infrastructure et autres services ; et enfin (iv) l'organisation et les différentes règles en vigueur. Enfin, on la classe cont:Setting_Related_Preconditions qui contient trois sous-classes relatives aux conditions telles que : (i) l'infrastructure et l'environnement du contexte ; (ii) la législation, les politiques et la gouvernance au sein de ce contexte ; et enfin, (iii) le niveau socio-économique du contexte.

La classe cont:Causes_Of_Variance définit les différentes causes des variances. Elle contient deux sous-classes, la classe cont:From_Missing_Resources et la classe cont:From_Other_Causes. La classe cont:From_Missing_Resources définit les causes de variances dues à un déficit de ressources (médicament, matériel, équipement, infrastructure, compétences, autres). Ce déficit de ressource peut provenir (être observé) du patient, de la famille ou de la communauté, des professionnels de la santé, de l'institution de santé ou du contexte. La classe cont:From_Other_Causes quant à elle, définit autres causes de variances relatives à d'autres causes comme les indicateurs cliniques du patient, les valeurs d’une communauté, le retard dans l'exécution d'une tâche par un professionnel de la santé, les règles et les normes qui s'appliquent à une institution de santé ou pour un contexte donné, etc. Comme dans le cas des déficits des ressources, la cause autre d'une variance peut être liée à un patient, à la famille ou à la communauté, aux professionnels de la santé, à l'institution de santé ou au contexte. La classe cont:From_Other_Causes est associée à la classe cont:Status_Regulation via la propriété cont:is-related-to-other-causes.

4.3.2.4.2.2. Les axiomes de l’ontologie du contexte
Les axiomes représentant les contraintes (de domaine et d'intégrité) qui sont appliquées à ce domaine de connaissance peuvent être consultés en détail à l'annexe 4. Ces axiomes sont illustrés (sur les figures ou sur les documents annexes) à travers les symboles suivants : ∀ (only) pour la restriction universelle, ∃ (some) pour la restriction existentielle ; ≡ pour l'équivalence et ⊆ (sous-classe de) pour la subsumption.
Figure 29. Modèle sémantique de l'ontologie du contexte
4.3.2.5. Les axiomes de l’ontologie ShaRE-CP

L'ontologie ShaRE-CP définit plusieurs d’axiomes entre les différentes classes des modules. Les axiomes représentant toutes les interactions identifiées entre les différents domaines de connaissance peuvent être consultés en détail à l’annexe 5.

4.3.2.5.1. Les axiomes entre les classes de l’ontologie des itinéraires cliniques et celles de l’ontologie du contexte

Dans le cadre des interactions entre l’ontologie des itinéraires cliniques et celle du contexte (figure 30), plusieurs axiomes ont été définis.

La classe `cp:Clinical_Pathway` est associée aux classes `cont:Health_Institution` et `cont:Patient_Care_Stay_Encounter` par les propriétés `cp:deployed-in` et `cp:applied-to` respectivement.

La classe `cp:Variance` est associée à la classe `cont:Patient_Care_Stay_Encounter` par la propriété `cp:occurs-on` et à la classe `cont:Causes_Of_Variance` par la propriété `cp:is-caused-by`.

Enfin, la classe `cont:Health_Institution_Departments` est associée à la classe `process:AtomicProcess` via la propriété `cont:has-responsibility-of` (inverse de la propriété `cp:is-under-responsibility-of`).
4.3.2.5.2. Les axiomes entre les classes de l'ontologie des itinéraires cliniques et celles de l'ontologie des ressources

Les axiomes définis entre l'ontologie des itinéraires cliniques et celle des ressources (figure 31) associent la classe process:AtomicProcess à la classe res:Health_Resources via la propriété cp:requires.

Figure 30. Interactions sémantiques entre l'ontologie des itinéraires cliniques et l'ontologie du contexte

Figure 31. Interactions sémantiques entre l'ontologie des itinéraires cliniques et l'ontologie des ressources
4.3.2.5.3. Les axiomes entre les classes de l'ontologie des itinéraires cliniques et celles de l'ontologie des guidelines

Dans le cadre des interactions entre l'ontologie des itinéraires cliniques et celle des guidelines (figure 32), les axiomes définis sont les suivants.

La classe `cp:Clinical_Condition` quant à elle, est associée à la classe `gdl:Subjects` par la propriété `cp:is-part-of`.

Figure 32. Interactions sémantiques entre l'ontologie des itinéraires cliniques et l'ontologie des guidelines

4.3.2.5.4. Les axiomes entre les classes de l'ontologie des guidelines et celles de l'ontologie des ressources

Concernant les interactions entre l'ontologie des guidelines et celle des ressources (figure 33), la classe `gdl:Related_Interventions` est associée à la classe `res:Health_Resources` via la propriété `gdl:requires`.

Inversement, la classe `res:Health_Resources` est associée à la classe `gdl:Related_Interventions` par la propriété `res:is-required`. Cette propriété est l'inverse de la propriété `gdl:requires`.
Figure 33. Interactions sémantiques entre l’ontologie des guidelines et l’ontologie des ressources

4.3.2.5.5. Les axiomes entre les classes de l’ontologie des guidelines et celles de l’ontologie du contexte

S’agissant des interactions entre l’ontologie des guidelines et celle du contexte (figure 34), la classe gdl:Guidelines_Recommendations est associée à chacune des classes cont:Patient_Status, cont:Community, cont:Health_Institution_Care_Level et cont:Setting par les propriétés gdl:concerns et gdl:does-not-concern.

Figure 34. Interactions sémantiques entre l’ontologie des guidelines et l’ontologie du contexte
4.3.2.5.6. Les axiomes entre les classes de l'ontologie du contexte et celles de l'ontologie des ressources

En ce qui concerne les interactions entre l'ontologie du contexte et celle des ressources (figure 35a), les classes cont:Patient, cont:Community, cont:Health_Institution et cont:Setting sont associées chacune à la classe sharecp:Resource_Statement par les propriétés cont:has-resource (inverse de la propriété sharecp:is-resource-of) et cont:does-not-have-resource (inverse de la propriété sharecp:is-not-resource-of).

La classe cont:Health_Institution_Roles quant à elle, est associée à la classe sharecp:Resource_Statement par les propriétés cont:has-skill et cont:does-not-have-skill.

Enfin, la classe cont:From_Missing_Resources (qui est une sous-classe de la classe cont:Causes_Of_Variance) est associée à la classe res:Health_Resources par la propriété cont:is-related-to-missing-resources.

Figure 35a. Interactions sémantiques entre l'ontologie du contexte et l'ontologie des ressources
4.4. Discussion et Conclusion

L’ontologie ShaRE-CP est un modèle de représentation général des concepts, des termes et des relations relatifs à plusieurs domaines de connaissances à savoir : les itinéraires cliniques, les guidelines, les ressources et le contexte. Son but est d’améliorer la qualité et l’efficience des soins et de soutenir les professionnels de la santé dans le partage et la réutilisation des nombreuses informations médicales et de santé relatives à la conception, le développement et l’utilisation des itinéraires cliniques à l’instar d’autres ontologies qui ont été proposées [2, 5, 26].

Développée selon une approche modulaire, l’ontologie ShaRE-CP est composée de quatre sous-ontologies : l’ontologie des itinéraires cliniques, l’ontologie des guidelines, l’ontologie des ressources (en particulier des ressources en santé) et l’ontologie du contexte. Cette ontologie décrit : d’une part, les principaux concepts et les relations sémantiques qui existent dans chaque domaine de connaissances, et d’autre part, les relations sémantiques qui existent entre les concepts de ces différents domaines de connaissance.

Cette ontologie met un accent sur la réutilisabilité des différents domaines de connaissances et ce au travers : de l’organisation modulaire de l’ontologie, de l’importation d’autres ontologies de domaines qui ont été éprouvées et de l’approche utilisée pour représenter certains domaines de connaissance. Par exemple, dans le module relatif à l’itinéraire clinique, le choix a été fait de différencier le concept de « processus clinique » considéré comme un processus générique qui peut être réutilisé dans n’importe quel itinéraire clinique par une « intervention » qui elle est liée à un itinéraire clinique donné et c’est cette intervention qui exécute un processus clinique Il en est de même des contraintes temporelles (intervalles de temps entre deux interventions) qui ont été représentées dans ce travail en OWL plutôt que par des règles SWRL (comme d’autres auteurs) afin de permettre le raisonnement directement à partir d’un raisonneur OWL.

Par ailleurs, comme dans le Web sémantique, nous sommes dans le monde ouvert, il faut définir chaque relation entre les classes de manière à expliciter la sémantique. Par exemple, ne pas dire qu’un hôpital dispose d’une ressource ne veut pas dire nécessairement que celui-ci n’en dispose pas. Il faut donc explicitement exprimer le fait qu’un hôpital ne dispose pas d’une ressource donnée.

Au cours de la modélisation de cette ontologie, nous avons préféré représenter certaines relations positives et négatives entre des classes en utilisant deux propriétés distinctes ayant des sémantiques différentes plutôt que d’utiliser la fonction « Negative Object Property Assertion » de l’outil Protégé qui elle ne peut être utilisée avec un raisonneur. Cette manière de modéliser offre plus de possibilités et permet notamment d’utiliser des requêtes SPARQL. A titre d’exemple, on peut citer les propriétés gdl:concerns et gdl:does-not-concern qui lient les classes gdl:Guidelines_Recommendations et cont:Patient_Status ou les propriétés cont:has-resource et cont:does-not-have-resource qui lient les classes cont:Health_Institution et sharecp:Resources_Statement.

Toutefois, en tant que modèle général, cette ontologie peut servir de base commune pour la représentation des cas spécifiques. La nécessité de représenter de manière plus détaillée certaines spécificités relatives un domaine de connaissance donné, peut faire l’objet d’extensions de cette ontologie. Cela peut se faire à travers la création de nouveaux concepts, termes et relations ou encore à travers l’importation d’autres ontologies.
Chapitre 5
Développement d’un itinéraire clinique pour la prise en charge des patientes souffrant de pré-éclampsie sévère à la maternité de l’Hôpital Central de Yaoundé

5.1. Introduction

La santé maternelle et infantile constitue un véritable défi dans la plupart des pays en développement. Dans la plupart de ceux-ci, on enregistre encore des taux qui sont supérieurs aux objectifs attendus d’ici à 2030 (< à 70 pour 100 000 naissances vivantes) [247]. S’agissant de la santé maternelle, au Cameroun par exemple, le taux de mortalité maternelle est de 782 décès maternels pour 100 000 naissances vivantes (OMS Cameroun, 2011). Les causes les plus importantes qui peuvent expliquer ce taux élevé de mortalité maternelle dans les pays en développement sont les hémorragies du postpartum, les infections et les maladies hypertensives en grossesse dont la pré-éclampsie et l’éclampsie [248]. Pour y remédier, de nombreuses interventions de santé publique sont mises en œuvre, au niveau mondial ainsi que dans les pays respectifs, pour réduire ce taux notamment en termes : d’amélioration de l’accès aux soins de qualité, de fourniture de médicaments et consommables, d’éducation de la population, etc.

En termes d’amélioration des processus de soins, les itinéraires cliniques sont considérés comme des outils qui permettent non seulement d’améliorer la qualité des soins [46–48] mais aussi leur l’efficience des soins [49, 57]. Leur intérêt est davantage marqué dans les soins qui font recours à des équipes multidisciplinaires. Ainsi, son implémentation permet d’améliorer la coordination et la continuité des soins, de rationaliser les différentes interventions requises et même d’améliorer des indicateurs de prise en charge (outcomes cliniques, satisfaction des patients).

L’Hôpital Central de Yaoundé (HCY) est un des hôpitaux de référence du Cameroun. Il dispose de plusieurs unités de soins dont la maternité principale de l’HCY. Cette unité s’occupe des soins liés à la femme et à la santé de la reproduction notamment à travers le suivi anté-, péri- et postpartum ; la prévention de la transmission mère-enfant du VIH-SIDA, les activités chirurgicales (césariennes, etc.), etc. Les données issues d’études montrent que la prévalence de la pré-éclampsie/eclampsie à la Maternité Principale de l'Hôpital Central de Yaoundé est de 7,7% [249] et que l’éclampsie, principale complication de la pré-éclampsie sévère (PES), est la 3ème cause de mortalité [250].

Pourtant, l’observation du fonctionnement de cette unité montre qu’il n’existe pas de protocole ni d’itinéraire cliniques qui aient été conçu pour soutenir la prise en charge efficace et efficience des patientes souffrant de ces principales pathologies. C’est dans le souci d’améliorer la prise en charge des patientes souffrant de pré-éclampsie sévère à la maternité principale de l’Hôpital Central de Yaoundé, que nous avons développé un itinéraire clinique. Les sections suivantes permettront : de faire des rappels de connaissance sur la pré-éclampsie ; d’illustrer succinctement la place des recommandations pour les bonnes pratiques cliniques en matière de pré-éclampsie et éclampsie ; de décrire succinctement l’Hôpital Central de Yaoundé et la maternité principale ; de décrire le processus de développement et de validation de cet itinéraire clinique ; et enfin, d’évoquer dans le chapitre discussion, quelques enjeux liés au développement et à l’implémentation d’un itinéraire clinique.

5.2. Rappels sur la pré-éclampsie
5.2.1. Généralités sur les troubles hypertensifs de la grossesse

Les troubles hypertensifs de la grossesse représentent un groupe constitué de plusieurs pathologies (pré-éclampsie, éclampsie, hypertension gestationnelle, l’hypertension chronique, etc.) [251]. Ce groupe de pathologies affecte environ 10% des femmes enceintes à travers le monde [251, 252]. Les troubles hypertensifs constituent une des causes majeures de morbidité et mortalité maternelle et fœtale [251–253]. Selon l’OMS, 1/10° des décès maternels sont associés aux maladies hypertensives en grossesse en Asie et en Afrique [253]. La plupart de ces décès peuvent être évités à travers la réalisation de plans de soins intégrant des interventions efficaces et réalisées en temps opportun [254].
La classification des maladies hypertensives en grossesse la plus utilisée actuellement est celle qui a été proposée par l’American College of Obstétricians and Gynecologists [255]. Celle-ci distingue 4 grands cadres nosologiques à savoir : l’hypertension chronique, l’hypertension gestationnelle, la pré-éclampsie/éclampsie et la pré-éclampsie surajoutée.

5.2.2. Définition de la pré-éclampsie

La pré-éclampsie sévère demeure une préoccupation importante en Afrique subsaharienne, conduisant dans ses formes sévères à de nombreuses complications à l’origine d’une mortalité foeto-maternale non négligeable. C’est une maladie issue des dysfonctionnements liés l’implantation placentaire. On parle de pré-éclampsie quand on a une hypertension artérielle (TAS ≥ 140 mmHg et / ou TAD ≥ 90 mm Hg) qui survient après la 20e semaine d’aménorrhée (en général au 3ème trimestre) chez une femme enceinte associée à une protéinurie significative (≥ 0,3 g/24h)[256]. L’évolution de la pré-éclampsie se fait généralement vers la guérison maternelle sans séquelles après l’accouchement (75 % des patientes) [257]. Lorsque cette pathologie évolue vers une crise convulsive, on parle d’éclampsie [256].

5.2.3. Épidémiologie de la pré-éclampsie

La pré-éclampsie et l’éclampsie représentent un défi important de santé publique à travers le monde. Ce groupe de pathologie constitue l’une des principales causes de morbidité et de mortalité maternelle et périnatale dans le monde [258] (la 2ème cause de mortalité maternelle après l’hémorragie du post-partum dans les pays en développement [253]). La prévalence de la pré-éclampsie dans le monde est mal connue. Selon les estimations, la pré-éclampsie affectait environ 2 à 8% des grossesses dans le monde [259]. Les facteurs géographiques, sociaux, économiques et raciaux auraient une influence sur la prévalence de cette maladie [260]. On sait qu’environ 5 à 8% des femmes ayant une pré-éclampsie développeront une éclampsie et 10-20% développeront un syndrome HELLP (hémolyse, élévation des enzymes hépatiques et thrombopénie) [251, 261]. Dans les pays en développement (pays à ressources limitées), environ 2,3% des femmes ayant une pré-éclampsie évoluent vers une éclampsie[262]. L’Organisation Mondiale de la Santé estime que 16% des décès maternels dans les pays à ressources limitées résultent des troubles hypertensifs (notamment l’éclampsie) au cours de la grossesse [253]. Selon les expertes, la plupart des décès causés par cette pathologie sont jugés évitables [263].

En Afrique, le profil épidémiologique des patientes est habituellement celui d’une primipare jeune avec un mode autour de 25 ans [264]. Les formes d’apparition tardive (après la 29ème semaine) sont les plus fréquentes (80 % des cas) [257]. On observe également une prédominance des formes sévères (88%) [257], probablement favorisée par le diagnostic tardif et la mauvaise qualité de la prise en charge pré-hospitalière. La prise en charge de cette pathologie nécessite une approche multidisciplinaire. En Afrique, le pronostic global reste très péjoratif à cause du risque élevé de la survenue des complications maternelles (hématome rétro-placentaire, crise d’éclampsie, décès maternel) et périnatales (prématurité, hypotrophie foetale, décès foetal) [257].

5.2.4. Facteurs de risque de la pré-éclampsie

La pré-éclampsie est une maladie multifactorielle. Elle survient dans 70 à 75 % des cas lors de la première grossesse [265]. Néanmoins, il n’est pas exclu de présenter ce syndrome au cours d’une grossesse ultérieure, notamment en cas de changement de partenaire. La réduction du risque de pré-éclampsie lors de grossesses suivantes avec le même partenaire, serait liée à une adaptation immunologique de la mère aux antigènes du père, à travers des cellules « T régulatrices » [265]. Les facteurs de risques de la pré-éclampsie qui ont été identifiés sont les suivants [266, 267]:

- Un antécédent de pré-éclampsie
- Une grossesse multiple
- Une première grossesse (nulliparité ou primigestité)
- L’hypertension chronique, une pathologie rénale connue ou encore un diabète
- L’obésité (un indice de masse corporelle - IMC - > 30)
- Être âgée de plus de 40 ans ou de moins de 18 ans
- Avoir des antécédents familiaux de pré-éclampsie (mère, grand-mère...)
- Avoir un syndrome des ovaires polykystiques
- Avoir une maladie auto-immune ou une maladie trophoblastique gestationnelle
- Un changement de partenaire sexuel ou une insuffisance à l'exposition du sperme de son partenaire (port prolongé du préservatif)

Par ailleurs, le terrain génétique semble contribuer à hauteur de 50% dans la survenue de cette maladie. Un gène (STOX1) de la pré-éclampsie a été identifié en 2005 [268]. Ce gène code pour un facteur de transcription présent dans les cellules de l’utérus et du placenta. Toutefois, il est à noter qu’une quinzaine d’autres gènes semblent être aussi impliqués dans la survenue de cette maladie. Des études sont en cours pour préciser leurs différents degrés d’implication dans la genèse de cette maladie.

5.2.5. Physiopathologie

La physiopathologie de la pré-éclampsie reste à ce jour mal connue. Toutefois, tout porte à croire qu’il s’agit d’une anomalie de la placentation (dysfonctionnement du développement placentaire) [269]. Dans le cas de la pré-éclampsie, le placenta se développe apparemment normalement pendant le premier trimestre de la grossesse. Par la suite, le développement de ce placenta se fait avec une efficacité sous-optimale. Cela pose des problèmes lors de la deuxième partie de la grossesse, période au cours de laquelle la croissance fœtale, et en particulier celle du cerveau du fœtus, nécessite un flux sanguin considérable (environ 1 litre/minute en fin de grossesse).

Les données moléculaires récentes associées aux études anatomopathologiques plus anciennes identifient trois étapes successives [269]:

- « un défaut de remodelage vasculaire utérin (en grande partie lié à un défaut d’invasion trophoblastique) responsable d’une hypoperfusion de la chambre intervilloses;
- une hypoxie placentaire et un stress oxydant induisant un dysfonctionnement généralisé du syncytiotrophoblaste ;
- un dysfonctionnement de l’endothélium maternel lié à diverses substances libérées par le placenta dans la circulation maternelle (radicaux libres, lipides oxydés, cytokines, sVEGFR-1) et conduisant aux signes cliniques de la maladie ».

Il est vraisemblable que ces débris d’origine placentaire entraînent une augmentation de la production de molécules qui agissent sur les vaisseaux sanguins maternels, induisant ainsi une augmentation de la pression artérielle de la mère. La figure 36 ci-dessous illustre le mécanisme physiopathologique de la survenue de la pré-éclampsie et/ou de l’éclampsie [269].

![Diagramme de la physiopathologie de la pré-éclampsie](image)

Figure 36. Schéma de la physiopathologie de la pré-éclampsie. CIVD : coagulation intravasculaire disséminée, HTA : hypertension artérielle, MFIU : mort fœtale in utero, RCIU : retard de croissance intra-utérin, SF : souffrance fœtale [269]
5.2.6. Clinique
5.2.6.1. Signes cliniques et paracliniques

Actuellement, la pré-éclampsie se définit par la présence d’une hypertension artérielle associée à une protéinurie, indépendamment de la présence d’œdèmes.

5.2.6.1.1. Signes cliniques
i) L’hypertension artérielle

Les conditions de mesure de la tension artérielle doivent être strictement respectées. La mesure de cette tension artérielle se fait en position assise après 10 à 15 minutes de repos au moins. Normalement la grossesse diminue les chiffres tensionnels de 10 à 20 mmHg. Cette hypotension relative apparaît tôt, et tend à disparaître en fin de grossesse. Pendant la grossesse, l’évolution de la tension artérielle conserve son rythme nycthéméral : elle est moins élevée dans la nuit. Cette tension artérielle est anormale lorsque : la tension artérielle systolique est supérieure ou égale à 140 mmHg et/ou lorsque la tension artérielle diastolique est supérieure ou égale à 90 mm Hg [256].

ii) La protéinurie

La protéinurie est pathologique si elle est supérieure ou égale à 0.3 g / 24h. Une protéinurie discrète, moins importante que ce chiffre, peut être due à une augmentation de la filtration glomérulaire physiologique ou à une contamination de l’urine par des leucorrhées.

iii) Les œdèmes

Normalement, des œdèmes existent au cours de la grossesse : au niveau des membres inférieurs et des membres supérieurs, voire même de manière généralisée. Les œdèmes sont considérés comme pathologiques lorsqu’ils apparaissent brutalement ou lorsqu’ils s’aggravent brutalement. Ces œdèmes pathologiques modifient la courbe pondérale.

5.2.6.1.2. Signes biologiques
i) Les perturbations de la fonction rénale.

Les perturbations de la fonction rénale sont à interpréter en fonction des modifications physiologiques induites par la grossesse. En effet, la grossesse s’accompagne normalement d’une augmentation de la filtration glomérulaire, de la réabsorption tubulaire et du flux sanguin rénal (plus de 50 %). Ainsi, normalement : on aura une azotémie inférieure à 0,20 g/l, une créatininémie inférieure à 10 mg/l (91 μmol/l) et une uricémie inférieure à 40 mg/l au milieu de la grossesse (235 μmol/l).

En pratique, le dosage de l’uricémie est important, notamment dans la forme légère. L’hyperuricémie est liée à des perturbations tubulaires. Son interprétation doit tenir compte des valeurs enregistrées en début de grossesse. Si l’on ne dispose pas de telles valeurs, on peut choisir comme valeurs seuils : 250 μmol (40 mg/l) avant la 32e SA, 360 μmol (55 mg/l) après la 32e SA. La créatininémie quant à elle, est en général souvent supérieure à 80 μmol/l.

ii) Autres modifications.

De nombreuses modifications ont été rapportées. Les principales sont [269] :
- Les troubles de la coagulation
- L’élévation du facteur Von Willebrand
- L’élévation des fibronectines (traduisant une souffrance endothéliale)

5.2.6.1.3. Signes anatomo-pathologiques
i) Le rein

La ponction biopsique rénale peut montrer si elle est réalisée en phase de toxémie un trépied caractéristique [270] :
- Une hypertrophie du mésangium
- Une hypertrophie endothéliale
- Des dépôts sous la basale de substances fibrinoïdes et d’immunoglobulines.
En pratique, la ponction biopsique rénale n’est pas utile en phase aiguë mais elle peut être réalisée dans le cadre d’un bilan à distance.

ii) Le placenta

Il n’existe pas de lésions pathognomoniques. Toutefois, l’on peut retrouver des lésions de nature ischémique : des signes d’hypoxie, des signes de diminution du flux utéro-placentaire (diminution de la surface d’échange), des signes de coagulation (thromboses), tout ceci pouvant entrainer un infarctus plus ou moins étendu et une nécrose villositaire focale avec dépôts de fibrine[270]. Il est admis qu’une nécrose qui excède 30 à 40% du volume placentaire peut induire une ischémie significative.

5.2.6.2. Formes cliniques
5.2.6.2.1. Selon le moment d’apparition
i) Les formes précoces

Elles sont rares, et peuvent survenir avant la 20ème semaine de grossesse. Elles s’observent généralement en cas de grossesse multiple ou de maladie trophoblastique gestationnelle.

ii) Les formes tardives

Elles surviennent généralement au troisième trimestre de la grossesse (à partir de la 29ème semaine) voire à l’accouchement. Mais dans certains cas, la pré-éclampsie ou ses complications peuvent se manifester dans le post-partum, d’où l’importance de la surveillance obstétricale des 48 heures post partum.

5.2.6.2.2. Selon les signes

On distingue deux types de pré-éclampsie : la pré-éclampsie modérée et la pré-éclampsie sévère [256].

i) La pré-éclampsie modérée

La pré-éclampsie modérée se définit par une TAS ≥ 140 mmHg et/ou une TAD ≥ 90 mmHg, survenant après la vingtième semaine d’aménorrhée chez une patiente préalablement normotendue et une protéinurie ≥ 0,3 g/24h ou d’au minimum 30 mg/dl dans deux échantillons collectés à six heures d’intervalle.

ii) La pré-éclampsie sévère

La pré-éclampsie sévère quant à elle, correspond à la présence de l’un des facteurs suivants : a) une TA systolique ≥ 160 mmHg ou une TA diastolique ≥ 110 mmHg ; b) une protéinurie > 5g/24h ou 3+ de protéines dans les urines ; c) une oligurie < 500 ml/24h d) et des signes tels que les troubles visuels ou cérébraux, un edème aigu du poumon ou une cyanose, des douleurs épigastriques ou de l’hypochondre droit, une thrombopénie, une perturbation des tests hépatiques, un retard de croissance intra-utérin (RCIU) [256].

5.2.6.2.3. Selon le contexte clinique préexistant
i) Les formes surajoutées

On parle de pré-éclampsie surajoutée lorsque la maladie survient chez une femme présentant en l’absence de grossesse, une hypertension artérielle essentielle ou secondaire. Elle consiste en l’apparition d’une protéinurie, d’une thrombocytopénie, d’une perturbation des tests hépatiques ou d’une augmentation subite de la tension artérielle chez une femme enceinte souffrant au préalable d’une hypertension artérielle chronique [256, 271]. Dans les formes surajoutées, les complications maternelles et fœtales sont plus sévères et plus fréquentes.
ii) Les formes récidivantes
Ceci s'observe souvent généralement en cas de changement de partenaire ou d'espace inter génésique prolongé. Chez les femmes présentant des antécédents personnels ou familiaux de pré-éclampsie, une prophylaxie par de l'aspirine lors de la grossesse réduit de deux à 4 fois le risque de pré-éclampsie.

5.2.7. Diagnostic de la pré-éclampsie sévère
5.2.7.1. Diagnostic positif
Le diagnostic positif de la pré-éclampsie sévère se pose chez une femme enceinte qui présente une élévation des chiffres tensionnels (TAS ≥ 140 mmHg et/ou TAD ≥ 90 mm Hg) et une protéinurie > 0.3g/24h survenant après 20 SA, associées à au moins un des signes de gravité suivants [272]:
- Une hypertension artérielle sévère (TAS ≥ 160 mm Hg et/ou TAD ≥ 110 mm Hg)
- Une atteinte rénale avec : oligurie (< 500 ml/24h) ou une créatininémie (> 135 micromol/L) ou une protéinurie importante (> 5 g/24h)
- Un œdème aigu du poumon ou une barre épigastrique persistante ou un syndrome HELLP (hémolyse, cytolysie hépatique et thrombopénie)
- Une éclampsie ou des troubles neurologiques (troubles visuels, réflexes ostéo-tendineux polycinétiques, céphalées)
- Une thrombopénie (<100 G.L⁻¹)
- Un hématome rétro-placentaire (HRP) ou un retentissement fœtal.
- Un retentissement fœtal (anomalie du doppler utérin ou retard de croissance)

5.2.7.2. Diagnostic différentiel
Le diagnostic différentiel de la pré-éclampsie sévère se fait avec :
- La pré-éclampsie modérée (absence de signes de gravité).
- L'hypertension gestationnelle ou transitoire. Elle est définie par « une tension artérielle systolique (TAS) ≥ 140 mmHg et/ou une tension artérielle diastolique (TAD) ≥ 90 mmHg, mesurée à au moins deux reprises à un intervalle d'au moins six heures, chez une patiente habituellement normotendue et ayant dépassé la vingtième semaine d'aménorrhée » [256, 273]. L'hypertension gestationnelle est sévère si la TAS ≥ 160 mmHg et/ou la TAD ≥ 110 mmHg pendant au moins six heures [256]. En cas d'hypertension gestationnelle, il n'y a pas de protéinurie et la tension artérielle doit revenir à des valeurs normales après l'accouchement (post-partum)[256].
- L'hypertension chronique ou préexistante. Elle est définie par « une tension artérielle systolique (TAS) ≥ 140 mmHg et/ou une tension artérielle diastolique (TAD) ≥ 90 mmHg, documentée avant la grossesse ou avant la vingtième semaine d'aménorrhée »[256]. Cette hypertension artérielle persiste même après l'accouchement.

5.2.8. Prise en charge de la pré-éclampsie sévère
5.2.8.1. Buts
Les principaux buts sont :
- Préserver la vie de la mère tout en protégeant celle du fœtus lorsque cela est possible
- Eviter l'apparition des complications tant maternelles que fœtales
- Prévenir les récidives

5.2.8.2. Moyens
i) Moyens non médicamenteux
- Repos strict, en décubitus latéral gauche
- Apport alimentaire contrôlé, normosodé ou hyposodé
- Prévoir l'accouchement (par la voie la plus appropriée) et délivrance du placenta.
- Surveillance multidisciplinaire (gynécologues, anesthésistes, néonatologues) (en hospitalisation, en salle d'accouchement ou en post partum)
ii) Moyens médicamenteux

Il y a globalement 3 axes thérapeutiques à considérer :
- Le traitement par les antihypertenseurs. Les antihypertenseurs couramment utilisés sont : les béta-bloquants (labétalol), antihypertenseurs centraux (alphaméthyl dopa), les anticalciques (nifédipine, nicardipine) et les vasodilatateurs directs (hydralazine).
- Le traitement au Sulfate de Magnésium (Mg SO4) indiqué pour la prévention des convulsions chez toutes les femmes présentant une pré-éclampsie.

5.2.8.3. Evolution et pronostic

La surveillance de l’évolution clinique et biologique des patientes est recommandée.

i) Evolution précoce

De manière précoce, la pré-éclampsie sévère peut évoluer de manière précoce vers la rémission ou vers la survenue de complications telles que : les convulsions, les hémorragies, les troubles neuromusculaires, les troubles visuels, les troubles vasculaires, les troubles de la fonction rénale, etc.

ii) Evolution tardive

La survenue de séquelles de manière tardive est très rare. Toutefois, il faut craindre la survenue d'hypertension chronique (surtout dans le cas d’une pré-éclampsie récidivante survenant chez une multipare dont les premières grossesses étaient normales).

5.2.9. Conclusion

L’approche multidisciplinaire de la prise en charge de la pré-éclampsie reste la meilleure option, même comme elle reste limitée dans notre contexte (afriquain) à cause de la faiblesse du plateau technique. La conduite à tenir en cas de pré-éclampsie sévère est le résultat d’une analyse croisée des risques de la pré-éclampsie versus ceux de la prématurité. Au-delà du traitement de l’hypertension artérielle, le sulfate de magnésium occupe une place de choix dans la prévention des complications. La décision obstétricale d’interruption de la grossesse si elle approuvée doit être prise rapidement.

5.3. Recommandations de bonnes pratiques (guidelines) pour la prise en charge de la pré-éclampsie et l’éclampsie

En s’appuyant sur les principes de la médecine factuelle (médecine basée sur les preuves), de nombreux organismes à travers le monde ont publié des recommandations de bonnes pratiques sur la prise en charge de la pré-éclampsie et l’éclampsie [274–279]. Basé très souvent sur des groupes de travail multidisciplinaires (professionnels de la santé, patients, etc.), l’objectif principal de ces recommandations est d’améliorer la qualité des soins et les objectifs cliniques (outcomes) des femmes ayant une pré-éclampsie et/ou des complications, notamment l’éclampsie [277]. Ces recommandations concernent très souvent tous les acteurs de la prise en charge de ce type de patiente à savoir : les médecins (gynécologues-obstétriciens, médecins généralistes), les sages-femmes, les gestionnaires de santé et les décideurs. Dans le cadre de ce travail et sa suite, nous avons fait le choix de nous appuyer uniquement sur les recommandations édictées par l’Organisation Mondiale de la Santé (OMS) [277]. Ces recommandations ont été élaborées et publiées en 2014. La méthodologie GRADE (Grading of Recommendations Assessment, Development and Evaluation) a été utilisée pour évaluer et déterminer la qualité des preuves scientifiques [135].
5.4. L’itinéraire clinique de prise en charge des patientes souffrant de pré-eclampsie sévère à l’Hôpital Central de Yaoundé

5.4.1. Contexte : description de l’Hôpital Central de Yaoundé (HCY)

5.4.1.1. Bref historique, mission et organigramme

L’HCY a été créé en 1933. D’abord organisé comme un hôpital de jour, cet hôpital a été réorganisé en 1968. A ce jour, c’est un hôpital de référence considéré sur le plan juridique comme une des directions du ministère de la santé publique. Ses missions sont inclues dans le triptyque : soins, enseignement et recherche. L’HCY est organisé en unités cliniques, médico-techniques, administratives et financières. Pour son fonctionnement, l’HCY a à sa tête un Directeur nommé par le Premier Ministre. La politique de gestion de l’HCY est conçue au sein d’un Comité de Gestion qui a à sa tête un président.

5.4.1.2. Fonctionnement et activités

L’HCY a un personnel estimé à 768 personnes dont 609 personneldes santé (médicaux, chirurgicaux et techniques). Parmi le personnel de santé, on compte 95 médecins, 254 infirmier(e)s (brevetés, brevetés-accoucheur, diplômées d’état, spécialisées en santé de la reproduction, en santé mentale, en ophtalmologie ou en anesthésie) et 150 aides-soignants (qui à cause de la pénurie font office d’infirmiers).

En termes d’activité, le rapport statistique 2017 rapporte que l’HCY a une capacité de 489 lits. Le nombre total de journées d’hospitalisation était de 119 186 jours soit un taux d’occupation annuel des lits de 67,1%. 131 000 patientes ont été accueillies dont 121 000 en consultation externe. Sur le nombre de patientes accueillies, on enregistre un taux de mortalité de 6,7%. 3 184 interventions chirurgicales ont été effectuées. Les pathologies médicales représentent trois quarts des pathologies rencontrées.

En termes de financement des soins, la politique générale adoptée au sein de l’HCY est celle du recouvrement des coûts : le patient paye à la caisse avant d’être pris en charge. Ce payement se fait sur la base d’un code de tarification des actes propre à l’HCY. Par ailleurs, la plupart des patients ne disposent pas d’assurance maladie.

5.4.1.3. Présentation de l’unité de Gynécologie-Obstétrique de l’HCY

5.4.1.3.1. Présentation

Figure 37. Service de Gynéco-Obstétrique (maternité principale) de l'Hôpital Central de Yaoundé

L’unité de Gynécologie-obstétrique de l’HCY encore appelée Maternité Principale (figure 37) est composée de deux services : le service A et le service B. Dans son organigramme, cette unité a à sa tête un Chef d’unité assisté de deux chefs de service, une coordinatrice et quatre majors (service A, service B, salle d’accouchement et postpartum, bloc-opéraire).
5.4.1.3.2. Personnel de santé

Cette unité compte en son sein 9 gynécologues, un médecin anesthésiste-réanimateur, un médecin généraliste, 4 infirmières spécialisées en santé de la reproduction, 2 infirmières spécialisées en anesthésie-réanimation, 3 infirmières diplômées d’Etat, 1 infirmière diplômée d’Etat accoucheuse, 3 infirmières brevetés, 37 infirmiers brevetés accoucheurs, 02 secrétaires, 09 agents de surface et 02 postes de vigiles. Il est à noter que les résidents en spécialisation et les étudiants en médecine font partie également de cette unité lorsqu’ils y sont stage.

5.4.1.3.3. Activités au sein de la maternité

Les activités de cette unité se répartissent comme suit :

- Les activités ambulatoires. On a d’une part, celles qui se font tous les jours (les consultations prénatales, les consultations gynécologiques, le planning familial, les consultations d’urgence, les activités liées à la prévention de la transmission du Virus de l’Immunodéficience Humaine (VIH) de la mère à l’enfant. D’autre part, on a celles qui se font de manière périodique : les consultations de néonatologie (3 fois par semaine) et la vaccination (2 fois par semaine).

- La chirurgie. Elle concerne les interventions d’urgence ou électives (programmées). Le bloc opératoire fonctionne 24h/7jrs. Pour les interventions d’urgence, il existe des kits opératoires (matériel de base) permettant de prendre en charge les patientes. Le payement de ce kit ne se fait qu’après l’intervention. Quant aux interventions programmées, elles sont planifiées chaque vendredi au cours d’une réunion dédiée à cet effet. Cette réunion regroupe, les gynécologues, les anesthésistes, la major du bloc opératoire et les résidents. Le programme de la semaine issu de cette concertation est affiché sur un tableau noir. Le recrutement des cas quant à lui, se fait durant la semaine au cours des consultations des gynécologues. Les interventions chirurgicales programmées ont lieu les mardis et jeudis. On enregistre en moyenne 4 à 6 interventions par jour.

- Les mises en observation ou hospitalisations. Elles concernent les patientes en postpartum, postopératoires, etc.

- L’anesthésie-réanimation. Ces activités sont : les consultations d’anesthésie (1 fois par semaine), les consultations pour les urgences (tous les jours) et la réalisation des actes d’anesthésie et de réanimation (soit pour les chirurgies d’urgence, soit pour les chirurgies électorives).

- Le suivi des malades de l’unité. Les rondes de service se font quotidiennement dans chaque service. La grande ronde quant à elle concerne toute l’unité. Celle-ci se tient chaque jeudi. La planification des soins est assurée de manière quotidienne par les majors, puis ces soins sont exécutés par les infirmiers.

- Les activités académiques. Elles se font au lit du malade et pendant les rondes.Également, chaque mercredi, il se tient une réunion scientifique. Au cours de celle-ci, des cas cliniques sont discutés.

Selon le rapport statistique 2017 de l’HCY, l’unité de gynéco-obstétrique dispose de 73 lits d’hospitalisation. 6 216 patientes ont été hospitalisées pour un nombre total annuel de journées d’hospitalisation de 23 149 jours soit un taux d’occupation des lits de 97,3%. 5 329 patientes ont été reçues en consultation externe et 3 515 accouchements ont été enregistrés. Les interventions chirurgicales ont été réalisées en 2017 chez 1 193 patientes. Par ailleurs, l’on a enregistré 18 décès maternels et 27 décès de nouveau-nés.

5.4.1.3.4. Circuit du malade

En fonction du type de cas, le patient effectue un certain itinéraire au sein de l’unité de gynécologie-obstétrique de l’HCY. Loin d’être exhaustif, il est présenté de manière succinte et schématique les différents itinéraires :
- Consultations externes (ambulatoires) ou d’urgence: accueil du malade en consultation externe → paiement du ticket de consultation → évaluation clinique → demande d’examens complémentaires (effectués en ambulatoire) → traitement ambulatoire (ou transfert en salle en cas d’hospitalisation dans le service d’appartenance du gynécologue). Les prélèvements se font généralement lorsque la patiente est déjà en salle ainsi que l’achat des médicaments, du matériel et le paiement des frais d’hospitalisation → rendez-vous.

- Accouchement: accueil de la malade aux urgences → évaluation clinique → installation en salle de travail → surveillance du travail → salle d’accouchement → accouchement → hospitalisation en salle postpartum (2 jours) → sortie → rendez-vous en consultation externe (6 semaines après). NB : La patiente venue pour accoucher ne paie pas de ticket de consultation. Toutefois, elle (ou sa famille) doit acheter le matériel (ex. gants de soins, solutés, etc.) nécessaire pour ses soins et payer les frais d’hospitalisation.

- Urgence chirurgicale : accueil de la malade aux urgences → évaluation clinique → demande d’un bilan préopératoire (examens complémentaires) et d’une consultation d’anesthésie → délivrance d’un kit d’urgence (paquet minimum de matériel nécessaire pour une intervention donnée) → installation en salle d’opération → intervention chirurgicale → installation en salle postopératoire/d’hospitalisation (7 jours) → sortie → rendez-vous en consultation externe (5 semaines après pour une césarienne, 4 semaines après pour une opération pour grossesse extra-utérine, kyste, etc.). Le matériel de soins (ex. gants de soins, solutés, etc.) complémentaire au kit d’urgence est acheté par la patiente (ou sa famille). Il en est de même des frais d’intervention, des frais d’hospitalisation et des frais du kit d’urgence pour lesquels elle (ou sa famille) doit s’acquitter.

5.4.1.3.5. Codification des diagnostics ou des actes à la maternité

Aucune terminologie médicale standard n’est utilisée pour codifier/structurer les diagnostics ou les actes à la maternité de l’HCY. Toutefois, l’hôpital dispose d’un code local (développé pour l’HCY uniquement) de tarification des actes.

5.4.1.3.6. Horaires de service

L’unité de gynécologie-obstétrique est ouverte 24h/7j. Les tranches horaires sont : 07h30-15h30 (horaire normal) et 15h30-7h30 (horaire de garde). Des équipes de 4 Infirmières effectuent des roulements toutes les huit heures. Elles sont chargées de délivrer des soins respectivement, en salle d’accouchement, en salle du postpartum, en salles d’hospitalisations des services A et B. Les horaires de visites prévues pour les familles ou les garde-malades sont : la matinée (5h-7h), la journée (12-14h) et la soirée (18h-20h).

5.4.1.3.7. Services connexes

5.4.1.3.7.1. Le Service de Radiologie et d’Imagerie médicale

Ce service a à sa tête un chef de service. Le plateau technique permet de réaliser des examens de radiologie standard, de mammographie, d’échographie, de scanographie ainsi que d’autres examens plus spécifiques à des domaines tels que l’ophthalmologie, l’ORL, etc. En 2017, le service d’imagerie médicale a effectué 34 423 examens dont 10 301 examens de radiologie standard et 3 273 examens de scanner.

5.4.1.3.7.2. Le Service des Laboratoires

Ce service a à sa tête un chef de service et 3 majors. Elle est subdivisée en trois entités : le laboratoire principal, la banque de sang et le laboratoire des urgences médicales. Il existe aussi un laboratoire de pathologie qui est indépendant de ce service. Le circuit du malade est le suivant : paiement à la caisse → accueil du malade et prélèvement du produit biologique → transport vers le laboratoire d’analyse → enregistrement du produit à analyser → analyse du produit et résultat → saisie des résultats au secrétariat → acheminement des résultats à l’accueil → remise du rapport au patient. Toutefois, ce service a un secrétariat qui dispose d’un ordinateur et une imprimante. En 2017, 67 669 examens de biologie ont été réalisés dans le laboratoire principal et le laboratoire des...
urgences et 513 au laboratoire d’anatomopathologie. Par ailleurs, 11 696 poches de sang ont été prélevées, 6 989 ont été servies et 4 561 ont été détruites.

5.4.1.3.7.3. Le Service de Pharmacie

Ce service a à sa tête un chef de service (pharmacienne). Il comporte trois points de distribution de médicaments répartis au sein de l’hôpital. En 2017, 213 370 ordonnances ont été servies.

5.4.1.3.7.4. Système d’information, internet et parc informatique de l’HCY

La cellule informatique de l’HCY fait partie des sept services que comprend l’unité administrative et financière. Placée sous l’autorité d’un chef de cellule et assisté d’un membre, la cellule informatique est chargée (selon les textes) : du suivi de la mise en œuvre de la politique informatique de l’hôpital ; du développement, de l’exploitation et de la maintenance des applications informatiques de l’hôpital ; de la mise en place des banques de données relatives aux différents systèmes informatiques de l’hôpital ; de la sécurisation, de la disponibilité et de l’intégrité du système d’information de l’hôpital en liaison avec les services chargés des informations sanitaires ; de la formation du personnel ; de la maintenance des équipements informatiques.

Actuellement, l’HCY a un parc informatique constitué:
- D’une centaine d’ordinateurs
- De 3 serveurs (2 sont des ordinateurs dédiés et le dernier est un don de l’ONG Suisse dénommée RAFT - Réseau en Afrique Francophone pour la Télémédecine). Chacun de ces serveurs héberge une application :
 - 1 serveur pour l’application qui gère la facturation des actes (hospitalisations, certificats médicaux, actes chirurgicaux)
 - 1 serveur pour l’application qui gère les caisses de la pharmacie et le stock des médicaments.
 - 1 serveur pour l’application qui gère les opérations comptables

S’agissant d’Internet, il existe une arrivée par fibre optique dont la bande passante théorique est de 1024Ko/1024Ko. Cette connexion est par la suite redistribuée dans les pavillons de l’hôpital de manière hertzienne (1 émetteur, 4 récepteurs). A l’intérieur de chaque pavillon, la redistribution est faite le plus souvent par câblage filaire. Selon le chef de la cellule informatique, environ 50% des services sont couverts par Internet. Toutefois, cette connexion à Internet concerne très souvent les bureaux des chefs de service et les secrétariats.

A ce jour l’HCY ne dispose pas d’un Système d’Information Hospitalier (SIH) informatisé. La plupart des services connaissent les problèmes de gestion de l’information clinique inhérents au support papier (figure 38), notamment ceux liés à l’incomplétude de l’information. Les causes sont multiples à savoir :
- Les omissions des professionnels lors du remplissage des dossiers. En effet, certaines informations requises dans le dossier médical, ne sont pas remplies par ceux-ci. Bien plus, certaines, informations dites « sociales » (état civil, etc.) sont négligées et pas reportées dans le dossier médical papier.
- La perte ou la non réutilisation des informations au cours des différents processus cliniques. Cela est dû d’une part, à la perte ou à la « non réutilisation » des dossiers médicaux entiers de malades ayant précédemment été hospitalisés ou à la perte de certaines feuilles dudit dossier.
- L’existence d’une très grande variabilité dans le remplissage des dossiers médicaux papiers. Il n’existe pas de formulaires structurés encore moins de vocabulaire standard pour la documentation des évènements cliniques (par exemple : les diagnostics).
Pour y remédier, en accord avec les responsables de l'Hôpital Central de Yaoundé, un projet financé par les Hôpitaux Universitaires de Genève a été mis en place en 2012. Le projet dénommé MatLook avait pour objectif d'améliorer la gestion de l'information clinique à la maternité à l'Hôpital Central de Yaoundé à travers l'implémentation et le déploiement d’un Système d’ Information Clinique. Comme résultats, un système d'information clinique a été implémenté en 2013 à la maternité de l'HCY. Ce système dans sa première phase permettait aux cliniciens de documenter les activités cliniques liées aux consultations (ambulatoires, prénatales) ainsi que les activités de facturation y afférentes. En 6 mois, nous avons enregistré : 113 utilisateurs, 1278 dossiers patients et 200 consultations ont été documentées. Malheureusement, un an après le manque de leadership local et de volonté institutionnelle n’a pas permis que ce projet évolue comme prévu.

5.4.1.3.7.5. La cellule des statistiques de l’HCY

A l’Hôpital Central de Yaoundé, il existe une cellule dédiée aux activités statistiques de l’hôpital. Cette cellule est constituée de 2 personnes. L’une est chargée de réaliser des statistiques pour les activités administratives hospitalières tandis que l’autre est chargée de la réalisation des statistiques pour les activités cliniques. Dans le domaine clinique, la cellule concernée réalise trois types d’activités : les activités statistiques classiques, la surveillance épidémiologique et le suivi de la prise en charge du paludisme à l’HCY.

S’agissant des activités statistiques classiques, elles concernent les activités médicales, chirurgicales et la pharmacie. Pour réaliser ces statistiques, le responsable de cette cellule recueille les données à partir de trois sources d’information à savoir : les données fournies par les différents services lors des réunions hebdomadaires de direction, les fiches de collecte de données des différents services (mensuellement) et des collectes trimestrielles effectuées directement dans les services (elle se fait de manière périodique selon les besoins).

S’agissant de la surveillance épidémiologique au sein de l’HCY, elle se fait de manière hebdomadaire et concerne les « services d’entrée » des patients à savoir : le service des urgences médicales, le service des consultations externes, le service d’infectiologie, l’unité de Gynéco-Obstétrique, l’Hôpital du Jour (prise en charge des personnes vivant avec le VIH) et enfin le service d’Hématologie (car les patients drépanocytaires y ont accès directement sans passer par le circuit habituel des malades). Ces services disposent d’une liste de maladies à déclaration obligatoire délivrée par le ministère de la santé publique. Lorsqu’un cas est détecté, les services compétents sont notifiés (par téléphone).
Enfin, il y a l’activité de suivi de la prise en charge du paludisme à l’HCY. Elle se déroule dans 4 services : le service des urgences médicales, le service des consultations externes, l’unité de gynécologie-obstétrique et la pharmacie.

Globalement, la plupart des rapports effectués sont fournis au ministère de la santé, à la direction de l’HCY, au comité de Gestion de l’HCY, au conseiller médical et à la surveillance générale. Les retours d’information sont effectués à l’endroit des chefs d’unité. Toutefois, les fournisseurs de soins et producteurs de cette information se plaignent de ne recevoir ces retours d’informations.

5.4.2. Eligibilité de l’itinéraire clinique sur la prise en charge de la pré-éclampsie sévère à l’HCY

Sur la base des données épidémiologiques sur la maladie, de l’observation des pratiques à la maternité de l’HCY, des opportunités du terrain et en s’appuyant sur un outil développé par les Hôpitaux Universitaires de Genève, nous avons mis en exergue les critères qui ont prévalu à notre choix de développer un itinéraire clinique pour la prise en charge de la pré-éclampsie sévère à la maternité.

5.4.2.1. La pathologie est-elle clairement définie ?

OUI. La définition de la pré-éclampsie sévère (PES) a été établie de manière claire par la plupart des sociétés savantes (ACOG, CNGOF, OMS, RCOG) avec des critères de définition bien précis. Ainsi, on parle de pré-éclampsie sévère, lorsque la patiente présente au moins un des signes de sévérité suivants:
- Une TAS ≥ 160 mmHg et/ou une TAD ≥ 110 mmHg,
- Une protéinurie > 5g/24h (ou ≥ 3+ à la bandelette),
- Des signes fonctionnels liés à l’HTA (céphalées persistantes, troubles visuels, acouphènes)
- Une hyper-réflectivité ostéo-tendineuse
- Des signes digestifs (barre épigastrique, douleur de l’hypochondre droit, nausées, vomissements),
- Une diurèse < 500 ml/24h,
- Un syndrome HELLP associant une hémolyse (hémoglobine ≤ 9g/dl, bilirubinémie élevée), une cytolysè hépatique (ASAT > 3 fois la normale) et une thrombopénie (plaquettes sanguines < 100.000 / mm3).

5.4.2.2. La population (ou sous-groupes) traitée est-elle homogène ?

OUI. Malgré la grande variété des manifestations (neurologiques, digestives, biologiques, rénales, etc.) de la pré-éclampsie sévère, le processus pathologique principal est clairement défini avec des critères spécifiques. Dans le cadre de cet itinéraire clinique, une période gestationnelle a été identifiée (de la 29ème à la 33ème semaine d’aménorrhée) pour permettre que la population soit le plus homogène possible. En effet, c’est au cours de cette période de gestation que la plupart des pré-éclampsies sévères sont découvertes dans notre contexte. En plus, cette période correspond également à celle où le fœtus est viable mais pas encore mature. Par ailleurs, du point de vue socio-démographique on a une certaine homogénéité car le sous-groupe des femmes traitées présente très souvent des caractéristiques (jeunes, nullipares, niveau socio-économique bas, etc.).

5.4.2.3. La prise en charge est-elle ‘standardisable’ ?

OUI, elle est ‘standardisable’. Certaines approches de prise en charge de la pré-éclampsie sévère sont universellement admises. Ainsi, l’usage de sulfate de magnésium a été démontré comme efficace dans la gestion des manifestations et la prévention des complications de la pré-éclampsie sévère selon des protocoles bien standardisés et plusieurs études ont été menées dans les pays en développement avec des résultats probants [280]. D’ailleurs, ce produit figure dans la liste type des...
médicaments essentiels de l’OMS. Il est généralement disponible en officine dans la plupart des villes africaines et son conditionnement et stockage n’est pas très contraignant. D’autre part, ces études évaluent l’efficacité de la prise en charge de la pré-éclampsie sévère en se basant sur des réponses objectives comme la baisse quantifiable de la tension artérielle et la réduction chiffrée de la protéinurie. Ces réponses objectives peuvent être considérées comme des critères de jugement et d’évaluation de l’effet du traitement.

5.4.2.4. Cette prise en charge peut-elle être séquencée temporellement et la délimitation en phases est-elle possible ?

OUI. La prise en charge de la PES obéit à des protocoles bien définis qui peuvent être étalés sur une période de temps donnée. Ainsi, elle procède de deux phases:
- Une phase de stabilisation (H0 à H24) qui permet de stabiliser l’état de la patiente, d’évaluer l’efficacité et la tolérance materno-foetale du traitement tout en prévenant l’évolution vers les formes compliquées ;
- Une phase de maintien (J2 à J5) au cours de laquelle le traitement va permettre la régression progressive des symptômes, l’amélioration des paramètres cliniques et biologiques de la patiente et du fœtus, jusqu’à ce qu’une prise en charge ambulatoire soit possible.

5.4.2.5. Existe-t-il des interventions clés identifiables ?

OUI. Certaines actions sont déterminantes dans l’issue de la PES. Ainsi, en phase de stabilisation, la pose de voies veineuses et l’administration de sulfate de magnésium sont essentielles dans la gestion de la PES. Le protocole de Pritchard, recommandé par l’OMS, est le plus répandu [281]. En phase d’entretien, l’administration d’antihypertenseurs et la mesure de la diurèse et de la protéinurie de 24h permettent d’améliorer l’évolution de la maladie et d’évaluer son retentissement général y compris rénal.

5.4.2.6. L’état actuel de la prise en charge et les possibilités d’amélioration

5.4.2.6.1. Quel est le nombre de patients concernés ?

5.4.2.6.2. Existe-il une variabilité dans la prise en charge actuelle (durée de séjours, coûts) ?

OUI. La prise en charge de la PES telle qu’elle est actuellement pratiquée à la maternité principale de l’HCY, dépend du médecin traitant, de son expérience et de sa formation initiale. Les gynécologues-obstétriciens en fonction à la maternité principale de l’HCY étant issus d’écoles différentes, cette différence induit une variabilité dans la prise en charge de la maladie. De plus, les ressources financières de la patiente peuvent influencer l’attitude thérapeutique, notamment en ce qui concerne la possibilité de poursuivre le traitement en hospitalisation ou en ambulatoire et partant de là, sur la durée de séjour.

5.4.2.6.3. Quel est le bénéfice clinique potentiel attendu pour le patient ?

Les bénéfices cliniques attendus pour le patient sont :
- Une amélioration de la prise en charge et du suivi
- Une meilleure prévention des complications de la maladie
- Une réduction de la morbidité et de la mortalité liées à cette affection

Par ailleurs, outre le bénéfice clinique, les bénéfices peuvent être :

- Procéduraux et organisationnels : par une réduction de la variabilité des processus de prise en charge et de soins, la mise sur pied d’une collaboration entre différentes équipes, etc.

- Financiers : par une utilisation rationnelle des ressources humaines et matérielles de l’hôpital et par une optimisation des dépenses du patient et sa famille qui est souvent issue de milieux socio-économiques défavorisés.

5.4.2.6.4. La pluridisciplinarité est-elle nécessaire à la prise en charge des patients concernés ?

OUI. La prise en charge de la patiente fait appel aux obstétriciens, aux réanimateurs, aux néonatologues et aux internistes (cardiologues, néphrologues). Dans notre contexte cependant, les patientes ne sont pas toujours suivies dans des services de soins intensifs par manque de moyens et d’infrastructures appropriées, et les internistes ne sont en général pas associés à la prise en charge durant la grossesse.

5.4.2.6.5. Existe-t-il des recommandations de bonnes pratiques ?

A l’échelle internationale, l’OMS a mis sur pied des recommandations pour la prise en charge de la pré-éclampsie et de l’éclampsie [283]. Il existe également des recommandations qui sont faites par différentes sociétés savantes à l’instar du Collège National des Gynécologues et Obstétriciens Français (CNGOF) [274]. Toutefois, à notre connaissance, il n’existe pas à ce jour des recommandations spécifiques de bonnes pratiques pour la prise en charge de la PES au Cameroun.

5.4.2.6.6. Les équipes : est-il possible d’obtenir un consensus professionnel et une motivation des professionnels des différentes filières et départements, à travailler ensemble ?

OUI. Il est évident que la multidisciplinarité de la prise en charge de cette pathologie grave exige une collaboration entre les différents services. De plus, étant donné l’ampleur du problème que représente la PES dans notre milieu, un consensus pourrait être obtenu.

5.4.2.7. Conclusion

La problématique liée à la pré-éclampsie et à sa prise en charge dans notre contexte (prévalence élevée en Afrique noire et au Cameroun, taux de mortalité élevé, variabilité des pratiques, insuffisance d’infrastructures et des ressources matérielles) couplée à la possibilité de standardiser cette prise en charge à travers des interventions clefs et à des opportunités de terrain (projet MatLook : implémentation d’un système d’information clinique à la maternité de l’HCY) expliquent le choix que nous avons fait de développer un itinéraire clinique pour la prise en charge de la PES à la maternité principale de l’HCY.

5.4.3. Développement et validation d’un l’itinéraire clinique pour la prise en charge de la pré-éclampsie sévère non compliquée survenant entre la 29e et la 33e semaine d’aménorrhée à l’HCY

5.4.3.1. Développement de l’itinéraire clinique

Dans l’optique d’améliorer la prise en charge des patientes ayant une pré-éclampsie sévère à l’HCY, il a été convenu de développer un itinéraire clinique. Un comité formé de 3 médecins, 2 gynécologues dont un travaillant à l’HCY et un spécialiste en informatique médicale a été mis en place.

En s’appuyant, sur l’expérience de ces professionnels de la santé et leur connaissance du terrain, sur les données issues de la littérature et les recommandations en matière d’itinéraire clinique et de prise en charge de la pré-éclampsie et sur la base d’échanges d’expériences avec les acteurs ayant contribué au développement d’itinéraires cliniques aux Hôpitaux Universitaires de Genève, une première version de cet itinéraire clinique a été proposé.
Cet itinéraire clinique a permis d'identifier les différentes interventions à réaliser pour une prise en charge optimale, multidisciplinaire et coordonnée des patients ayant une pré-éclampsie sévère à l'HCY. Développé sous forme d'une matrice à deux axes, cet itinéraire clinique comprend : en colonnes les différentes périodes ou phases de soins (jour 1, jour 2, etc.) et en lignes, les différentes activités cliniques (interventions) à réaliser (évaluation clinique, examens paracliniques, traitement médicamenteux et non-médicamenteux, etc.). De plus, cet itinéraire clinique contient les différentes contraintes qui associent les interventions entre elles (par exemple : réaliser une intervention B 24 heures après l'intervention A) ainsi que les objectifs cliniques (outcomes) associés à chaque phase de soins.

5.4.3.2. Validation de l’itinéraire clinique: approche basée sur le consensus

5.4.3.2.1. Objectifs

Les objectifs assignés à ce processus de validation étaient : d’améliorer le contenu de l’itinéraire clinique pour la prise en charge à la maternité de l’HCY des patientes ayant une pré-éclampsie sévère entre la 29e et la 33e semaine d’aménorrhée par un comité d’experts; d’établir un consensus et de valider le contenu de cet itinéraire clinique par ce comité d’expert ; et enfin, d’explorer avec eux la faisabilité de la mise en place de cet itinéraire clinique à la maternité de l’HCY.

5.4.3.2.2. Choix des experts

Dix (10) participants (tous des professionnels de la santé) l’HCY) ayant des profils différents et intervenants dans le processus de décision et/ou d’exécution des soins dans l’unité de gynécologie obstétrique de l’HCY ont été choisis. Il s’agit de :
- 3 gynécologues
- 1 anesthésiste-réanimateur
- 2 résidents en gynécologie respectivement en 2e et 3e année de spécialisation
- 1 résident d’anesthésie-réanimation en 2e année de spécialisation
- 2 infirmières
- 1 étudiant en médecine en 6e année d’études médicales

5.4.3.2.3. Méthodologie

La méthode Delphi [284] à trois (3) tours été utilisée pour aboutir à un consensus et valider cet itinéraire clinique sur la prise en charge à la maternité de l’HCY des patientes ayant une pré-éclampsie sévère entre la 29e et la 33e semaine d’aménorrhée. Les deux premiers tours correspondaient à une analyse de la version de l’itinéraire clinique qui était soumise et une réponse au questionnaire qui était fournie. Ainsi, chaque membre appartenant au comité d’expert devait analyser la version de l’itinéraire clinique qui était soumise à chaque tour et répondre à un questionnaire. Les réponses de tous les participants étaient compilées après respectivement le premier et le deuxième tour et présentées aux tours suivants respectivement (soit la présentation des résultats issus du premier questionnaire au deuxième tour, soit la présentation des résultats issus du deuxième questionnnaire au troisième tour).

5.4.3.2.3.1. Méthode Delphi : premier tour

Après avoir produit la première version de l’itinéraire clinique et après leur avoir remis une version papier de celui-ci, les membres du comité d’expert étaient invités à répondre à un premier questionnaire. Les objectifs de ce premier questionnaire étaient: d’illustrer auprès de ces membres du comité, la proposition de d’itinéraire clinique pour la prise en charge de la pré-éclampsie sévère à la maternité de l’HCY, d’évaluer leur perception (avantages, inconvénients) à propos de cet itinéraire clinique, et de recueillir leurs commentaires et propositions pour l’amélioration de cet itinéraire. Les principales observations sont les suivantes :
- 6/10 (60%) participants étaient d’accord sur la pertinence et l’utilité d’un itinéraire clinique pour l’amélioration de la qualité et l’efficience des soins dans des contextes à ressources limitées tandis que 2/10 (20%) participants ne l’étaient pas
- Les avantages liés à cet itinéraire clinique et identifiés par les participants dans notre contexte étaient les suivants:
 o Harmonise le circuit des patientes
- Permet une meilleure prise en charge et un meilleur suivi des patientes (évite des manquements dans la prise en charge, permet des actions claires et bien définies)
- Permet une détection précoce des signes d’alarme/complications
- Favorise une meilleure appropriation des soins par le malade
- Améliore la pratique médicale et favorise de meilleures performances chez les professionnels de la santé.

- Les inconvénients ou les contraintes liés à cet itinéraire clinique et identifiés par les participants dans notre contexte étaient les suivants:
 - Nécessité d’avoir du personnel en quantité et en qualité (bien formé) pour sa mise en œuvre
 - Besoin quasi-constant du personnel tout au long de l’itinéraire clinique
 - La faiblesse ou l’insuffisance des équipements et autres ressources matérielles (certains bilans biologiques ne sont pas disponibles ou accessibles en temps opportun)
 - L’indisponibilité des moyens financiers et des médicaments pour des certains patients

- Les activités proposées par les participants comme étant celles à intégrer dans l’itinéraire clinique pour l’améliorer étaient :
 - Le nursing (limiter les visites et laver la patiente)
 - Réaliser un fond d’œil (à faire au moins une fois pour évaluer le retentissement).

- Les activités proposées par les participants comme étant celles à supprimer de l’itinéraire clinique pour l’améliorer étaient :
 - Réaliser le score biophysique de Manning/24h
 - Le fait que les médecins passent toutes les 2h vérifier que le traitement est administré
 - Faire un contrôle régulier de la perméabilité veineuse (fœtus)
 - Réaliser un Doppler pour évaluer le rythme cardio-fœtal (fœtus).

- Dans le cadre du traitement médicamenteux en phase de stabilisation, 6/10 (60%) participants préféreraient le sulfate de magnésium pour la prise en charge de la pré-éclampsie sévère contre 4/10 (40%) participants qui préféreraient la Nicardipine (Loxen) en intraveineux. Les raisons principales qui justifiaient le choix du sulfate de magnésium étaient : son efficacité, son accessibilité, sa «meilleure indication» et son caractère approprié au contexte.

- 10/10 (100%) des participants ont validé les objectifs cliniques (outcomes) qui ont été proposés pour chaque phase de cet itinéraire clinique.

5.4.3.2.3.2. Méthode Delphi : deuxième tour

Les principaux commentaires issus du premier tour ont permis d’améliorer le contenu de l’itinéraire clinique et de proposer une nouvelle version. Cet itinéraire clinique amélioré a été soumis à nouveau à ce comité d’expert en vue de recueillir leurs commentaires. Les objectifs de ce tour étaient : de fournir aux membres du comité les résultats de l’évaluation issue du premier questionnaire, d’évaluer la pertinence des commentaires et de d’intégrer de nouvelles propositions. Les principales observations sont les suivantes :

- 7/8 (87,5%) participants étaient d’accord sur les activités proposées au cours du premier questionnaire pour leur intégration dans l’itinéraire clinique. 1/8 (12,5%) participant n’était pas d’accord sur la proposition «isoler la patiente » et a proposé plutôt de « limiter les visiteurs ».

- 6/8 (75%) participants étaient d’accord sur les activités à supprimer à l’issue du premier questionnaire. 1/8 (12,5%) participant n’était pas d’accord de supprimer la proposition « les médecins doivent passer toutes les 2h vérifier que le traitement est administré » et propose de maintenir cette proposition car selon elle, il « faudrait se rassurer que les soins sont effectivement administrés ».

- Dans le cadre du traitement médicamenteux, 7/8 (87,5%) participants préféraient le sulfate de magnésium pour la prise en charge aigue de la pré-éclampsie sévère.

- Pour des raisons économiques et d’ordre pratique, il a été proposé par un participant de préférer la forme per os de la Nicardipine pour le traitement d’entretien qui débute dès le 2e jour de traitement à savoir (Nicardipine 20 mg : 1cp x 3 ou 4/ 24 h). La forme
intraveineuse devant être administrée en bolus si et seulement si on observe un pic de tension artérielle.

- 5/8 (62,5%) participants étaient d'accord sur les objectifs (outcomes) cliniques qui ont été proposés pour chaque phase de l'itinéraire clinique et confirmé par les participants lors du premier questionnaire.
- Il a été proposé d'utiliser le Sérum Salé 9/1000 (30-40 cc/kg/24h) au lieu du Ringer Lactate (1500cc/24h) pour cause de tonicité par rapport l’osmolarité plasmatique.

5.4.3.2.3.3. Méthode Delphi : Troisième tour

Le troisième tour quant à lui a permis de présenter la version finale de l’itinéraire clinique aux membres de ce comité. L’objectif était de valider définitivement le contenu de cet itinéraire clinique et obtenir un consensus.

5.4.4. Résultats : Elaboration d’un itinéraire clinique

Ces différentes étapes ont permis d’aboutir à l’élaboration d’un itinéraire clinique pour la prise en charge des patientes souffrant de pré-éclampsie sévère à la maternité de l'Hôpital Central de Yaoundé (tableau 1), lequel a été approuvé de manière consensuelle par les différents professionnels de la santé impliqués dans lesdits soins à l’Hôpital Central de Yaoundé. Basé sur une matrice, cet itinéraire clinique contient : les interventions à réaliser pendant la durée de séjour (5 jours); la périodicité de ces interventions ainsi que les contraintes temporelles qui existent entre elles et les résultats (outcomes) attendus.
<table>
<thead>
<tr>
<th>Tableau 1 : Itinéraire clinique pour la prise en charge antépartale de la pré-éclampsie sévère (PES) non compliquée à la Maternité Principale de l’HCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maladie</td>
</tr>
<tr>
<td>Patiente</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Durée de séjour</td>
</tr>
<tr>
<td>Journées de soins</td>
</tr>
<tr>
<td>Unité/service</td>
</tr>
<tr>
<td>Activités</td>
</tr>
<tr>
<td>Evaluation clinique/ Surveillance</td>
</tr>
<tr>
<td>Mère :</td>
</tr>
<tr>
<td>Fœtus :</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Examens/tests paracliniques</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Traitements non médicamenteux

<table>
<thead>
<tr>
<th>Traitements non médicamenteux</th>
<th>Nursing</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Decubitus latéral gauche (DLG)</td>
<td></td>
</tr>
<tr>
<td>- Pose d’une voie veineuse (VV) périphérique</td>
<td></td>
</tr>
<tr>
<td>- Sonde urinaire (SU) à demeure</td>
<td></td>
</tr>
<tr>
<td>- S Salé 9/60 (30-40 cc/kg en 24h)</td>
<td></td>
</tr>
<tr>
<td>- Etablir une fiche de surveillance</td>
<td></td>
</tr>
<tr>
<td>- Limiter les apports hydriques per os</td>
<td></td>
</tr>
<tr>
<td>- Maintenir un environnement calme</td>
<td></td>
</tr>
<tr>
<td>- Limiter les visites</td>
<td></td>
</tr>
<tr>
<td>- Limiter les apports hydriques per os</td>
<td></td>
</tr>
<tr>
<td>- Maintenir un environnement calme</td>
<td></td>
</tr>
<tr>
<td>- Limiter les visites</td>
<td></td>
</tr>
<tr>
<td>- S Salé 9/60 (30-40 cc/kg/24h)</td>
<td></td>
</tr>
<tr>
<td>- Maintenir un environnement calme</td>
<td></td>
</tr>
<tr>
<td>- Limiter les visites</td>
<td></td>
</tr>
<tr>
<td>- S Salé 9/60 (30-40 cc/kg/24h)</td>
<td></td>
</tr>
<tr>
<td>- Ablation de la veineuse</td>
<td></td>
</tr>
</tbody>
</table>

Traitements médicamenteux

<table>
<thead>
<tr>
<th>Traitements médicamenteux</th>
<th>MgSO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Traitement d’attaque : 4g en IVDL et 5g en IM dans chaque fesse</td>
<td></td>
</tr>
<tr>
<td>- Betaméthasone IV (12mg)</td>
<td></td>
</tr>
<tr>
<td>- MgSO4 selon le protocole : traitement d’entretien suivant : 4g en IM toutes les 4 heures (sans dépasser 24heures)</td>
<td></td>
</tr>
<tr>
<td>- Traitement d’entretien anti HTA : Nicardipine cp 20 mg (per os) : 1cp x 3 ou 4/24h</td>
<td></td>
</tr>
<tr>
<td>- Ou Nicardipine cp LP. 50mg : 1cpx2/jr</td>
<td></td>
</tr>
<tr>
<td>- Betaméthasone IV (12mg 24heures après la 1ère dose)</td>
<td></td>
</tr>
<tr>
<td>- Traitement d’entretien anti HTA : Nicardipine cp 50mg : 1cpx2/jr</td>
<td></td>
</tr>
<tr>
<td>- Aldomet cp 500 mgx3/jr</td>
<td></td>
</tr>
</tbody>
</table>

Alimentation /Nutrition

<table>
<thead>
<tr>
<th>Alimentation /Nutrition</th>
<th>Hien per os</th>
<th>- Alimentation normo-sodée</th>
</tr>
</thead>
</table>

Consultation spécialisée /expertise

<table>
<thead>
<tr>
<th>Consultation spécialisée /expertise</th>
<th>- Consultation d’anesthésie</th>
<th>- Informer le service de néonatologie (disponibilité d’une couveuse)</th>
<th>- Informer le consultant de garde</th>
<th>- Informer le médecin chef de service</th>
<th>- Alimentation normo-sodée</th>
</tr>
</thead>
</table>

Education/soutien Psycho-social

<table>
<thead>
<tr>
<th>Education/soutien Psycho-social</th>
<th>- Expliquer la maladie, la PEC et l’évolution à la femme</th>
<th>- Soutien psychosocial du conjoint et/ou de la famille</th>
<th>- Expliquer les signes de danger devant justifier une consultation en urgence</th>
<th>- Préparer la patiente pour un accouchement dès 34SA</th>
<th>- Alimentation normo-sodée</th>
</tr>
</thead>
</table>

Contraintes temporelles

<table>
<thead>
<tr>
<th>Contraintes temporelles</th>
<th>Aucune</th>
<th>Ne pas dépasser 24h d’administration du MgSO4</th>
<th>Aucune</th>
<th>Aucune</th>
<th>Aucune</th>
</tr>
</thead>
</table>

Outcomes

<table>
<thead>
<tr>
<th>Mére :</th>
<th>TAS entre 140 et 160 mmHg</th>
<th>Diurèse > 25cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fœtus :</td>
<td>BDCF entre 120 et 160/min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mére :</th>
<th>TAS entre 140 et 160 mmHg</th>
<th>Diurèse > 1000cc/24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fœtus :</td>
<td>BDCF entre 120 et 160/min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mére :</th>
<th>TAS < 140 mmhg</th>
<th>Diurèse > 1000cc/24h</th>
<th>Protéinurie < 0,3g/24h ou BU < 1+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fœtus :</td>
<td>BDCF entre 120 et 160/min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mére :</th>
<th>TAS < 140 mmhg</th>
<th>Diurèse > 1000cc/24h</th>
<th>Protéinurie < 0,3g/24h ou BU < 1+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fœtus :</td>
<td>BDCF entre 120 et 160/min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mére :</th>
<th>TAS < 140 mmhg</th>
<th>Diurèse > 1000cc/24h</th>
<th>Protéinurie < 0,3g/24h ou BU < 1+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fœtus :</td>
<td>BDCF entre 120 et 160/min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mére :</th>
<th>TAS < 140 mmhg</th>
<th>Diurèse > 1000cc/24h</th>
<th>Protéinurie < 0,3g/24h ou BU < 1+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fœtus :</td>
<td>BDCF entre 120 et 160/min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.5. Discussion

Bien que les itinéraires cliniques possèdent de nombreux avantages [285], le développement d’un itinéraire clinique constitue un défi important [286–289]. Il s’agit d’un processus complexe qui nécessite beaucoup de ressources (humaines, matérielles, financières, temps) [286–289]. La conception et le développement de l’itinéraire clinique sur la prise en charge de la pré-éclampsie sévère à la maternité de l’HCY de Yaoundé s’est fait en 3 mois environ et a nécessité l’implication d’une quinzaine de personnes ressources. Une étude menée en 2000 a identifié sept objectifs associés à un itinéraire clinique, à savoir: (1) sélectionner les meilleures pratiques ; (2) définir des standards pour la durée attendue de l’hospitalisation, les procédures et l’utilisation des examens complémentaires ; (3) examiner les relations entre les différentes étapes du processus de soins et assurer une meilleure coordination ; (4) donner aux équipes impliquées des objectifs communs et les aider à comprendre chacun leur rôle ; (5) fournir un cadre pour la collecte et l’analyse des données issues du processus de soins de manière à identifier et à comprendre l’origine des s ; (6) diminuer la charge de travail liée à la documentation clinique ; et enfin, (7) améliorer la satisfaction des participants à travers une meilleure éducation [52].

L’atteinte de ces objectifs a permis de développer une approche pour le développement, l’implémentation et l’évaluation d’itinéraire clinique qui repose sur quatre étapes [52]. Ce modèle intègre plusieurs aspects proposés dans une étude précédente [55]. Il s’agit de :

1. L’évaluation et l’analyse de la situation : qui comprend la mise sur pied d’un comité, la mise en place d’une organisation adéquate (rôles, règles, support administratif et financier), l’analyse de la situation (pratiques courantes) et des besoins, la revue de la littérature et enfin, l’éducation des parties prenantes ;
2. La conception : elle consiste à la sélection des cas types pour la phase pilote, la mise en place des équipes, le développement de l’itinéraire, le plan de gestion des variances), la production des documents et le plan de formation des parties prenantes.
3. L’implémentation pilote : elle a pour but de tester afin d’apporter des mesures correctives à l’itinéraire, d’améliorer les documents de l’itinéraire et de vérifier la collecte des données sur les variances.
4. L’implémentation réelle : au cours de celle-ci l’itinéraire clinique est déployé et cette phase nécessite un monitoring permanent afin de coordonner les soins délivrés aux patients, de favoriser une pratique collaborative, de déterminer les tendances et de résoudre les problèmes pouvant entraver le bon fonctionnement de l’itinéraire clinique.

Après le développement de l’itinéraire clinique, son implémentation constitue un des plus gros défis dans ce domaine. Pour augmenter les possibilités d’implémentation de l’itinéraire clinique qui porte sur la prise en charge de la pré-éclampsie sévère à la maternité de l’HCY, les développeurs ont tenu compte non seulement de la littérature scientifique, de leurs expériences personnelles mais aussi de l’insuffisance des ressources à disposition et d’autres contraintes associées au contexte. On sait que certaines barrières peuvent entraver l’implémentation effective d’un itinéraire clinique. Il s’agit : (1) de l’insuffisance des ressources ; (2) du problème de coordination et de coopération entre différentes équipes ou institutions de soins ; (3) des problèmes relatifs aux pratiques professionnelles et organisationnelles ; (4) et le faible niveau d’éducation des patients sur la pathologie concernée [290].

De plus, l’implémentation d’un itinéraire clinique entraîne très souvent des changements profonds sur les processus existants. La réussite de l’implémentation d’un itinéraire clinique peut donc dépendre des facteurs tels que : l’engagement de la direction de l’institution, l’appropriation par les professionnels de la santé, la clarté du concept clinique et son niveau d’ancrage dans l’organisation et enfin, la méthodologie [289] utilisée pour garantir le processus de changement.
Chapitre 6
Représentation d’un itinéraire clinique, des guidelines, des ressources et le contexte et leurs interactions sémantiques en se basant sur l’ontologie ShaRE-CP

6.1. Introduction

Le modèle d’ontologie ShaRE-CP a été développé pour la représentation sémantique des connaissances et des interactions contenues dans les domaines de connaissance que sont les itinéraires cliniques, les guidelines et le contexte dans lequel est déployé tout itinéraire clinique donné. Le cas d’étude que nous allons utiliser pour illustrer l’applicabilité de ce modèle d’ontologie concerne : (i) l’itinéraire clinique développé pour la prise en charge des patientes souffrant de pré-éclampsie sévère à la maternité de l’Hôpital Central de Yaoundé ; (ii) les guidelines de l’Organisation Mondiale de la Santé portant sur la prise en charge de la pré-éclampsie et l’éclampsie et (iii) le contexte (l’Hôpital Central de Yaoundé au Cameroun) considéré pour le déploiement de cet itinéraire clinique. Les individus appartenant à chaque classe ont été créés et associés à d’autres individus ou à des littéraux par des propriétés.

6.2. La syntaxe Turtle

La représentation de ce cas d’étude s’est faite à l’aide de la syntaxe Turtle [291]. Il s’agit d’une représentation (syntaxe) textuelle compacte de graphes RDF (Resource Description Framework) [291] et syntaxe est lisible par l’humain [292]. Cette syntaxe intègre plusieurs aspects :

- L’expression des triplets simples : séquence (sujet, prédicat, objet) de termes séparés par un espace et terminé par un point (‘.’)
- L’expression d’une liste de prédicats : un même sujet est référencé par une série de prédicats et d’objets en utilisant le point-virgule (‘;’).
- L’expression d’une liste d’objets : dans ce cas plusieurs objets sont répétés avec un même sujet et un même prédicat en utilisant la virgule (‘,’).
- L’expression des littéraux RDF (chaines de caractères, nombres, dates)
- L’expression des nœuds blancs (anonymes) – utilisation du préfixe ‘:_’ suivi d’un nom quelconque - et des nœuds blancs non labélisés et imbriqués.
- L’expression des collections

6.3. Représentation sémantique de l’itinéraire clinique pour la prise en charge des patientes souffrant de pré-éclampsie sévère à la maternité de l’Hôpital Central de Yaoundé

Les individus correspondants aux différentes classes ont été créés. Il s’agit principalement des classes : cp:Clinical_Pathway, cp:Expected_LOS, cp:Intervention, cp:Clinical_Process, cp:Outcomes, cp:Care_period, etc. Les relations sémantiques entre ces individus entre eux ou avec des littéraux s’est faite à travers des propriétés.

6.3.1. Relations sémantiques des individus de la classe cp:Clinical_Pathway

La classe cp:Clinical_Pathway contient un individu qui est associé aux individus des classes cp:Expected_LOS, cp:Clinical_Condition, cp:Outcomes, cp:Intervention par des relations sémantiques spécifiques. S’agissant de l’itinéraire clinique pour la prise en charge de la pré-éclampsie sévère à l’HCY et à titre d’exemple (figure 39), l’individu sharecp:spe_cp (severe pre-éclampsia clinical pathway) de la classe cp:Clinical_Pathway, est associé respectivement : à l’individu sharecp:spe_expected_los (durée de séjour prévue des soins de la pré-éclampsie sévère) de la classe cp:Expected_LOS par la propriété cp:sets ; à l’individu sharecp:spe_management (prise en charge dela pré-éclampsie sévère) de la classe cp:Disease (sous-classe de la classe cp:Clinical_Condition) par la propriété cp:designated-for ; aux individus sharecp:administer_drugs1_day1_h0_h1_spe (administrer les médicaments dans la
6.3.2. Relations sémantiques des individus de la classe cp:Intervention
Les individus de la classe cp:Intervention exécutent des processus cliniques à un moment donné et permettent d’atteindre des objectifs attendus pour une période donnée. Ainsi, l’individu sharecp:administer_drugs1_day1_h0_h1_spe (administrer les médicaments entre la première heure et la 24e heure du premier jour de prise en charge) appartient à la classe cp:Intervention par la propriété sharecp:has-intervention et enfin, à l’individu sharecp:spe_day1_h0_h24_outcome (résultats attendus ou objectifs à atteindre au cours du premier jour de prise en charge pour la pré-éclampsie sévère) de la classe cp:Outcome par la propriété sharecp:has-outcome.

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>

sharecp:spe_cp rdf:type cp:Clinical_Pathway ;
 cp:sets sharecp:spe_expected_los ;
 cp:designed-for sharecp:spe_management ;
 cp:has-intervention sharecp:administer_drugs1_day1_h0_h1_spe ,
 sharecp:administer_drugs1_day1_h1_h24_spe ;
 cp:has-outcome sharecp:spe_day1_h0_h24_outcome .

Figure 39. Relations sémantiques existant entre un individu de la classe cp:Clinical_Pathway et d’autres individus

sharecp:assess_digestive_symptoms_signs_day1_a_h0_h1_spe rdf:type sharecp:Assessment_Monitoring_SPE ;
 cp:performs sharecp:assess_digestive_symptoms_signs1a ;
 cp:reaches sharecp:spe_day1_h0_h1_outcome .

Figure 40. Relations sémantiques existant entre un individu de la classe cp:Intervention et d’autres individus
6.3.3. Relations sémantiques des individus de la classe cp:intervention et de la classe cp:Clinical_Process

Par exemple, pour le cas d’un processus clinique atomique, l’individu sharecp:perform_abdomino_pelvic_ultrasound_day1_h0_h1_spe (exécuter un examen d’échographie abdomino-pelvienne dans le cadre de l’itinéraire clinique de la pré-éclampsie) de la classe cp:Intervention exécute l’individu sharecp:perform_abdomino_pelvic_ultrasound (réaliser de manière générique une échographie abdomino-pelvienne) qui est un processus clinique de type atomique), figure 41.

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>
@prefix Process: <http://www.daml.org/services/owl-s/1.2/Process.owl>

sharecp:perform_abdomino_pelvic_ultrasound_day1_h0_h1_spe rdf:type sharecp:Diagnostic_Examination_SPE ;

Figure 41. Relation sémantique entre un individu de la classe cp:Intervention et un individu de la classe cp:Clinical_Process de type atomique

Dans le cas d’un processus clinique composite, l’individu sharecp:assess_digestive_symptoms_signs_day1_a_h0_h1_spe (évaluation des symptômes et signes digestifs dans le cadre de l’itinéraire clinique pour la prise en charge de la pré-éclampsie à l’Hôpital Central de Yaoundé) qui est un individu d’une sous-classe de la classe cp:Intervention de type évaluation et monitoring, exécute un individu sharecp:assess_digestive_symptoms_signs1a (réaliser de manière générique une évaluation des symptômes et signes digestifs) qui est un processus clinique de type composite (figure 42).

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>
@prefix Process: <http://www.daml.org/services/owl-s/1.2/Process.owl>

sharecp:assess_digestive_symptoms_signs_day1_a_h0_h1_spe rdf:type sharecp:Assessment_Monitoring_SPE ;
 cp:performs sharecp:sharecp:assess_digestive_symptoms_signs1a .

Figure 42. Relation sémantique entre un individu de la classe cp:Intervention et un individu de la classe cp:Clinical_Process de type composite
En tant que processus clinique composite, l’individu sharecp:assess_digestive_symptoms_signs1a est composé lui-même de plusieurs individus qui sont des processus cliniques de type atomique et qui s’exécutent sans ordre particulier à savoir : sharecp:assess_nausea, sharecp:assess_vomiting et sharecp:assess_abdominal_pains (figure 43).

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>
@prefix Process:<http://www.daml.org/services/owl-s/1.2/Process.owl>
@prefix ObjectList: <http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl>

sharecp:assess_digestive_symptoms_signs1a_controlconstruct_any-order rdf:type Process:Any-Order .
sharecp:assess_digestive_symptoms_signs1a_controlconstructbag_1 rdf:type Process:ControlConstructBag .
sharecp:assess_digestive_symptoms_signs1a_controlconstructbag_2 rdf:type Process:ControlConstructBag .
sharecp:assess_digestive_symptoms_signs1a_controlconstructbag_3 rdf:type Process:ControlConstructBag .

sharecp:assess_digestive_symptoms_signs1a Process:composedOf sharecp:assess_digestive_symptoms_signs1a_controlconstruct_any-order .
sharecp:assess_digestive_symptoms_signs1a_controlconstruct_any-order Process:components sharecp:assess_digestive_symptoms_signs1a_controlconstructbag_1 .
sharecp:assess_digestive_symptoms_signs1a_controlconstructbag_1 ObjectList:first sharecp:assess_nausea ; ObjectList:rest sharecp:assess_digestive_symptoms_signs1a_controlconstructbag_2 .
sharecp:assess_digestive_symptoms_signs1a_controlconstructbag_2 ObjectList:first sharecp:assess_vomiting ; ObjectList:rest sharecp:assess_digestive_symptoms_signs1a_controlconstructbag_3 .
sharecp:assess_digestive_symptoms_signs1a_controlconstructbag_3 ObjectList:first sharecp:assess_abdominal_pains ;

Figure 43. Relation sémantique entre un individu de la classe cp:Clinical_Process de type composite et les individus de type atomique
Dans le cadre de l'exécution d'un itinéraire clinique, certaines interventions peuvent exécuter des processus cliniques (atomiques ou composites) de manière répétitive. Par exemple, au cours de la période h1-h24, il est demandé d'évaluer le rythme cardiaque du fœtus (processus clinique atomique) toutes les 8h (figure 44) et d'évaluer les signes digestifs chez la mère (processus clinique composite) toutes les 4h (figure 45).

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>
@prefix Process:<http://www.daml.org/services/owl-s/1.2/Process.owl>

sharecp:measure_fetal_vital_signs_day1_b_h1_h24_spe rdf:type sharecp:Assessment_Monitoring_SPE ;
 cp:performs sharecp:measure_fetal_vital_signs1b .
sharecp:measure_fetal_vital_signs1b rdf:type Process:CompositeProcess ,
 cp:Assessment_Monitoring ;
 Process:composedOf sharecp:measure_fetal_vital_signs1b_every8h .
sharecp:measure_fetal_vital_signs1b_every8h rdf:type cp:Repeat_Every ;
 cp:repeat-process sharecp:measure_fetal_hr ;
 cp:repeat-period sharecp:hours_8 ;
 cp:number-of-iteration "2"^^rdfs:Literal .

Figure 44. Exécution répétitive d’un processus clinique de type atomique
Figure 45. Exécution répétitive d’un processus clinique de type composite
6.3.4. Relations sémantiques des individus de la classe cp:Outcome

Dans le cadre de cet itinéraire clinique, certains individus (outcomes primaires) de la classe sharecp:Outcome_SPE (sous-classe de la classe cp:Outcome) peuvent être composés d’outcomes secondaires appartenant eux aussi à la classe sharecp:Outcome_SPE via la propriété cp:made-up-of (figure 46). C’est ainsi que l’individu sharecp:spe_day1_h0_h1_outcome est composé de trois individus à savoir : sharecp:spe_day1_h0_h1_outcome1_mother (outcome 1 associé à la mère), sharecp:spe_day1_h0_h1_outcome2_mother (outcome 2 associé à la mère) et sharecp:spe_day1_h0_h1_outcome_fetus (outcome associé au fœtus).

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>

sharecp:spe_day1_h0_h1_outcome rdf:type sharecp:Outcome_SPE ;
 cp:made-up-of sharecp:spe_day1_h0_h1_outcome1_mother ,
 sharecp:spe_day1_h0_h1_outcome2_mother ,
 sharecp:spe_day1_h0_h1_outcome_fetus .

Figure 46. Représentation d’outcomes primaires et secondaires

Par ailleurs, l’atteinte de ces outcomes secondaires est contrôlée par l’atteinte de certaines conditions (individus appartenant à la classe cp:Condition_Outcome) qui y sont associées (figure 46). L’expression de cette condition se fait à travers la propriété cp:has-condition-outcome. Ainsi par exemple, l’individu sharecp:spe_day1_h0_h1_outcome1_mother (outcome 1 associé à la mère) est associé à l’individu sharecp:spe_mother_sytolic_bp_between_140-160_mmhg ; l’individu sharecp:spe_day1_h0_h1_outcome2_mother (outcome 2 associé à la mère) est associé à l’individu sharecp:spe_diuresis_more_than_25_cc et enfin, l’individu sharecp:spe_day1_h0_h1_outcome_fetus (outcome associé au fœtus) quant à lui est associé à l’individu sharecp:spe_fetal-heart-sound_between_120-160_beats_per_min.

De plus, les conditions que représentent ces individus appartenant à la classe cp:Condition_Outcome sont précisées à travers certaines propriétés spécifiques (figure 47).
Figure 47. Représentation des conditions associées aux outcomes
6.3.5. Relations temporelles

L’expression des relations et des contraintes temporelles dans le cadre de cette ontologie s’appuient sur l’ontologie du temps.

6.3.5.1. Moment d’exécution d’une intervention

Dans le cadre de la représentation de l’itinéraire clinique dans cette ontologie, les individus de la classe `cp:Intervention` s’exécutent à des moments (intervalles de temps) bien définis. Par exemple (figure 48), les interventions `sharecp:assess_digestive_symptoms_signs_day1_a_h0_h1_spe` (évaluation des symptômes et signes digestifs) et `sharecp:measure_fetal_vital_signs_day1_b_h1_h24_spe` (mesure des signes vitaux du foetus) qui appartiennent à la classe `sharecp:Assessment_Monitoring_SPE` (qui est une sous-classe de la classe `cp:Intervention`) sont associés respectivement aux individus `sharecp:spe_care_day1_h0_h1` (période correspondant à la première heure du premier jour de prise en charge) et `sharecp:spe_care_day1_h1_h24` (période correspondant aux 23 heures suivant la première heure au cours du premier jour de prise en charge) de la classe `cp:Care_Period` (sous-classe de la classe `cp:Care_Phase`) par la propriété `cp:performed-during`.

```
@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>

sharecp:assess_digestive_symptoms_signs_day1_a_h0_h1_spe rdf:type cp:Assessment_Monitoring_SPE ;
    cp:performed-during sharecp:spe_care_day1_h0_h1 .

sharecp:measure_fetal_vital_signs_day1_b_h1_h24_spe rdf:type sharecp:Assessment_Monitoring_SPE ;
    cp:performed-during sharecp:spe_care_day1_h1_h24 .
```

Figure 48. Représentation du moment d’exécution d’une intervention

6.3.5.2. Moment pour l’atteinte d’objectifs cliniques

Les objectifs cliniques dans un itinéraire clinique sont attendus pour une période précise. Dans cet itinéraire clinique par exemple, l’individu `sharecp:spe_day1_h0_h1_outcome` appartenant à la classe `sharecp:Outcome_SPE` (qui est une sous-classe de la classe `cp:Outcome`) est associé à l’individu `sharecp:spe_care_day1_h0_h1` (première heure du premier jour de prise en charge) de la classe `cp:Care_Phase` par la propriété `cp:expected-for` (figure 49).

```
@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>

sharecp:spe_day1_h0_h1_outcome rdf:type sharecp:Outcome_SPE ;
    cp:expected-for sharecp:spe_care_day1_h0_h1 .
```

Figure 49. Représentation du moment prévu pour l’atteinte d’objectifs cliniques (outcomes)
6.3.5.3. Relations temporelles entre les interventions

6.3.5.3.1. Relations temporelles topologiques entre les interventions

En s’appuyant sur le modèle des relations binaires entre les intervalles développé par Allen, il s’agit des relations temporelles qui existent entre les moments (intervalles de temps) des différentes interventions [225,226]. De plus, la propriété `time:hours` ou `time:days` est associée à ces intervalles de temps pour définir leur durée. L’exemple ci-dessous (figure 50) illustre les relations temporelles qui existent entre les individus `sharecp:spe_care_day1_h0_h1` (période correspondant à la première heure du premier jour de prise en charge) et `sharecp:spe_care_day1_h1_h24` (période correspondant aux 23 heures suivant la première heure au cours du premier jour de prise en charge) en tenant compte de l’individu `sharecp:spe_care_day1` (période correspondant au premier jour de prise en charge).

```prefix
@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>
@prefix time: <http://www.isi.edu/~pan/damltime/time-entry.owl>

sharecp:spe_care_day1_h0_h1 rdf:type sharecp:Care_Period_SPE ;
    time:intervalMeets sharecp:spe_care_day1_h1_h24 ;
    time:intervalStarts sharecp:spe_care_day1 ;
    time:hours 1 .

sharecp:spe_care_day1_h1_h24 rdf:type sharecp:Care_Period_SPE ;
    time:intervalFinishes sharecp:spe_care_day1 ;
    time:hours 23 .
```

Figure 50. Relations temporelles topologiques entre les intervalles de temps associés aux interventions

6.3.5.3.2. Durée (intervalle de temps) entre deux interventions

Dans le cadre de cet itinéraire clinique, nous avons par exemple une contrainte temporelle qui définit l’administration de la Betaméthasone (`sharecp:administer_drugs_day2b_h24_h48_spe`) en intraveineux le 2ème jour de traitement comme devant se faire 24h heures après l’administration de la 1ère dose (`sharecp:administer_drugs_day1_h0_h1_spe`) qui elle est administrée à l’entrée lors de l’administration du sulfate de magnésium selon son protocole. L’expression de cette contrainte temporelle entre ces deux interventions au sein de l’ontologie est illustrée dans la figure 51 ci-dessous.
Figure 51. Représentation de la durée (intervalle de temps) entre deux interventions
6.3.5.4. Relations temporelles de position

Il s’agit des relations qui permettent de positionner les moments (intervalles de temps) relatifs à chaque intervention sur un calendrier grégorien et une horloge de 24h. A titre d’exemple (figure 52), l’individu sharecp:spe_care_day1 (période correspondant au premier jour de prise en charge) est associée à un individu sharecp:spe_care_day1_calendar de la classe cp:care_Calendar, lequel a un début et une fin. Ce type de relations s’applique également aux individus appartenant à la classe cp:Expected_LOS pour positionner la durée de séjour attendue sur un calendrier grégorien et une horloge de 24h.

```owl
@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>
@prefix time: <http://www.isi.edu/~pan/damltime/time-entry.owl>

sharecp:spe_care_day1 rdf:type sharecp:Care_Period_SPE ;
    cp:associated-with-calendar sharecp:spe_care_day1_calendar .

sharecp:spe_care_day1_calendar rdf:type cp:Care_Calendar ;
    time:hasBeginning sharecp:spe_care_day1_beginning ;
    time:hasEnd sharecp:spe_care_day1_end .

sharecp:spe_care_day1_beginning rdf:type cp:Care_Calendar_Limits> ;
    time:day "14"^^xsd:gDay ;
    time:month "8"^^xsd:gMonth ;
    time:year "2018"^^xsd:gYear ;
    time:hour "13"^^xsd:nonNegativeInteger ;
    time:minute "57"^^xsd:nonNegativeInteger .

sharecp:spe_care_day1_end rdf:type cp:Care_Calendar_Limits> ;
    time:day "15"^^xsd:gDay ;
    time:month "8"^^xsd:gMonth ;
    time:year "2018"^^xsd:gYear ;
    time:hour "14"^^xsd:nonNegativeInteger ;
    time:minute "00"^^xsd:nonNegativeInteger .
```

Figure 52. Position d’un intervalle de temps relatif à une intervention sur un calendrier grégorien et une horloge de 24h
6.3.5.5. Moment de survenue d’une variance

Au cours de l’exécution d’un itinéraire clinique, il peut survenir une variance comme par exemple l’impossibilité de réaliser un examen d’échographie abdomino-pelvien. La figure 53 ci-dessous permet d’illustrer la représentation de la survenue d’une telle variance selon le modèle de l’ontologie.

```owl
@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>  
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>  
@prefix time: <http://www.isi.edu/~pan/damltime/time-entry.owl>  

sharecp:inability_to_perform_abdomino_pelvic_ultrasound_exam rdf:type cp:Variance ;  
  cp:detecting-variation-date-time  
sharecp:inability_to_perform_abdomino_pelvic_ultrasound_exam_detecting_time ;  
  cp:occurs-during  
sharecp:perform_abdomino_pelvic_ultrasound_day1_h0_h1_spe .  

sharecp:inability_to_perform_abdomino_pelvic_ultrasound_exam_detecting_time rdf:type cp:Variance_Date_Time ;  
  time:day "15"^^xsd:gDay ;  
  time:month "8"^^xsd:gMonth ;  
  time:year "2018"^^xsd:gYear ;  
  time:hour "13"^^xsd:nonNegativeInteger ;  
  time:minute "45"^^xsd:nonNegativeInteger ;  
  time:second "10"^^xsd:nonNegativeInteger .
```

Figure 53. Relations temporelles des individus de la classe cp:Variance
La classe `gdl:Guidelines` représente la ressource qui contient le recueil de toutes les recommandations ou directives formulées par un organisme donné et qui portent un sujet de santé spécifique. Un individu de cette classe est associé à plusieurs individus qui appartiennent à d'autres classes et qui permettent de le définir. La figure 54 ci-dessous illustre toutes les relations qui lient l'individu `sharecp:who_recommendations_for_the_prevention_and-treatment_of_preeclampsia_and_eclampsia` (recueil recommandations OMS pour la prise en charge de la pré-éclampsie et l’éclampsie) à d'autres individus.

![Figure 54. Relations sémantiques des individus de la classe gdl:Guidelines](image)

De plus, certaines relations supplémentaires permettent de fournir de plus de détails d'informations relatifs à certains individus associés à l'individu `sharecp:who_recommendations_for_the-prevention_and-treatment_of_preeclampsia_and_eclampsia`. Il s'agit: de l'institution d'appartenance des créateurs et des contributeurs par la propriété `gdl:has-institution`; de la citation et de l'URL d'une ressource bibliographique par les propriétés `dcterms:bibliographicCitation`, `gdl:url`; de la description de la méthode d'évaluation des preuves utilisée par la propriété `gdl:has-description`; et enfin, les équivalences qui existent entre les individus de la classe `gdl:Subjects` et ceux de la classe `mesh:MeSH_RDF_ID` par la propriété `SameAs` (figure 55).
6.4.2. Relations sémantiqes des individus de la classe gdl:Guidelines_Recommendations

La classe gdl:Guidelines_Recommendations quant à elle définit les différentes recommandations ou directives relatives à la prévention et à la prise en charge de la pré-éclampsie et de l’éclampsie. Un individu de cette classe est associé à plusieurs individus appartenant à d’autres classes par des propriétés, permettant ainsi de fournir plus de détails à chaque recommandation. La figure 56 ci-dessous illustre toutes les relations qui lient l’individu sharecp:who_R_06_magnesium_sulfate_for_women_having_severe_preeclampsia_to_prevent_eclampsia_compare_to_other_anticonvulsants (le sulfate de magnesium est recommandé pour la prévention de l’éclampsie chez les femmes présentant une pré-éclampsie sévère, de préférence à d’autres anticonvulsivants) à d’autres individus.
6.5. Représentation sémantique des ressources requises pour la prise en charge des patientes souffrant de pré-éclampsie et d’éclampsie à l’Hôpital Central de Yaoundé

L'ontologie des ressources permet de représenter toutes les ressources requises pour la réalisation de l'itinéraire clinique sur la prise en charge des patientes souffrant de pré-éclampsie et d'éclampsie à l'Hôpital Central de Yaoundé. Ces ressources ont été classées en quatre grandes catégories, à savoir: l'équipement et les consommables, les ressources humaines (compétences à disposition), l'infrastructure (fluides, fonctionnalités du lieu, fonctionnalités du système d'information, matériel de système d'information), les médicaments et d'autres ressources (financières, environnementales ou liées à la connaissance).

S'agissant des médicaments, les individus de la classe res:Drug sont associés à des individus qui appartiennent à d'autres classes par des propriétés. Ces propriétés permettent de mieux les décrire notamment à travers sa Dénomination Commune Internationale du médicament, son dosage, sa forme galénique, sa voie d'administration et enfin, sa description générale. L'exemple ci-dessous (figure 57) permet d'illustrer la description d'un médicament (le Sulfate de Magnésium Bichsel 10%) qui est utilisé dans l'itinéraire clinique de prise en charge des patientes souffrant de pré-éclampsie et d'éclampsie à l'Hôpital Central de Yaoundé.

```
@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix gdl: <http://www.semanticweb.org/bediang/ontologies/2015/2/gdl>
@prefix dcterms: <http://dublincore.org/2012/06/14/dcterms>

sharecp:drug_magnesium_sulfate_bichsel_10_per_cent_inj_im rdf:type res:Drug ;
    res:has-drug-galenic-form sharecp:injectable ;
    res:has-drug-administration-route sharecp:intramuscular ;
    res:has-drug-inn sharecp:magnesium_sulfate ;
    res:has-drug-dosage sharecp:magnesium_sulfate_bichsel_10_per_cent ;
```

Figure 57. Relations sémantiques des individus de la classe res:Drug
6.6. Représentation sémantique du contexte dans lequel les patientes souffrant de pré-éclampsie et d’éclampsie sont prises en charge

En tenant compte du contexte dans lequel il est prévu de déployer cet itinéraire clinique de prise en charge des patientes souffrant de pré-éclampsie et d’éclampsie et en simulant une patiente donnée qui aurait une pré-éclampsie, nous avons représenté les quatre éléments de base (le patient, la communauté, l’institution de santé, le contexte) qui constituent le contexte selon notre modèle ainsi que les relations sémantiques qui leur sont associées (figures 58, 59, 60 et 61).

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context>

sharecp:women_with_severe_pre-eclampsia rdf:type cont:Community ;
 cont:has-status sharecp:no_spe_specific_community_status_regulation .

Figure 58. Relations sémantiques des individus de la classe cont:Community

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context>

sharecp:Patient_007 rdf:type cont:Patient ;
 cont:has-carestayencounter sharecp:spe_patientcarestay_007 ;
 cont:belongs-to sharecp:women_with_severe_pre-eclampsia ;
 cont:has-status sharecp:no_spe_specific_community_status_regulation .

Figure 59. Relations sémantiques des individus de la classe cont:Patient

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context>

sharecp:Yaounde_Central_Hospital rdf:type cont:Health_Institution ;
 cont:within sharecp:cameroon , sharecp:resource_limited_country ;
 cont:has-level-of-care sharecp:reference_hospital ;
 cont:has-status sharecp:no_spe_specific_health_institution_status_regulation ;
 cont:has-role sharecp:ych_anesthetist ,
 sharecp:ych_gynecologist_obstetrician ,
 sharecp:ych_head_of_Department,
 sharecp:ych_midwife ,
 sharecp:ych_nurse ;
 cont:has-department sharecp:ych_anesthesia_resuscitation_department ,
 sharecp:ych_laboratory_department ,
 sharecp:ych_security_department
 sharecp:ych_maternity_department ;

Figure 60. Relations sémantiques des individus de la classe cont:Health_Institution
L'individu de la classe \texttt{cont:Patient_Care_Stay_Encounter} qui représente l'épisode de soins ou la visite d'un patient est quant à elle liée à un individu de la classe \texttt{cont:patient_Status} (figure 62). De plus cet individu peut être lié ou connecté à un dossier patient électronique si l'hôpital concerné en dispose.

Par ailleurs, nous avons représenté le fait que certains rôles travaillent pour certains services hospitaliers (figure 63)

Enfin, la super classe \texttt{cont:Satus_Regulation} qui définit le statut des principales composantes d'un contexte donné contient quatre sous-classes: \texttt{cont:Patient_status}, \texttt{cont:Community_Status_Regulation}, \texttt{cont:Health_Institution_Status_Regulation} et \texttt{cont:Setting_Status_Regulation}. Les individus appartenant à ces sous-classes peuvent être associés aux individus des sous-classes de la super classe.

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context>

sharecp:patient_and_his_family_have_a_stable_financial_situation rdf:type
cont:Patient_Status ;
 cont:satisfies-preconditions
sharecp:patient_or_his_family_must_have_money_to_buy_drugs_or_health_insurance .

sharecp:the_patient_can_not_read_write_or_listen_French_or_English rdf:type
cont:Patient_Status ;
 cont:does-not-satisfy-preconditions
sharecp:the_language_used_must_be_the_one_listened_spoken_written_by_the_patient_and_or_the_spouse_family .

Figure 64. Relations sémantiques entre les individus de la classe cont:Patient_Status et les individus de la classe cont:Individual_Related_Preconditions

6.7. Représentations sémantiques des interactions entre l’itinéraire clinique, les guidelines, le contexte et les ressources
6.7.1. Représentations sémantiques des interactions entre les individus de l’ontologie des itinéraires cliniques et ceux de l’ontologie du contexte

Plusieurs relations sémantiques existent entre, d’une part les individus appartenant aux classes de l’ontologie de l’itinéraire clinique et d’autre part, les individus appartenant à l’ontologie du contexte. Les exemples ci-dessous permettent d’illustrer ces interactions sémantiques.

C’est ainsi que l’individu sharecp:spe_cp (itinéraire clinique portant sur la prise en charge de la pré-éclampsie sévère) appartenant à la classe cp:Clinical_Pathway est associé aux individus des classes cont:Health_Institution et cont:Patient_Care_Stay_Encounter par les propriétés cp:deployed-in et cp:applied-to (inverse de la propriété cont:follows) respectivement (figure 65).
Figure 65. Relations sémantiques entre les individus de la classe cp:Clinical_Pathway et les individus des classes cont:Health_Institution et cont:Patient_Care_Stay_Encounter

L’individu sharecp:spe_management (prise en charge de la pré-éclampsie sévère) quant à lui, qui appartient à la classe cp:Disease (sous-classes de la superclasse cp:Clinical_Condition) est associé l’individu sharecp:spe_patientcarestay_007 de la classe cont:Patient_Care_Stay_Encounter par la propriété cp:is-clinical-condition-of (inverse de la propriété cont:has-clinical-condition), figure 66.

Figure 66. Relations sémantiques entre les individus appartenant aux classes cp:Disease et cont:Patient_Care_Stay_Encounter

Figure 67. Relations sémantiques entre les individus de la classe process:AtomicProcess et les individus des classes cont:Health_Institution_Departments et cont:Context_Related_Preconditions

Les individus de la classe cont:Patient_Care_Stay_Encounter sont associés aux individus de la classe cp:Care_Calendar par la propriété cont:patientcaretsayencounter-associated-with-calendar (figure 68).

Figure 68 Relations sémantiques entre les individus de la classe cont:Patient_Care_Stay_Encounter et cp:Care_Calendar

Enfin, l’individu sharecp:inability_to_perform_abdomino_pelvic_ultrasound_exam (impossibilité de réaliser un examen d’échographie abdomino-pelvien) est associé à la classe cont:From_Missing_Resource (sous-classe de la classe cont:Causes_Of_variance) par la propriété cp:is-caused-by et à la classe cont:Patient_Care_Stay_Encounter par la propriété cp:occurs-on (figure 69).
Figure 69. Relations sémantiques entre les individus appartenant à la classe cp:Variance et aux classes cont:Patient_Care_Stay_Encounter et cont:From_Missing_Resource

6.7.2. Représentations sémantiques des interactions entre les individus de l’ontologie des itinéraires cliniques et ceux de l’ontologie des ressources

Figure 70. Relations sémantiques entre les individus appartenant à la classe process:AtomicProcess et aux sous-classes de la super classe res:Health_Resources respectivement

6.7.3. Représentations sémantiques des interactions entre les individus de l’ontologie des itinéraires cliniques et ceux de l’ontologie des guidelines

Parmi les relations sémantiques qui existent entre l’ontologie des itinéraires cliniques et ceux de l’ontologie des guidelines, on trouve des relations qui existent entre les individus de la classe cp:Clinical_Pathway et ceux de la classe gdl:Guidelines_Recommendations. À titre d’exemple, l’individu sharecp:spe_cp (severe pre-eclampsia clinical pathway) appartenant à la classe cp:Clinical_Pathway est associé à plusieurs individus de la classe gdl:Guidelines_Recommendations (interventions recommandées ou non recommandées) par la propriété cp:implements (inverse de la propriété gdl:implemented-by), figure 71.
Figure 71. Relations sémantiques entre les individus appartenant aux classes cp:Clinical_Pathway et gdl:Guidelines_Recommendations

Les individus de la classe process:AtomicProcess quant à eux sont associés à la classe gdl:Guidelines_Recommendations par 2 types de propriétés : cp:supported-by (inverse de la propriété gdl:supports) et cp:is-not-supported-by (inverse de la propriété gdl:is-against). Par exemple (figure 72), le processus atomique sharecp:administer_iv_mgso4 (administrer le sulfate de magnésium en intraveineux) est supporté par la recommandation sharecp:who_R_06_magnesium_sulfate_is_recommended_for_women_having_severe_preeclampsia_to_prevent_eclampsia_compared_to_other_anticonvulsants.

Figure 72. Relations sémantiques entre les individus appartenant aux classes process:AtomicProcess et gdl:Guidelines_Recommendations
Enfin, s’agissant de la classe cp:Clinical_Condition, l’individu sharecp:spe_management (prise en charge de la pré-éclampsie sévère) qui appartient à cette classe (sous-classes de la superclasse cp:Clinical_Condition) est associé à l’individu sharecp:preclampsia de la classe gdl:Subjects par la propriété cp:is-part-of (figure 73).

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp>
@prefix gdl: <http://www.semanticweb.org/bediang/ontologies/2015/2/gdl>

sharecp:spe_management rdf:type cp:Disease .
sharecp:preclampsia rdfs:type gdl:Subjects .

Figure 73. Relations sémantiques entre les individus appartenant aux classes cp:Disease et gdl:Subjects

6.7.4. Représentations sémantiques des interactions entre les individus de l’ontologie des guidelines et ceux de l’ontologie des ressources

Comme pour les interventions dans un itinéraire clinique (figure 70), les interventions liées aux recommandations (individus appartenant à la classe gdl:Related_Interventions) requièrent également des ressources (individus appartenant à la super classe res:Health_Resources) en utilisant cette fois la propriété gdl:requires.

6.7.5. Représentations sémantiques des interactions entre les individus de l’ontologie des guidelines et ceux de l’ontologie du contexte

Dans le cadre des interactions sémantiques entre l’ontologie des guidelines et celle du contexte, les individus de la classe gdl:Guidelines_Recommendations sont associés aux individus des classes cont:Patient_Status, cont:Community, cont:Health_Institution_Care_Level ou cont:Setting par les propriétés gdl:concerns ou gdl:does-not-concern. À titre d’exemple, la figure 74 ci-dessous permet d’illustrer les relations sémantiques associées à la recommandation numéro 9 contenue dans la liste des recommandations OMS pour la prise en charge des patients ayant une pré-éclampsie ou une éclampsie.
Figure 74. Relations sémantiques entre les individus appartenant aux classes

gdl:Guidelines_Recommendations d’une part, cont:Community,
cont:Health_institution_Care_Level et cont:Setting d’autre part

6.7.6. Représentations sémantiques des interactions entre les individus de l’ontologie du
contexte et ceux de l’ontologie des ressources

S’agissant des interactions sémantiques entre l’ontologie du contexte et celle des ressources, les
individus des classes cont:Patient, cont:Community, cont:Health_Institution et
cont:Setting sont associés chacune à la classe sharecp:Resource_Statement par les
propriétés cont:has-resource ou cont:does-not-have-resource.

Les individus de cette classe sharecp:Resource_Statement quant à eux, sont associés aux
individus de la classe res:Health_Resources par les propriétés sharecp:has-resource ou
sharecp:does-not-have-resource.

L’exemple de la figure 75 ci-dessous concerne l’individu sharecp:Yaounde_Central_Hospital
(Hôpital Central de Yaoundé) qui appartient à la classe cont:Health_Institution.
Les individus de la classe cont:From_Missing_Resources (sous classe de la classe cont:Causes_of_variance) sont quant à eux associés aux individus des sous-classes de la super classe res:Health_resources par la propriété cont:is-related-to-missing-resources. L’exemple ci-dessous (figure 76) concerne l’individu ultrasound_device-not_available_missing_resource (appareil d’échographie non disponible).

@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context>
@prefix res: <http://www.semanticweb.org/bediang/ontologies/2018/2/res>

sharecp:ultrasound_device_not_available_missing_resource rdf:type cont:From_Missing_Resources .
sharecp:ultrasound rdf:type res:Medical_Equipment .
sharecp:ultrasound_device_not_available_missing_resource cont:is-related-to-missing-resources sharecp:ultrasound .

Figure 76. Relations sémantiques entre les individus appartenant aux classes cont:From_Missing_Resources et res:Medical_Equipment
Enfin, la classe `cont:Health_Institution_Roles` a des relations sémantique (associées par les propriétés `cont:has-skill` et `cont:does-not-have-skill`) avec la classe `sharecp:Resource_Statement` permettant ainsi de définir les compétences d'un rôle donné (figure 77).

```xml
@prefix sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp>
@prefix cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context>
@prefix res: <http://www.semanticweb.org/bediang/ontologies/2018/2/res>

sharecp:ych_anesthetist  rdf:type  cont:Health_Institution_Roles .
sharecp:know_how_to_make_an_anesthesia_consultation_RS rdf:type sharecp:Resource_Statement .
sharecp:know_how_to_make_an_anesthesia_consultation rdf:type res:Skills .

sharecp:ych_anesthetist  cont:has-skill
  sharecp:know_how_to_make_an_anesthesia_consultation_RS .
sharecp:ability_to_prescribe_drugs_RS sharecp:has-skill
  sharecp:know_how_to_make_an_anesthesia_consultation .
```

Figure 77. Relations sémantiques entre les individus appartenant aux classes `cont:Health_Institution_Role`, `sharecp:Resource_Statement` et `res:Skills`
6.8. Discussion

En s'appuyant sur le modèle d'ontologie ShaRE-CP, nous avons décrit et représenté les connaissances : de l'itinéraire clinique pour la prise en charge des patientes souffrant de pré-éclampsie sévère à l'Hôpital Central de Yaoundé, des recommandations de bonnes pratiques (guidelines) OMS pour la prise en charge des patientes ayant une pré-éclampsie ou une éclampsie, des ressources et du contexte relatifs à l'Hôpital Central de Yaoundé ainsi que les différentes interactions entre tous ces domaines de connaissances. Les individus (instances des classes) correspondants à chaque domaine de connaissance ont été créés. A l'aide des propriétés (« object properties » et « datatype properties »), ces individus ont pu être associés permettant ainsi de décrire les relations sémantiques existant entre eux.

Cette démarche a eu pour but d’illustrer et de valider l’applicabilité du modèle d’ontologie ShaRE-CP proposé pour la représentation sémantique des connaissances et des interactions entre ces quatre domaines de connaissance afin d’une part, de planifier et de montrer automatisamment les interventions cliniques d’un itinéraire clinique[2], et d’autre part, de s’assurer de la cohérence de ces interventions avec d’autres domaines de connaissances tels que les guidelines, les ressources et le contexte.

6.8.1. Le module de l’itinéraire clinique

Plusieurs approches ont été implémentées pour représenter les concepts et les relations relatifs à chaque domaine de connaissance.

En ce qui concerne l’ontologie des itinéraires, nous nous sommes inspirés du modèle d’ontologie proposé par Ye et al[2] pour développer le module de l’ontologie relatif aux itinéraires cliniques dans l’ontologie ShaRE-CP.

Les classes cp:Intervention, cp:Care_Phase, cp:Expected_LOS et cp:Variance sont des sous-classes de la super classe time:TemporalEntity. Les individus appartenant à ces différentes classes sont tous, en ce qui les concerne, associés à des entités temporelles (instant, intervalle, durée, position sur le calendrier grégorien et une horloge de 24h). De plus, il existe une différence entre les instances de la classe cp:Clinical_Process et ceux de la classe cp: Intervention. Les individus de la classe cp:Clinical_Process sont des processus génériques (non rattaché à un itinéraire clinique particulier) et peuvent être des processus atomiques ou composites. Lorsqu’ils sont composites, ces individus sont associés à des individus appartenant à la classe process:ControlConstruct (process:Any-Order, process:Sequence, process:Iterate, etc.) afin de définir le déroulement des différents processus atomiques et ou composites qui les constituent. Il est à noter que dans le modèle ShaRE-CP, nous avons défini une nouvelle classe cp:Repeat_Every qui est une sous-classe de la classe process:Iterate, elle-même une sous-classe de la classe process:ControlConstruct. Les instances de cette classe cp:Repeat_Every permettent de définir les processus cliniques atomiques ou composites qui doivent être exécutés de manière répétitive ainsi que le nombre et la fréquence de répétition.

Les individus de la classe cp:Intervention quant à eux, représentent les interventions rattachées à un itinéraire clinique donné. Ces individus de la classe cp:Intervention sont rattachés à la fois aux instances des processus cliniques génériques (cp: Clinical_Process), des outcomes (cp:Outcomes), de la période (cp:Care_Period) qui elles même ont une position sur le calendrier grégorien et une horloge de 24h et à d’autres interventions via les individus de la classe cp:TemporalConstraints_Between_InterventionParts pour représenter les contraintes temporelles entre ces interventions. Cette approche visant à définir plusieurs types de processus cliniques (notamment les processus cliniques composites) et à dissocier ces processus cliniques génériques des interventions favorise la réutilisabilité de ces modules. Elle permet ainsi, d’une part, de réutiliser des processus cliniques par d’autres processus cliniques à l’intérieur d’un même itinéraire clinique donné (par exemple, possibilité d’utiliser un processus composite \(X \) par un autre processus composite \(Y \)[2]) et d’autre part, de réutiliser ces processus cliniques dans des interventions associées à d’autres itinéraires cliniques et positionnées à des périodes temporelles différentes.

Par ailleurs, contrairement au modèle de Ye qui utilise les règles SWRL[208] pour représenter les contraintes temporelles (durée) entre deux interventions, l’ontologie ShaRE-CP quant à elle implémente directement ces contraintes temporelles en OWL. Cette représentation a l’avantage de permettre la génération d’inferences ou de nouvelles connaissances directement avec un raisonneur.
S’agissant des outcomes, le modèle d’ontologie proposé par Ye [2] définit les outcomes qui doivent être atteints par une intervention donnée. Dans le modèle ShaRE-CP que nous proposons, les individus appartenant à la cp:Outcome sont associés aux individus de la classe cp:Condition_Outcome par la propriété cp:has-condition-outcome. Ainsi, cela permet de définir avec plus de détails les préconditions à satisfaire pour déterminer si un outcome est atteint.

Enfin, en ce qui concerne la représentation des variances, en plus de de la classe cp:Variance, le modèle d’ontologie ShaRE-CP définit la classe cp:Variance_Date_Time qui est une sous-classe de la classe time:GeneralDateTimeDescription. Les individus appartenant à cette classe cp:Variance_Date_Time permettent ainsi de positionner la survenue d’une variance comme un évènement dans le calendrier grégorien et sur une horloge de 24h.

6.8.2. Les modules des recommandations pour les bonnes pratiques (guidelines), les ressources et le contexte.

Enfin, une approche pragmatique (identification des composants du contexte qui auraient des interactions avec les concepts inhérents à un itinéraire clinique) a permis de définir les principales classes contenues dans l’ontologie du contexte, à savoir: la classe cont:Patient (patient), cont:Community (communauté), cont:Health_Institution (hôpital ou institution de santé), cont:Setting (contexte), cont:Status_Regulation (statut et règles en vigueur des principales composantes d’un contexte donné) et cont:Context_Related_Preconditions (conditions qui doivent être satisfaites pour qu’un processus atomique lié à un itinéraire clinique puisse avoir lieu). Sur la base, d’une analyse de la situation qui prévaut au Cameroun en général et à l’Hôpital Central de Yaoundé en particulier, nous avons créé des instances de classes permettant de définir le contexte d’exécution de l’itinéraire clinique sur la prise en charge des patients souffrant de pré-éclampsie à l’Hôpital Central de Yaoundé. A l’instar d’autres ontologies du contexte, ce module de l’ontologie ShaRE-CP a été développé pour favoriser le raisonnement sémantique entre un itinéraire clinique et un contexte donné et soutenir ainsi sa pertinence. Les résultats de cette représentation sémantique ont été illustrés à travers plusieurs figures.

6.8.3. Interactions entre les individus appartenant aux classes des différents modules de l’ontologie ShaRE-CP.

L’ontologie ShaRE-CP contient des modules dont les classes possèdent des interactions sémantiques entre elles. Les exemples décrits dans la section 7 de ce chapitre prouvent effectivement qu’il existe plusieurs types d’interactions sémantiques entre les instances des différentes classes de cette ontologie. Un type d’interactions concerne les instances de l’ontologie des itinéraires cliniques et ceux de l’ontologie du contexte d’une part, et d’autre part, les instances de l’ontologie des guidelines et ceux de l’ontologie du contexte. Les itinéraires cliniques comportent les interventions qu’il faut exécuter par une équipe pluridisciplinaire en accord avec plusieurs éléments du contexte (valeurs du patient, culture d’une communauté, les ressources, l’organisation, les règlements en vigueur et autres contraintes, etc.). Rentre explicite les principales interactions qui existent entre les instances de l’ontologie des itinéraires cliniques et les instances de l’ontologie du contexte présente de nombreux avantages. Dans sa phase de conception et de développement, ces relations sémantiques permettraient par exemple : de décrire les patients ou l’institution pour laquelle l’itinéraire clinique est destiné, de définir les responsabilités en ce qui concerne les différentes interventions et d’identifier les conditions à satisfaire pour une bonne exécution de ces interventions. Dans sa phase d’exécution, les relations sémantiques entre le domaine des itinéraires cliniques et le contexte permettraient d’établir de liens entre la survenue d’une variance et sa cause facilitant ainsi le raisonnement afin de prévenir la survenue de certaines variances ans le futur.

S’agissant des relations sémantiques entre les instances de l’ontologie des guidelines et ceux de l’ontologie du contexte, elles ont pour but principal de mettre en évidence les différentes cibles
(patients, communauté, Institution de santé, contexte) concernées par une recommandation afin de favoriser une meilleure adaptation de celle-ci dans un contexte donné.

Des interactions concernent également les instances de l’ontologie des itinéraires cliniques et les instances de l’ontologie des guidelines. La conception et le développement d’itinéraires cliniques reposent également sur les guidelines (recommandations formulées par des organismes pour améliorer la prise en charge) [297]. L’identification fine des relations sémantiques qui existent entre les itinéraires cliniques et les recommandations a pour but de faciliter la détection de la cohérence ou de l’incohérence de certaines interventions de l’itinéraire clinique avec les recommandations relatives à un sujet donné.

Enfin, il existe des relations sémantiques entre les instances de l’ontologie du contexte et ceux de l’ontologie des ressources. Ces liens visent essentiellement à identifier les ressources dont disposent les éléments du contexte et à détecter les causes de variances qui seraient liées au défaut éventuel d’une ressource donnée.
Chapitre 7
Cas d'utilisation, extraction et inférence des connaissances

7.1. Introduction

L’ontologie ShaRE-CP représente de manière sémantique des connaissances et des interactions contenues dans les domaines de connaissance que sont les itinéraires cliniques, les guidelines et le contexte. Son applicabilité dans le cadre de l’itinéraire clinique développé pour la prise en charge des patientes souffrant de pré-éclampsie sévère à la maternité de l’Hôpital Central de Yaoundé a été explorée dans le chapitre précédent.

Dans ce chapitre, nous allons identifier quelques cas d’utilisation (situations pour lesquelles l’ontologie ShaRE-CP peut être utilisée afin de répondre à des questions spécifiques) et décrire les différentes approches utilisées pour générer ou extraire des connaissances.

7.2. Rappel sur les méthodes utilisées pour extraire ou générer des connaissances

Plusieurs approches ont été utilisées pour pouvoir extraire ou générer des connaissances contenues au sein de l’ontologie ShaRE-CP à savoir : l’utilisation d’un raisonneur OWL, les requêtes SPARQL et les règles SWRL. Le but étant d’extraire des connaissances valides, fiables et nouvelles qui peuvent permettre d’aider à la prise de décision.

7.2.1. L’utilisation d’un raisonneur (moteur d’inférence)

Les raisonneurs permettent de raisoner sur les ontologies développées en OWL afin de contrôler ou de vérifier la cohérence ou la consistance d’une ontologie (vérifier la non existence de faits contradictoires), de classer des connaissances, de répondre à une question ou d’inférer de nouvelles connaissances. Le fonctionnement de la plupart de ces raisonneurs (à l’instar des raisonneurs FaCT++, HermiT) se base sur l’utilisation des concepts, des relations entre ces concepts ainsi que des axiomes (propriétés ou assertions décrivant les concepts) [298]. Certains raisonneurs ne peuvent raisonner qu’au niveau terminologique (concepts et propriétés) tandis que d’autres permettent de raisonner au niveau des instances ontologiques (exemple : Pellet, Racer) [299].

7.2.2. Le langage d’interrogation SPARQL

SPARQL est un langage d’interrogation utilisé pour interroger des données représentées dans un graphe RDF.

7.2.2.1. Structure d’une interrogation simple

Une forme d’interrogation SPARQL contient un ensemble de triplet (graphe élémentaire) composé d’un sujet, d’un prédicat et d’un objet. A la différence d’un triplet dans RDF, chaque sujet, prédicat et objet peut être une variable dans un triplet SPARQL.

Une interrogation comprend deux parties (figure 78):

- La clause SELECT qui identifie les variables qui doivent apparaître dans les résultats d’interrogation. Il existe d’autres formes d’interrogations telles que : ASK, DESCRIBE, CONSTRUCT.
- Et la clause WHERE qui décrit le motif ou la séquence de graphes qui servira à la comparaison au graphe de données.

```sparql
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE
{ ?x foaf:name ?name .}
```

Figure 78. Exemple d’une requête SPARQL simple
7.2.2.2. Les motifs de graphes

SPARQL est basé sur la correspondance des motifs de graphes (graph patterns). On distingue :

- Les motifs de graphes élémentaires (basic graph patterns) : il s'agit d'un ou d'une suite de triplets interrompue par un filtre.
- Les motifs de graphe de groupe (group graph pattern) : il s'agit d'un ensemble de motifs de graphes élémentaires.
- Les motifs de graphes optionnels (optional graph patterns) : permet d'ajouter des informations à la solution seulement où l'information est disponible. Cela requiert l'utilisation de la clause OPTIONAL.
- Les motifs de graphe alternatifs (alternative graph pattern) : fournit un moyen de combiner les motifs de graphe de telle sorte que l'un ou plusieurs motifs de graphe alternatifs peuvent correspondre. Cela requiert l'utilisation de la clause UNION.

7.2.2.3. Les modificateurs

Ils permettent d'organiser les solutions obtenues selon des attentes spécifiques. On distingue les modificateurs suivants :

- ORDER BY (modificateur de tri) : met les solutions en ordre ;
- DISTINCT : s'assure de l'unicité des solutions dans la séquence ;
- REDUCED : permet l'élimination de solutions non uniques ;
- OFFSET : fait commencer les solutions générées après le nombre de solutions indiqué ;
- LIMIT : place une limite supérieure au nombre des solutions retournée.

7.2.2.4. Contraintes des termes

SPARQL permet de filtrer plusieurs types de littéraux : les littéraux ayant une étiquette de langue, les littéraux avec un type numérique, etc. Les différentes contraintes SPARQL qui s'appliquent permettent de restreindre les solutions à celles que l'expression filtrer évalue comme étant vrai. On a par exemple :

- La restriction des solutions selon une expression donnée (FILTER regex) :
- La restriction des valeurs numériques (FILTER) et bien d'autres (xsd:string, xsd:boolean et xsd:dateTime).

La combinaison de ces contraintes peut se faire également en utilisant des opérateurs logiques [300].

7.2.3. Les règles d’inférences SWRL

SWRL (Semantic Web Rule Language) est un langage de règles pour le web sémantique. Il combine le langage OWL-DL et le langage RuleML (Rule Markup Language).

Une règle SWRL est composée d’un antécédent et d’une conséquence, qui sont tous des conjonctions d’atomes (figure 79) [208].

Les atomes permettent la description des objets. Ils peuvent faire référence à des individus ou des littéraux. Bien plus, ils peuvent être formés à partir de prédicats unaires (classes), de prédicats binaires (propriétés), d’équations ou d’inégalités. Un atome peut ainsi avoir la forme C (x), P (x, y), sameAs (x, y) differentFrom (x, y), builtIn (r, x, ...) où C est une description ou une plage de données OWL, est une propriété OWL, r est une relation Built-In, x et y sont soit des variables, soit des individus OWL soit des valeurs de données OWL [208].

Figure 79. Exemple d’une règle SWRL

Les prédicats Built-In permettent de gérer les numéros, les caractères, etc. On en distingue plusieurs :

hasParent(?x,?y) ∧ hasBrother(?y,?z) ⇒ hasUncle(?x,?z)
7.3. Cas d’utilisation et méthodes utilisées pour extraire ou générer des connaissances

L’ontologie ShaRE-CP contenant les données de l’itinéraire clinique sur la prise en charge de la pré-éclampsie sévère à la maternité de l’Hôpital Central de Yaoundé a été utilisée comme exemple pour résoudre les différents cas d’utilisation identifiés. L’on distingue trois catégories de cas d’utilisation : (i) les cas d’utilisation concernant la gestion de l’itinéraire clinique lui-même, (ii) les cas d’utilisation concernant la gestion de l’itinéraire clinique et de sa contextualisation et (iii) les cas d’utilisation concernant la gestion des patients au sein d’un itinéraire clinique. En fonction des cas d’utilisation, nous utiliserons alternativement une ou plusieurs méthodes d’extraction ou d’inférence de connaissances pour résoudre les différents cas d’utilisation. Il pourra s’agir premièrement de l’utilisation d’un moteur d’inférence (raisonneur OWL), en l’occurrence les raisonneurs HermiT 1.3.8. et HermiT 1.3.8.413. Il s’agit de plug-ins de l’éditeur d’ontologies Protégé permettant de raisonner sur des ontologies écrites en OWL. Deuxièmement, il pourra s’agir de la plateforme Ontotext GraphDB [301]. C’est un triple store RDF développé par l’entreprise Bulgare Ontotext. Il est disponible en trois versions (gratuite, standard, entreprise). Ce logiciel est optimisé pour permettre aux utilisateurs de rechercher dans des bases de connaissances RDF au travers de l’exécution des requêtes SPARQL. Enfin, il pourra s’agir des règles d’inférence SWRL. Pour ce travail, nous avons utilisé le plug-in SWRLTab de Protégé pour éditer les règles d’inférences SWRL. Le raisonnement y afférent a été effectué en utilisant le raisonneur HermiT 1.3.8.413.

7.3.1. Cas d’utilisation concernant la gestion de l’itinéraire clinique

Il s’agit des cas d’utilisation qui portent sur les concepts ou entités relatifs au domaine de connaissance des itinéraires cliniques uniquement, à l’instar de la gestion du flux de travail (workflow). Ces entités existent indépendamment des interactions avec les autres domaines de connaissances associés dans cette ontologie à savoir les guidelines, les ressources et le contexte. La résolution de ces cas d’utilisation revêt un intérêt surtout pour les activités de conception, de développement et de maintenance des itinéraires cliniques. Les cas d’utilisation ont été classés en cas d’utilisation simples (cas d’utilisation traités par des raisonnements et des requêtes simples) et en cas d’utilisation évolués ou complexes (cas d’utilisation traités par des raisonnements et des requêtes complexes). Il existe aussi des cas d’utilisation supplémentaires. Il s’agit des cas qui n’ont pas pu être résolus entièrement dans le cadre de cette thèse à cause des contraintes temporelles associées au dépôt du manuscrit. Toutefois, sur la base de cette ontologie laquelle permet de les résoudre, les principes de leur résolution ont été évoqués ou amorcés.
7.3.1.1. Cas d’utilisation simples
7.3.1.1.1. Utilisation d’un raisonneur OWL

Cas d’utilisation n°1 : Quelles sont les interventions de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère ?

La classe `cp:Intervention` est représentée dans l’ontologie ShaRE-CP à travers l’axiome ci-dessous.

`cp:Intervention ⊆ cp:is-intervention-of only cp:Clinical_Pathway`

En tenant compte de cet axiome, la classe et l’axiome ci-dessous ont été définis pour faire du raisonnement.

`sharecp:SPE_CP_Interventions ≡ cp:Intervention and cp:is-intervention-of value sharecp:spe_cp`

Lorsque nous exécutons le moteur d’inférence (raisonneur OWL), les instances ci-dessous sont inférées comme faisant partie de la classe `sharecp:SPE_CP_Interventions` (liste partielle, figure 80).

Figure 80. Individus inférés appartenant à la classe sharecp:SPE_CP_Interventions.

Cas d’utilisation n°2 : Quelles sont les interventions à exécuter à un moment (période ou phase) donné de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère ?

La classe `cp:Intervention` est représentée dans l’ontologie ShaRE-CP à travers les axiomes ci-dessous.

`cp:Intervention ⊆ cp:performed-during only cp:Care_Phase`

`cp:Intervention ⊆ cp:performed-during some cp:Care_Phase`

En tenant compte de ces axiomes, la classe et l’axiome ci-dessous ont été définis pour faire du raisonnement et identifier toutes les interventions qui ont lieu à la première heure du premier jour des soins par exemple.
Lorsque nous exécutons le moteur d’inférence, les instances ci-dessous sont inférées comme faisant partie de la classe sharecp:Interventions_During_Care_Day1_h0_h1 (liste partielle, figure 81).

![Diagram](image.png)

Figure 81. Individus inférés appartenant à la classe sharecp:Interventions_During_Care_Day1_h0_h1
Cas d’utilisation n°3 : Quels sont les outcomes primaires de l’itinéraire clinique relatifs à la prise en charge de la pré-éclampsie sévère?

La classe cp:Outcome est représentée dans l’ontologie ShaRE-CP à travers les axiomes ci-dessous.

\[
\text{cp:Outcome} \subseteq \text{cp:is-outcome-of only cp:Clinical_Pathway}
\]

\[
\text{cp:Outcome} \subseteq \text{cp:is-outcome-of some cp:Clinical_Pathway}
\]

En tenant compte de ces axiomes, la classe et l’axiome ci-dessous ont été définis pour faire du raisonnement et identifier tous les outcomes primaires définis dans l’itinéraire clinique.

\[
\text{sharecp:SPE_CP_Outcomes} \equiv \text{cp:Outcome and cp:is-outcome-of value sharecp:spe_cp}
\]

Lorsque nous exécutons le moteur d’inférence, les instances ci-dessous sont inférées comme faisant partie de la classe sharecp:SPE_CP_Outcomes (figure 82).

Figure 82. Individus inférés appartenant à la classe sharecp:SPE_CP_Outcomes

7.3.1.1.2. Utilisation des requêtes SPARQL

Cas d’utilisation n° 1 : Quelles sont les interventions de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère?

Ce cas d’utilisation a déjà été exprimé en OWL. Nous le reprenons ici tout simplement pour illustrer comment ce dernier est résolu à l’aide d’une requête SPARQL. Le résultat obtenu à l’issue de cette requête est affiché dans le tableau 2 ci-dessous (liste partielle).

Requête SPARQL

PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>

\[
\text{SELECT} \ ?\text{Interventions}
\]

\[
\text{WHERE} \{
\text{sharecp:spe_cp cp:has-intervention ?Interventions}.
\}
\]
Tableau 2: Interventions de l’itinéraire clinique relatives à la prise en charge de la pré-éclampsie sévère.

Cas d’utilisation n° 2 : Quels sont les processus cliniques (processus composites ou processus atomiques) exécutés par les interventions de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère?

Il en est de même pour ce cas d’utilisation qui a été également résolu en OWL. La requête SPARQL qui permet d’extraire cette connaissance est la suivante. Le résultat obtenu à l’issue de cette requête est affiché dans le tableau 3 ci-dessous (liste partielle).

Requête SPARQL

```sparql
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>

SELECT ?ClinicalProcess
WHERE {
}
```

<table>
<thead>
<tr>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:administer_drugs_day1_h0_h1_spe</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day2b_h24_h48_spe</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day1_h1_h24_spe</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day2a_h24_h48_spe</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day3_h48_h72_spe</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day4_h72_h96_spe</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day5_h96_h120_spe</td>
</tr>
</tbody>
</table>

Tableau 3. Processus cliniques utilisés par les interventions de l’itinéraire clinique de prise en charge de la pré-éclampsie sévère
L’extraction de ces deux informations ensemble peut se faire par le biais d’une même requête SPARQL (confère tableau 4 ci-dessous, liste partielle).

Requête SPARQL

PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>

```
SELECT ?Interventions ?ClinicalProcess
WHERE {
}
```

<table>
<thead>
<tr>
<th>Interventions</th>
<th>ClinicalProcess</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:administer_drugs_day1_h0_h1_spe</td>
<td>sharecp:administer_drugs1a</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day2b_h24_h48_spe</td>
<td>sharecp:administer_iv_betamethasone</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day1_h1_h24_spe</td>
<td>sharecp:administer_drugs1b</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day2a_h24_h48_spe</td>
<td>sharecp:administer_drugs2a</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day3_h48_h72_spe</td>
<td>sharecp:administer_drugs3</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day4_h72_h96_spe</td>
<td>sharecp:administer_drugs4</td>
</tr>
<tr>
<td>sharecp:administer_drugs_day5_h96_h120_spe</td>
<td>sharecp:administer_drugs5</td>
</tr>
</tbody>
</table>

Tableau 4. Interventions et processus cliniques utilisés dans l’itinéraire clinique de prise en charge de la pré-éclampsie sévère.

Cas d’utilisation n°3 : Moment de l’exécution d’une intervention donnée de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère et sa durée?

On peut obtenir le moment (période ou phase) ainsi que la durée de l’exécution d’une intervention donnée de l’itinéraire clinique. A titre d’exemple, nous prenons le cas de l’intervention « Administration des médicaments » entre la 1ère et la 24e heure. Le résultat obtenu à l’issue de cette requête SPARQL est affiché dans le tableau 5 ci-dessous.

Par ailleurs, on peut également repérer la position de ce moment par rapport aux autres moments de l’itinéraire clinique.

Requête SPARQL

PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX time: <http://www.w3.org/2006/time#>

```
SELECT ?CarePhase ?Duration
WHERE {
    { sharecp:administer_drugs_day1_h1_h24_spe cp:performed-during ?CarePhase .
      ?CarePhase time:hours ?Duration .
    }
```
Tableau 5. Moment d'exécution et sa durée de l'intervention « Administration des médicaments » entre la 1ère et la 24ème heure

Cas d’utilisation n°4 : Moment prévu pour l’atteinte d’un outcome primaire donné de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère?

Dans ce cas d’utilisation, il est question de déterminer le moment (période ou phase) ou l’on est sensé atteindre certains objectifs cliniques (outcomes) donnés. A titre d'exemple, nous cherchons à déterminer à quel moment du processus l’on est sensé atteindre l’outcome primaire share cp:spe_day1_h0_h1_outcome. Le résultat obtenu à l’issue de cette requête SPARQL est affiché dans le tableau 6 ci-dessous.

Requête SPARQL

PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX time: <http://www.w3.org/2006/time#>

SELECT ?CarePhase
WHERE
{
 sharecp:spe_day1_h0_h1_outcome cp:expected-for ?CarePhase .
}

<table>
<thead>
<tr>
<th>CarePhase</th>
<th>Duration (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:spe_care_day1_h1_h24</td>
<td>23</td>
</tr>
</tbody>
</table>

Tableau 6. Moment prévu pour l’atteinte de l’outcome primaire sharecp:spe_day1_h0_h1_outcome
7.3.1.2. Cas d’utilisation évolués ou complexes

7.3.1.2.1. Utilisation d’un raisonneur OWL

Cas d’utilisation n° 1 : Quels sont les processus cliniques (processus composites ou processus atomiques) exécutés par les interventions de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère ?

La classe `cp:Clinical_Process` est représentée dans l’ontologie ShaRE-CP à travers les axiomes ci-dessous.

\[cp:Clinical_Process \equiv \text{process:AtomicProcess or process:CompositeProcess} \]

En tenant compte de ces axiomes, la classe et l’axiome ci-dessous ont été définis pour faire du raisonnement.

\[\text{sharecp:SPE_CP_Clinical_Process} \equiv \text{cp:Clinical_Process and (cp:is-performed-by some (cp:Intervention and (cp:is-intervention-of value sharecp:spe_cp)))} \]

Lorsque nous exécutons le moteur d’inférence (raisonneur OWL), les instances ci-dessous sont inférées comme faisant partie de la classe `sharecp:SPE_CP_Clinical_Process` (figure 83, liste partielle).

![Diagramme de classes et instances](image)

Figure 83. Individus inférés appartenant à la classe `sharecp:SPE_CP_Clinical_Process`.
7.3.1.2.2. Utilisation des requêtes SPARQL

Cas d'utilisation n° 1: Quels sont les processus atomiques exécutés par les interventions de l'itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère?

En SPARQL (requête ci-dessous), on peut également obtenir la liste des processus atomiques exécutés par les interventions de l'itinéraire clinique de prise en charge de la pré-éclampsie sévère. Le résultat obtenu à l’issue de cette requête est affiché dans le tableau 7 ci-dessous (liste partielle).

Requête SPARQL

PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX process: <http://www.daml.org/services/owl-s/1.2/Process.owl#>
PREFIX ObjectList: <http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl#>

SELECT DISTINCT ?AtomicProcess
WHERE
{
 {
 ?AtomicProcess a process:AtomicProcess .}
 UNION
 {
 }
 UNION
 {
 }
 UNION
 {
 }
 }
}
Tableau 7. Processus atomiques utilisés par les interventions de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère

Cas d’utilisation n°2 : Quels sont les processus atomiques exécutés par une intervention donnée de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère ?

Nous allons chercher à déterminer tous les processus atomiques de l’intervention sharecp:administer_drugs_day1_h0_h1_spe (Administration des médicaments au cours de la première heure de soins (voir la requête SPARQL ci-dessous). Le résultat obtenu à l’issue de cette requête est affiché dans le tableau 8 ci-dessous.

Requête SPARQL

PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX process: <http://www.daml.org/services/owl-s/1.2/Process.owl#>
PREFIX ObjectList: <http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl#>

```
SELECT DISTINCT ?AtomicProcess
WHERE {
    sharecp:spe_cp cp:has-intervention sharecp:administer_drugs_day1_h0_h1_spe .

    
    sharecp:administer_drugs_day1_h0_h1_spe cp:performs ?AtomicProcess .

    ?AtomicProcess a process:AtomicProcess . }

UNION

{
    sharecp:administer_drugs_day1_h0_h1_spe cp:performs ?CompositeProcess .


```
Tableau 8. Processus atomiques de l’intervention sharecp:administer_drugs_day1_h0_h1_spe de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère

Cas d’utilisation n°3: Composition d’un outcome primaire donné de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère et ses conditions associées?

On peut obtenir aussi la composition d’un outcome primaire donné ainsi que tous les détails y afférents. A titre d’exemple, nous allons chercher à connaître la composition de l’outcome primaire prévu d’atteindre entre l’entrée de la patiente à la première heure de soins (sharecp:spe_day1_h0_h1_outcome). Le résultat obtenu à l’issue de cette requête SPARQL est affiché dans le tableau 9 ci-dessous. Les propriétés retrouvées dans les triplets à l’instar de cp:parameter-name, cp:unit, etc. et contenus sous OPTIONAL sont des propriétés de données. Ces triplets retournent des littéraux qui peuvent être des chaînes de caractères, des données numériques, etc.
Requête SPARQL

PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX time: <http://www.w3.org/2006/time#>

WHERE {
 sharecp:spe_day1_h0_h1_outcome cp:made-up-of ?SecondaryOutcomes .
 OPTIONAL {
 ?OutcomeConditions cp:parameter-name ?Name .
 ?OutcomeConditions cp:unit ?Unit .
 OPTIONAL {
 ?OutcomeConditions cp:higher-than ?HigherThan .
 }
 }
}

Tableau 9. Composition de l’outcome primaire sharecp:spe_day1_h0_h1_outcome et ses conditions associées

<table>
<thead>
<tr>
<th>SecondaryOutcomes</th>
<th>OutcomeConditions</th>
<th>Name</th>
<th>Min-Value</th>
<th>Max-Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:spe_day1_h0_h1_outcome1_mother</td>
<td>sharecp:spe_mother_systolic_bp_between_140-160_mmhg</td>
<td>Systolic blood pressure</td>
<td>140</td>
<td>160</td>
<td>mmhg</td>
</tr>
<tr>
<td>sharecp:spe_day1_h0_h1_outcome2_mother</td>
<td>sharecp:spe_diuresis_more_than_25cc</td>
<td>Diuresis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sharecp:spe_day1_h0_h1_outcome_fetus</td>
<td>sharecp:spe_fetal-heart-sound_between_120-160_beats_per_min</td>
<td>Fetal heart sound</td>
<td>120</td>
<td>160</td>
<td>bpm</td>
</tr>
</tbody>
</table>
7.3.2. Cas d’utilisation concernant la gestion de l’itinéraire clinique et de sa contextualisation

Les cas d’utilisation portant sur la gestion de l’itinéraire clinique et de sa contextualisation concernent tous les aspects liés aux interactions entre les itinéraires cliniques et les domaines de connaissances tels que les guidelines et le contexte y compris les ressources. Il s’agit dans ce cas d’extraire ou d’inférer des connaissances qui ont trait à la contextualisation des itinéraires cliniques notamment pour des activités en lien avec le développement, la maintenance, l’évolution, l’adaptation et la réutilisabilité des itinéraires cliniques. Les cas d’utilisation ont également été classés en cas simples (cas d’utilisation traités par des raisonnements et des requêtes simples) et en cas complexes (cas d’utilisation traités par des raisonnements et des requêtes complexes).

7.3.2.1. Cas d’utilisation simples

7.3.2.1.1. Utilisation d’un raisonneur OWL

Cas d’utilisation n°1 : Quelles sont les différentes guidelines (recommandations) contenues dans l’ontologie ShaRE-CP et classées par domaines de référence?

La classe gdl:Guidelines_Recommendations est représentée par l’axiome ci-dessous au sein de l’ontologie ShaRE-CP.

\[gdl:Guidelines_Recommendations \subseteq gdl:concerns \text{ only } \left(\text{cont:Community or cont:Health_Institution_Care_level or cont:Patient_Status or cont:Setting} \right) \]

En tenant compte de cet axiome, les classes et les axiomes ci-dessous ont été définis pour faire du raisonnement.

\[\text{sharecp:Guidelines_concerning_Community} \equiv gdl:Guidelines_Recommendations \text{ and } \left(gdl:concerns \text{ some cont:Community} \right) \]

\[\text{sharecp:Guidelines_concerning_Health_Institution_Care_Level} \equiv gdl:Guidelines_Recommendations \text{ and } \left(gdl:concerns \text{ some cont:Health_Institution_Care_Level} \right) \]

\[\text{sharecp:Guidelines_concerning_Patient_Status} \equiv gdl:Guidelines_Recommendations \text{ and } \left(gdl:concerns \text{ some cont:Patient_Status} \right) \]

\[\text{sharecp:Guidelines_concerning_Setting} \equiv gdl:Guidelines_Recommendations \text{ and } \left(gdl:concerns \text{ some cont:Setting} \right) \]

A titre d’exemple, lorsque le moteur d’inférence (raisonneur OWL) est exécuté, les instances ci-dessous sont inférées comme faisant partie des classes sharecp:Guidelines_concerning_Community (guidelines faisant référence à la communauté), sharecp:Guidelines_concerning_Health_Institution_Care_Level (guidelines faisant référence au niveau de soins de l’institution selon la pyramide des soins) et sharecp:Guidelines_concerning_Setting (guidelines faisant référence au contexte) respectivement (figure 84, 85 et 86).
Cas d'utilisation n°2: Quelles sont les guidelines (recommandations) implémentées dans l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère?

$$cp:Clinical_Pathway \subseteq cp:implements\ only \ gdl:Guidelines_Recommendations$$

$$gdl:Guidelines_Recommendations \subseteq gdl:implemented-by\ only \ cp:Clinical_pathway$$

En tenant compte de ces axiomes, la classe et l’axiome ci-dessous ont été définis pour faire du raisonnement.
sharecp:Used_Recommendations = gdl:Guidelines_Recommendations and (gdl:implemented-by value sharecp:spe_cp)

Lorsque nous exécutons le moteur d’inférence (raisonneur OWL), les instances ci-dessous sont inférées comme faisant partie de la classe sharecp:Used_Recommendations (figure 87).

Figure 87. Individus inférés appartenant à la classe sharecp:Used_Recommendations.

Cas d’utilisation n°3 : Quelles sont les ressources dont disposent l’institution de santé (exemple : l’Hôpital Central de Yaoundé dans le cas de cette ontologie) ?

res:Health_Resources ⊆ res:is-resource-of only sharecp:Resources_Statement

sharecp:Resources_Statement ⊆ sharecp:is-resource-of only (cont:Community or cont:Health_Institution or cont:Patient or cont:Setting)

En tenant compte de ces axiomes, la classe et l’axiome ci-dessous ont été définis pour faire du raisonnement.

sharecp:Health_Institution_Resources_YCH = res:Health_Resources and (res:is-resource-of some (sharecp:Resource_Statement and (sharecp:is-resource-of value sharecp:Yaounde_Central_Hospital)))

L’exécution du moteur d’inférence permet d’inférer les instances ci-dessous appartenant à la classe sharecp:Health_Institution_Resources_YCH (liste partielle) (figure 88).
Figure 88. Individus inférés appartenant à la classe sharecp:Health_Institution_Resources_YCH (liste partielle)

Cas d’utilisation n°4 : Quelles sont les ressources dont ne disposent pas l’institution de santé (exemple : Hôpital Central de Yaoundé dans le cas de cette ontologie) ?

Les classes res:Health_Resources et sharecp:Resources_Statement sont représentées dans l’ontologie ShaRE-CP à travers les axiomes ci-dessous.

\[
\text{res:Health_Resources } \subseteq \text{ res:is-not-resource-of only sharecp:Resources_Statement}
\]

\[
\text{sharecp:Resources_Statement } \subseteq \text{ sharecp:is-not-resource-of only (cont:Community or cont:Health_Institution or cont:Patient or cont:Setting)}
\]

En tenant compte de ces axiomes, la classe et l’axiome ci-dessous ont été définis pour faire du raisonnement.

\[
\text{sharecp:Health_Institution_Not_Resources_YCH } \equiv \text{ res:Health_Resources and (res:is-not-resource-of some (sharecp:Resource_Statement and (sharecp:is-not-resource-of value sharecp:Yaounde_Central_Hospital)))}
\]

L’exécution du moteur d’inférence permet également d’inférer les instances ci-dessous appartenant à la classe sharecp:Health_Institution_Not_Resources_YCH (liste partielle) (figure 89).

Figure 89. Individus inférés appartenant à la classe sharecp:Health_Institution_Not_Resources_YCH (liste partielle)
7.3.2.1.2. Utilisation des requêtes SPARQL

Cas d'utilisation n°1 : Quelles sont les différentes guidelines (recommandations) implémentées dans l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie et associées à leur statut?

En SPARQL (requête ci-dessous), on peut obtenir la liste des guidelines (recommandations) implémentées dans l’itinéraire clinique associées à leur statut (recommandé ou non recommandé). Le résultat obtenu à l’issue de cette requête est affiché dans le tableau 10 ci-dessous.

Requête SPARQL

PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX gdl: http://www.semanticweb.org/bediang/ontologies/2015/2/gdl#

```
SELECT ?Recommendations ?RecommendationStatus
WHERE {
}
```

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>RecommendationStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:who_NR_02_Strict_bed_rest_is_not_recommended_to_improve_the_outcome_of_pregnancy_in_hypertensive_women_with_or_without_proteinuria</td>
<td>sharecp:Not_Recommended</td>
</tr>
<tr>
<td>sharecp:who_NR_03_Restricting_dietary_salt_intake_during_pregnancy_to_prevent_the_development_of_preeclampsia_and_its_complications_is_not_recommended</td>
<td>sharecp:Not_Recommended</td>
</tr>
<tr>
<td>sharecp:who_R_04_Women_with_severe_hypertension_during_pregnancy_should_be_treated_with_antihypertensives</td>
<td>sharecp:Recommended</td>
</tr>
<tr>
<td>sharecp:who_R_06_magnesium_sulfate_for_women_having_severe_preeclampsia_to_prevent_eclampsia_compare_to_other_anticonvulsants</td>
<td>sharecp:Recommended</td>
</tr>
<tr>
<td>sharecp:who_R_08_administration_of_complete_IV_and_IM_sulfate_magnesium_schema_for_prevention_treatment_of_eclampsia</td>
<td>sharecp:Recommended</td>
</tr>
<tr>
<td>sharecp:who_R_11_In_women_with_severe_preeclampsia_a_viable_fetus_and_before_34_weeks_of_gestation_a_policy_of_expectant_management_is_recommended</td>
<td>sharecp:Recommended</td>
</tr>
</tbody>
</table>

Cas d’utilisation n°2 : Quelles sont les guidelines (recommandations) implémentées dans l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie et leurs domaines de référence?

Les recommandations implémentées font référence à plusieurs domaines qui peuvent être : la communauté de patients, le niveau de soins d’une institution, le statut d’un patient ou le contexte en général.

A titre d’exemple, nous présentons à travers deux (2) requêtes SPARQL qui illustrent comment les informations sur les recommandations implémentées sont récupérées et associées aux domaines auxquels ils font référence. Les résultats obtenus à l’issue de ces requêtes sont affichés dans les tableaux 11 et 12 ci-dessous.
Requête SPARQL

PREFIX gdl: <http://www.semanticweb.org/bediang/ontologies/2015/2/gdl#>
PREFIX rdt: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>

SELECT ?Recommendations ?Domain
WHERE {
 ?Domain rdfs:type cont:Community .
}

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:who_NR_02_Strict_bed_rest_is_not_recommended_to_improve_the_outcome_of_pregnancy_in_hypertensive_women_with_or_without_proteinuria</td>
<td>sharecp:pregnant_women_with__hypertensive_disorders</td>
</tr>
<tr>
<td>sharecp:who_NR_03_Restricting_dietary_salt_intake_during_pregnancy_to_prevent_the_development_of_preeclampsia_and_its_complications_is_not_recommended</td>
<td>sharecp:women_with_pre-eclampsia</td>
</tr>
<tr>
<td>sharecp:who_R_04_Women_with_severe_hypertension_during_pregnancy_should_be_treated_with_antihypertensives</td>
<td>sharecp:women_with_severe_hypertension_during_pregnancy</td>
</tr>
<tr>
<td>sharecp:who_R_06_magnesium_sulfate_for_women_having_severe_preeclampsia_to_prevent_eclampsiacompare_to_other_anticonvulsants</td>
<td>sharecp:women_with_severe_preeclampsia</td>
</tr>
<tr>
<td>sharecp:who_R_11_In_women_with_severe_preeclampsia_a_viable_fetus_and_before_34_weeks_of_gestation_a_policy_of_expectant_management_is_recommended</td>
<td>sharecp:women_with_severe_preeclampsia</td>
</tr>
</tbody>
</table>

Tableau 11. Guidelines (recommandations) implémentées dans l’itinéraire clinique et associées au domaine « communauté »
Requête SPARQL
PREFIX gdl: <http://www.semanticweb.org/bediang/ontologies/2015/2/gdl#>
PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>
PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

SELECT ?Recommendations ?Domain
WHERE {
}

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Domains</th>
</tr>
</thead>
</table>

Tableau 12. Guidelines (recommandations) implémentées dans l’itinéraire clinique et associées au domaine « contexte »

Cas d’utilisation n° 3 : Quelles sont les ressources requises pour un processus atomique donné de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère?

Il est également possible d’obtenir la liste de toutes ou une partie des ressources requises pour un processus atomique donné.

A titre d’exemple, voici ci-dessous, les requêtes SPARQL et les résultats permettant d’obtenir la liste de toutes les ressources d’une part et des consommables d’autre part, requis pour le processus atomique « Administration de Sulfate de Magnésium en Intraveineux ». Les résultats obtenus à l’issue de ces requêtes sont affichés dans les tableaux 13 et 14 ci-dessous.

Requête SPARQL
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>

SELECT DISTINCT ?RequiredResources
WHERE {
 sharecp:administer_iv_mgso4 cp:requires ?RequiredResources .
}
ORDER BY ?RequiredResources
Tableau 13. Liste de toutes les ressources requises pour l’administration de Sulfate de Magnésium en Intraveineux

Requête SPARQL

PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX process: <http://www.daml.org/services/owl-s/1.2/Process.owl#>

SELECT DISTINCT ?RequiredConsumables
WHERE {
}
ORDER BY ?RequiredConsumables

Tableau 14. Liste de tous les consommables requis pour l’administration de Sulfate de Magnésium en Intraveineux

<table>
<thead>
<tr>
<th>?RequiredConsumables</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:antiseptic_solution</td>
</tr>
<tr>
<td>sharecp:care_gloves</td>
</tr>
<tr>
<td>sharecp:compresses</td>
</tr>
<tr>
<td>sharecp:syringes</td>
</tr>
</tbody>
</table>
7.3.2.2. Cas d’utilisation évolués ou complexes

7.3.2.2.1. Utilisation d’un raisonneur OWL

Cas d’utilisation n°1 : Quelles sont les guidelines (recommandations) implémentées dans l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie et classées par domaines de référence?

Il est également possible de classer les guidelines (recommandations) implémentées dans un itinéraire clinique par domaine concerné. En exécutant un raisonneur, les axiomes ci-dessous permettent de retrouver les guidelines implémentées selon les domaines auxquels ils font référence à savoir : la communauté de patients, le niveau de soins de l’institution, le statut du patient et le contexte.

\[
\text{sharecp:Used_Recommendations_Community} \equiv \text{gdl:Guidelines_Recommendations and } \left(\text{gdl:implemented-by value sharecp:spe_cp and (gdl:concerns some cont:Community)}\right)
\]

\[
\text{sharecp:Used_Recommendations_Health_Institution_Care_Level} \equiv \text{gdl:Guidelines_Recommendations and } \left(\text{gdl:implemented-by value sharecp:spe_cp and (gdl:concerns some cont:Health_Institution_Care_Level)}\right)
\]

\[
\text{sharecp:Used_Recommendations_Patient_Status} \equiv \text{gdl:Guidelines_Recommendations and } \left(\text{gdl:implemented-by value sharecp:spe_cp and (gdl:concerns some cont:Patient_Status)}\right)
\]

\[
\text{sharecp:Used_Recommendations_Setting} \equiv \text{gdl:Guidelines_Recommendations and } \left(\text{gdl:implemented-by value sharecp:spe_cp and (gdl:concerns some cont:Setting)}\right)
\]

Dans les figures (90 et 91) ci-dessous, l’on retrouve les résultats issus de l’exécution du moteur d’inférence pour les classes sharecp:Used_Recommendations_Community et sharecp:Used_Recommendations_Setting respectivement.

Figure 90. Individus inférés appartenant à la classe sharecp:Used_Recommendations_Community

Figure 91. Individus inférés appartenant à la classe sharecp:Used_Recommendations_Setting.
7.3.2.2. Utilisation des requêtes SPARQL

Cas d’utilisation n°1 : Quels sont les processus atomiques exécutés par les interventions de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère et supportés par des guidelines (recommandations) ?

La requête SPARQL ci-dessous, permet d’obtenir la liste des processus atomiques exécutés par les interventions de l’itinéraire clinique de prise en charge de la pré-éclampsie sévère et supportés par des guidelines (recommandations). Le résultat obtenu à l’issue de cette requête est affiché dans le tableau 15 ci-dessous.

Requête SPARQL

PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX process: <http://www.daml.org/services/owl-s/1.2/Process.owl#>
PREFIX ObjectList: <http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl#>

```
SELECT DISTINCT ?AtomicProcess
WHERE
{
  
   ?AtomicProcess a process:AtomicProcess .}

  UNION
  {

  UNION
  {
  }
}
```

154
Interventions cp:perform CompositeProcess.
CompositeProcess process:composedOf ControlConstruct.
ControlConstruct cp:repeat process AtomicProcess.
}
}
}
}
AtomicProcess cp:supported-by Recommendations.
}

Cas d’utilisation n°2 : Quels sont les processus atomiques exécutés par les interventions de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère et non supportées par des guidelines (recommandations) ?

Cas d’utilisation n°3 : Quelles sont les ressources requises par les processus atomiques (tous) de l’itinéraire clinique de prise en charge de la pré-éclampsie sévère?

En SPARQL, la requête ci-dessous permet d’obtenir la liste de toutes les ressources requises par tous les processus atomiques de l’itinéraire clinique de prise en charge de la pré-éclampsie sévère.

Requête SPARQL

PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX process: <http://www.daml.org/services/owl-s/1.2/Process.owl#>
PREFIX ObjectList: <http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?RequiredResources
WHERE {
 ?AtomicProcess a process:AtomicProcess . } }
UNION
{
}
UNION
{
}
UNION
{
}
}
}

On peut également afficher les différentes ressources requises par catégorie à savoir :

- Les ressources médicamenteuses
- Les équipements
- Les consommables
- Les compétences
- Les fonctionnalités et matériel de systèmes d’information
- Les fonctionnalités et fluides des lieux, etc.

A titre d’exemple, la requête SPARQL ci-dessous permet d’obtenir seulement la liste des ressources médicamenteuses requises dans le cadre de cet itinéraire clinique. Le résultat de cette requête est affiché dans le tableau 16 ci-dessous.

Requête SPARQL

```sparql
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX process: <http://www.daml.org/services/owl-s/1.2/Process.owl#>
PREFIX ObjectList: <http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?RequiredDrugs
WHERE
{


{

}

UNION
{

}

UNION
{

}

UNION
{

```

Tableau 16. Liste des ressources médicamenteuses requises dans l’itinéraire clinique de prise en charge de la pré-éclampsie sévère.

Cas d’utilisation n°4 : Préconditions associées aux processus atomiques exécutés par les interventions de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère.

La requête SPARQL ci-dessous quant à elle, permet d’obtenir la liste des préconditions associées aux processus atomiques exécutés par les interventions de l’itinéraire clinique de prise en charge de la pré-éclampsie sévère.

Requête SPARQL

```sparql
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX ObjectList: <http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl#>
PREFIX process: <http://www.daml.org/services/owl-s/1.2/Process.owl#>

SELECT  DISTINCT ?Preconditions
WHERE
{
  {
      ?AtomicProcess a process:AtomicProcess .}
    UNION
    {
       ?AtomicProcess a process:AtomicProcess .}
    }
  }
}
```
Par ailleurs, on peut filtrer la liste en précisant le type de préconditions (rdf:type) à savoir :

- Health_Institution_Related_Preconditions
 - “Human_Preconditions”
 - “Infrastructural_Preconditions”
 - “Organizational_Regulatory_Preconditions”
- Individual_Related_Preconditions
 - “Diet_Behavior_Experiences_Preferences_Preconditions”
 - “Educational_Preconditions”
 - “Financial_Preconditions”
 - “Medical_Surgical_Family_Preconditions”
- Community_Related_Preconditions
 - “Beliefs_Religious_Preconditions”
 - “Socio_Cultural_Preconditions”
- Setting_Related_Preconditions
 - “Infrastructural_Environmental_Preconditions”
 - “Legal_Political_Governance_Preconditions”
 - “Socio_Economic_Preconditions”
Requête SPARQL

PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX ObjectList: <http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl#>
PREFIX process: <http://www.daml.org/services/owl-s/1.2/Process.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>

SELECT DISTINCT ?Preconditions
WHERE
{
 ?AtomicProcess a process:AtomicProcess .}

 UNION
 {
 }

 UNION
 {
 }

 UNION
 {
 }
On peut également combiner l’affichage entre les processus atomiques et les préconditions. Il suffit d’ajouter la variable ?Atomicprocess dans SELECT de la requête SPARQL précédente comme suit 'SELECT ?Atomicprocess ?Preconditions'. Ci-dessous (tableau 17 et 18), on peut voir les processus atomiques de l’itinéraire clinique de prise en charge de la pré-éclampsie sévère qui ont des préconditions en lien avec l’institution de santé, de type ‘compétences’ en ressources humaines ou de type ‘Infrastructure’.

<table>
<thead>
<tr>
<th>Atomicprocess</th>
<th>Human_Preconditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:blood_cells_count</td>
<td>sharecp:hospital Preconditions have a role competent to perform blood counting cells test</td>
</tr>
<tr>
<td>sharecp:coagulation_tests_prothrombine_appt</td>
<td>sharecp:hospital Preconditions have a role competent to perform coagulation test</td>
</tr>
<tr>
<td>sharecp:serum_creatinine</td>
<td>sharecp:hospital Preconditions have a role competent to perform creatinine test</td>
</tr>
<tr>
<td>sharecp:electrolytes</td>
<td>sharecp:hospital Preconditions have a role competent to perform electrolytes test</td>
</tr>
<tr>
<td>sharecp:perform_abdomino_pelvic_ultrasound</td>
<td>sharecp:hospital Preconditions have a role competent to perform obstetric ultrasound</td>
</tr>
<tr>
<td>sharecp:liver_enzymes_alt_ast</td>
<td>sharecp:hospital Preconditions have a role competent to perform transaminases test</td>
</tr>
<tr>
<td>sharecp:uricemia</td>
<td>sharecp:hospital Preconditions have a role competent to perform uric acid test</td>
</tr>
<tr>
<td>sharecp:urine_dipstick_test</td>
<td>sharecp:hospital Preconditions have a role competent to perform urine dipstick test</td>
</tr>
</tbody>
</table>

Tableau 17. Liste des processus atomiques ayant des préconditions en lien avec l’institution de santé et de type ‘compétences’

<table>
<thead>
<tr>
<th>Atomicprocess</th>
<th>Infrastructural_Preconditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:inform_gynecologist_of_guard</td>
<td>sharecp:hospital Preconditions have a means of telecommunication</td>
</tr>
<tr>
<td>sharecp:inform_head_of_clinical_department</td>
<td>sharecp:hospital Preconditions have a means of telecommunication</td>
</tr>
<tr>
<td>sharecp:inform_neonatal_department</td>
<td>sharecp:hospital Preconditions have a means of telecommunication</td>
</tr>
<tr>
<td>sharecp:blood_cells_count</td>
<td>sharecp:hospital Preconditions hospital must have electricity alternating current voltage_of_220_v</td>
</tr>
<tr>
<td>sharecp:coagulation_tests_prothrombine_appt</td>
<td>sharecp:hospital Preconditions hospital must have electricity alternating current voltage_of_220_v</td>
</tr>
<tr>
<td>sharecp:electrolytes</td>
<td>sharecp:hospital Preconditions hospital must have electricity alternating current voltage_of_220_v</td>
</tr>
<tr>
<td>sharecp:liver_enzymes_alt_ast</td>
<td>sharecp:hospital Preconditions hospital must have electricity alternating current voltage_of_220_v</td>
</tr>
<tr>
<td>sharecp:perform_abdominoPelvic_ultrasound</td>
<td>sharecp:hospital Preconditions hospital must have electricity alternating current voltage_of_220_v</td>
</tr>
<tr>
<td>sharecp:serum_creatinine</td>
<td>sharecp:hospital Preconditions hospital must have electricity alternating current voltage_of_220_v</td>
</tr>
<tr>
<td>sharecp:uricemia</td>
<td>sharecp:hospital Preconditions hospital must have electricity alternating current voltage_of_220_v</td>
</tr>
<tr>
<td>sharecp:limit_visits</td>
<td>sharecp:hospital Preconditions infrastructure allowing access control</td>
</tr>
<tr>
<td>sharecp:maintain_calm_environment</td>
<td>sharecp:hospital Preconditions infrastructure allowing noise isolation</td>
</tr>
</tbody>
</table>

Tableau 18. Liste des processus atomiques ayant des préconditions en lien avec l’institution de santé et de type ‘Infrastructure’
Cas d’utilisation n°5 : Services hospitaliers ayant la responsabilité de réaliser des processus cliniques atomiques de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère

La requête SPARQL définie ci-dessous permet d’obtenir la liste des services hospitaliers impliqués dans la réalisation des processus atomiques de l’itinéraire clinique de prise en charge de la pré-éclampsie sévère. Le résultat de cette requête est illustré dans le tableau 19.

Requête SPARQL

PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX process: <http://www.daml.org/services/owl-s/1.2/Process.owl#>
PREFIX ObjectList: <http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl#>

SELECT ?HealthDepartments
WHERE
{
 {
 ?AtomicProcess a process:AtomicProcess .}
 UNION
 {
 } UNION
 {
 } UNION
 {
 } UNION
 {
 } UNI
Dans la requête SPARQL ci-dessus, si on rajoute la variable \(?\text{AtomicProcess} \) dans la clause SELECT alors on obtient la liste des services hospitaliers impliqués ainsi que les différents processus atomiques dont ils ont la charge au sein de cet itinéraire clinique. Le résultat (à titre indicatif car seule une partie du résultat est illustrée) de cette requête est illustré dans le tableau 20.

<table>
<thead>
<tr>
<th>HealthDepartments</th>
<th>AtomicProcess</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:ych_anesthesia_resuscitation_department</td>
<td>sharecp:anesthesia_consultation</td>
</tr>
<tr>
<td>sharecp:ych_gynecology_obstetrics_department</td>
<td>sharecp:ablation_of_the_urinary_cathether</td>
</tr>
<tr>
<td></td>
<td>sharecp:ablation_of_the_veinous_way</td>
</tr>
<tr>
<td></td>
<td>sharecp:administer_im_mgso4_left_buttock</td>
</tr>
<tr>
<td></td>
<td>sharecp:administer_im_mgso4_right_buttock</td>
</tr>
<tr>
<td></td>
<td>sharecp:administer_iv_betamethasone</td>
</tr>
<tr>
<td></td>
<td>sharecp:administer_oral_calcium_antagonist_nicardipine_20mg</td>
</tr>
<tr>
<td>sharecp:ych_radiology_department</td>
<td>sharecp:perform_abdomino_pelvic_ultrasound</td>
</tr>
<tr>
<td>sharecp:ych_security_department</td>
<td>sharecp:limit_visits</td>
</tr>
<tr>
<td></td>
<td>sharecp:maintain_calm_environment</td>
</tr>
</tbody>
</table>

Tableau 20. Services impliqués dans l’itinéraire clinique et les différents processus atomiques dont ils ont la charge
Cas d'utilisation n°6 : Ressources dont dispose une entité donnée pour l'exécution de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère.

Il est également possible de déterminer les différentes ressources (toute ou une partie) dont disposent les différentes entités telles que : le patient, l’hôpital, la communauté et le contexte.

A titre d’exemple, les requêtes SPARQL ci-dessous permettent d’obtenir respectivement la liste de toutes (première requête) ou une partie des ressources (deuxième requête) dont dispose l’Hôpital Central de Yaoundé dans le cadre de l’exécution de cet itinéraire clinique. Le tableau 21 ci-dessous illustre les résultats obtenus à l’issue de la deuxième requête et porte sur les ressources matérielles dont dispose l’Hôpital Central de Yaoundé et relatives au système d’information.

Requête SPARQL

```sparql
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>

SELECT ?HealthResources
WHERE {
  sharecp:Yaounde_Central_Hospital rdf:type cont:Health_Institution .
  sharecp:Yaounde_Central_Hospital cont:has-resource ?Resource_Statement .
}
ORDER BY ?HealthResources
```

Requête SPARQL

```sparql
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>

SELECT ?HealthResources
WHERE {
  sharecp:Yaounde_Central_Hospital rdf:type cont:Health_Institution .
  sharecp:Yaounde_Central_Hospital cont:has-resource ?Resource_Statement .
}
ORDER BY ?HealthResources
```
Tableau 21. Liste des ressources dont dispose l'Hôpital de Central de Yaoundé en termes de système d'information dans le cadre de l'exécution de l'itinéraire clinique de prise en charge de la pré-éclampsie sévère

Cas d'utilisation n° 7 : Peut-on faire fonctionner ou exécuter un itinéraire clinique dans un contexte donné ?

A partir de cette ontologie et à l'aide d'une requête SPARQL (il peut être aussi résolu en appliquant une règle SWRL), il est également possible de répondre à des questions encore plus complexes comme par exemple « peut-on faire fonctionner ou exécuter un itinéraire clinique dans un contexte donné ? ». « Comment un changement dans un contexte donné, impacte-t-il l'itinéraire clinique ? » En d'autres termes, il s'agit d'identifier des interventions qu'il serait impossible de réaliser si le contexte dans lequel il doit être déployé présente des restrictions ou des contraintes particulières (par exemple, en cas de ressources manquantes ou en cas de préconditions non satisfaites).

Comme exemple, nous prenons le cas selon lequel le contexte à l'instar de l'hôpital, présenterait des ressources manquantes. Le principe qui sous-tend la résolution de ce cas d'utilisation est illustré dans la figure 92. En effet, si un processus clinique d’un itinéraire clinique qui doit être exécuté a besoin de ressources, il faut vérifier si le contexte dans lequel il doit être exécuté en dispose. S’il n’en dispose pas alors ce processus est impossible à réaliser dans ce contexte donné.

Figure 92. Modèle de vérification de la réalisation d’un processus de l’itinéraire clinique dans un contexte donné par rapport à la disponibilité des ressources
A titre d’exemple, voici ci-dessous une requête SPARQL et le résultat (tableau 22) qui permet d’obtenir la liste des processus atomiques de l’itinéraire clinique qui ne peuvent être exécutés à cause des ressources manquantes à l’Hôpital Central de Yaoundé ainsi que la liste des ressources manquantes y afférentes.

Requête SPARQL

```sparql
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX process: <http://www.daml.org/services/owl-s/1.2/Process.owl#>
PREFIX ObjectList: <http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl#>
PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>

SELECT DISTINCT ?AtomicProcess ?RequiredResources
WHERE
{

     ?AtomicProcess a process:AtomicProcess .}

    UNION
    {
    }

    UNION
    {
    }

    UNION
    {
         }"
Tableau 22. Liste des processus atomiques impossibles à réaliser et des ressources manquantes y afférentes au niveau de l'hôpital

7.3.2.3. Cas d'utilisation supplémentaires

Il s'agit des cas d'utilisation qui ne sont pas entièrement résolus mais dont les principes de résolution évoqués permettent de les résoudre entièrement ou en partie avec l'ontologie ShaRE-CP.

*Cas d'utilisation n° 1 : Peut-on faire fonctionner ou exécuter un itinéraire clinique dans un contexte et à un moment donné?*

La même approche qui a été utilisé pour le cas d'utilisation précédent peut aussi s'appliquer si on raisonne en termes de ressources. Dans ce cas en particulier, on doit tenir compte du fait que la disponibilité d’une ressource dans une institution hospitalière donnée peut évoluer avec le temps (figure 93). Ainsi donc, cette institution pourra ne pas avoir une ressource pendant une certaine période. La résolution de ce cas pourra se faire soit en utilisant des requêtes SPARQL soit en implémentant des règles SWRL.

![Diagramme de concepteurs de processus atomiques impossibles et ressources manquantes](image_url)

**Figure 93. Modèle de vérification de la réalisation d'un processus de l'itinéraire clinique dans un contexte donné par rapport à la disponibilité des ressources à un moment donné**
Cas d’utilisation n°2: Comparer les itinéraires cliniques et pour éventuellement en faire un marché

Les itinéraires cliniques peuvent être comparés sur la base des ressources requises, des contraintes, du temps requis, etc. Supposons deux itinéraires cliniques que nous voulons comparer du point de vue des ressources requises pour voir celui qui pourrait fonctionner dans un contexte donné. Sur la base de cette ontologie, ce cas d’utilisation peut être résolu en utilisant un principe de résolution similaire à celui utilisé pour résoudre le cas précédent. En effet, en analysant la disponibilité des ressources dont disposent ou pas le contexte, on obtiendra une liste de processus impossibles. On pourra ainsi décider sur lequel des itinéraires clinique est le plus à même de fonctionner ou à être adapté pour fonctionner dans un contexte donné (figure 94).

Figure 94. Modèle de vérification de la réalisation de processus appartenant à plusieurs itinéraires cliniques dans un contexte donné dans le but de comparer ces itinéraires

Cas d’utilisation n°3: Quelles sont les ressources requises pour un ensemble de patients qui suivent encore (ou sont inclus) un itinéraire clinique donné ?

Le modèle de cette ontologie permet de résoudre ce cas d’utilisation qui aiderait davantage pour la planification des soins. Pour le résoudre, il faut : (i) identifier tous les patients qui suivent actuellement (date du jour) l’itinéraire clinique donné, (ii) calculer la période restante de chaque patient dans cet itinéraire clinique (cela peut se faire en faisant la différence entre la date d’entrée du patient dans l’itinéraire clinique et la date de fin prévue du séjour (’Expected_LOS’) de chaque patient), (iii) identifier les interventions et les processus cliniques qu’il reste à réaliser chez chacun des patients, (iv) identifier toutes les ressources requises par un patient, (v) et enfin, faire la somme pour tous les patients.

Une variante de ce cas d’utilisation est « quelles sont les ressources requises pour un ensemble de patients qui suivent encore (ou sont inclus) un itinéraire clinique donné dans un délai déterminé (par exemple, pour les prochains 48h)? ». Dans ce cas, le calcul de la période à considérer se fera entre la date du jour et la date du délai (par exemple, date du jour +2), puis il faudra identifier tous les patients qui sont/seront encore inclus dans l’itinéraire clinique et pour cet intervalle de temps.
7.3.3. Cas d’utilisation concernant la gestion des patients au sein d’un itinéraire clinique

Les cas d’utilisation portant sur la gestion des patients au sein des itinéraires cliniques quant à eux concernent tous les aspects liés à la planification, à l’exécution et au suivi des soins de patients au cours de l’exécution d’un itinéraire clinique. Les cas d’utilisation ont été également classés en cas simples (cas d’utilisation traités par des raisonnements et des requêtes simples) et en cas complexes (cas d’utilisation traités par des raisonnements et des requêtes complexes).

7.3.3.1. Cas d’utilisation simples
7.3.3.1.1. Utilisation d’un raisonneur OWL

**Cas d’utilisation n°1 : Quels sont les patients qui suivent l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère?**

La classe `cont:Patient` est définie par l’axiome.

\[
\begin{align*}
\text{cont:Patient} & \subseteq \text{has-carestayencounter only} \\
\text{cont:Patient_Care_Stay_Encounter} & \subseteq \text{follows only cp:Clinical_Pathway}
\end{align*}
\]

L’axiome ci-dessous a été associé à la classe `sharecp:Patient_Following_Clinical_Pathway` dans l’ontologie ShaRE-CP pour faire du raisonnement.

\[
\text{sharecp:Patient_Following_Clinical_Pathway} = \text{cont:Patient} \land (\text{has-carestayencounter some (cont:Patient_Care_Stay_Encounter and cont:follows value sharecp:spe_cp)})
\]

En appliquant le raisonneur (figure 95), les individus ci-après sont inférés comme appartenant à ladite classe.

![Figure 95. Individus inférés appartenant à la classe sharecp:Patient_Following_Clinical_Pathway](image-url)
7.3.3.1.2. Utilisation des requêtes SPARQL

**Cas d’utilisation n° 1 : Quelles sont les différentes variances survenues au cours de l’exécution de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère et leurs causes ?**

Au cours de l’exécution de l’itinéraire clinique, à partir des requêtes en SPARQL il est possible d’obtenir la liste des variances qui surviennent ainsi que les différentes causes associées. Ces causes de variances peuvent provenir d’un manque de ressources (la classe `cont:From_Missing_Resources`) ou d’autres causes (la classe `cont:From_Others_Causes`) qui peuvent être réglementaires, administratives, politiques, préférences), les deux types de causes étant en lien avec soit le patient, soit la famille ou à la communauté, soit l’hôpital, soit le personnel ou soit le contexte.

Les deux requêtes SPARQL ci-dessous, permettent d’obtenir respectivement d’une part, la liste des variances associées à tout type de cause (par manque de ressource ou autre) et d’autre part, la liste des variances associée aux causes provenant d’un manque de ressources uniquement.

**Requête SPARQL**

PREFIX cp: http://www.semanticweb.org/bediang/ontologies/2015/2/cp#
PREFIX sharecp: http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#

SELECT ?Variances ?CausesOfVariances
WHERE {
}
ORDER BY ?Variances

**Requête SPARQL**

PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
PREFIX sharecp: http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#

SELECT ?Variances ?CausesOfVariances
WHERE {
}
ORDER BY ?Variances
A titre d’exemple, le tableau 23 ci-dessous illustre le résultat obtenu à l’issue de la requête portant sur la liste des variances associées aux causes provenant d’un manque de ressources.

<table>
<thead>
<tr>
<th>Variances</th>
<th>CausesOfVariances</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:inability_to_perform_abdomino_pelvic_ultrasound_exam</td>
<td>sharecp:ultrasound_device_not_available_missing_resource</td>
</tr>
<tr>
<td>sharecp:inability_to_administer_drug_IV_Betamethasone</td>
<td>sharecp:betamethasone_drug_not_available_missing_resource</td>
</tr>
</tbody>
</table>

Tableau 23. Liste de variances et leurs causes associées au manque de ressources

**Cas d’utilisation n°2 : Quels sont les patients sur lesquels sont survenues les différentes variances au cours de l’exécution de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère et leurs causes ?**

La requête ci-dessous permet d’obtenir les différents patients sur lesquels sont survenues les variances au cours de l’exécution de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère. Le tableau 24 ci-dessous illustre ces patients.

**Requête SPARQL**

```
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>

SELECT ?Patients
WHERE {
 ?Patients cont:has-carestayencounter ?StayEncounter .
}

ORDER BY ?Patients
```

Tableau 24. Liste des patients sur lesquels sont survenues les variances au cours de l’exécution de l’itinéraire clinique

<table>
<thead>
<tr>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:Patient_007</td>
</tr>
<tr>
<td>sharecp:Patient_008</td>
</tr>
</tbody>
</table>
Cas d’utilisation n°3 : Quelles sont les différentes variances survenues chez un patient donné au cours de l’exécution de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère et leurs causes ?

La requête ci-dessous permet d’obtenir les différentes variances qui sont survenues chez un patient donné au cours de l’exécution de l’itinéraire clinique. A titre d’exemple, le tableau 25 ci-dessous illustre les variances survenues chez le patient 007 ainsi que les différentes causes.

**Requête SPARQL**

```sparql
PREFIX cp: http://www.semanticweb.org/bediang/ontologies/2015/2/cp#
PREFIX sharecp:http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#
PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>

SELECT ?Variances ?CausesOfVariances
WHERE {
 sharecp:Patient_007 cont:has-carestayencounter ?StayEncounter .

}
ORDER BY ?Variances
```

<table>
<thead>
<tr>
<th>Variances</th>
<th>CausesOfVariances</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:inability_to_perform_abdomino_pelvic_ultrasound_exam</td>
<td>sharecp:ultrasound_device_not_available_missing_resource</td>
</tr>
</tbody>
</table>

Tableau 25. Liste des variances survenues chez le patient 007 et leurs causes
7.3.3.2. Cas d’utilisation évolués ou complexes
7.3.3.2.1. Utilisation d’un raisonneur OWL

Cas d’utilisation n°1: Quelles sont les variations survenues au cours de l’exécution de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère?

La classe cp:Variance est définie par les axiomes.

\[
\text{cp:Variance} \subseteq \text{cp:occurs-during only} \text{ cp:Intervention}
\]

\[
\text{cp:Variance} \subseteq \text{cp:occurs-during some} \text{ cp:Intervention}
\]

L’axiome ci-dessous a été associé à la classe sharecp:Occurred_Variances dans l’ontologie ShaRE-CP pour faire du raisonnement.

\[
\text{sharecp:Occurred_Variances} \equiv \text{cp:Variance and (cp:occurs-during some \{\text{(cp:Intervention and (cp:is-intervention-of value sharecp:spe_cp))}\})}
\]

En appliquant le raisonneur (figure 96), les individus ci-après sont inférés comme appartenant à ladite classe.

![Figure 96. Individus inférés appartenant à la classe sharecp:Occurred_Variances](image)

Cas d’utilisation n°2: Quelles sont les variations survenues au cours de l’exécution de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère sur un patient donné ?

La classe cp:Variance est définie par les axiomes.

\[
\text{cp:Variance} \subseteq \text{cp:occurs-during only} \text{ cp:Intervention}
\]

\[
\text{cp:Variance} \subseteq \text{cp:occurs-during some} \text{ cp:Intervention}
\]

\[
\text{cp:Variance} \subseteq \text{cp:occurs-on only} \text{ cont:Patient_Care_Stay_Encounter}
\]

L’axiome ci-dessous a été associé à la classe sharecp:Occurred_Variances_for_Specific_Patient dans l’ontologie ShaRE-CP pour faire du raisonnement et déterminer les variations survenues chez le patient 007.

\[
\text{sharecp:Occurred_Variances_for_Specific_Patient} \equiv \text{cp:Variance and (cp:occurs-during some \{\text{(cp:Intervention and (cp:is-intervention-of value sharecp:spe_cp))\}) and (cp:occurs-on some \{\text{cont:Patient_Care_Stay_Encounter and (cont:is-carestayencounter-of value sharecp:Patient_007)}\})}}
\]
En appliquant le raisonneur (figure 97), les individus ci-après sont inférés comme appartenant à ladite classe.

Figure 97. Individus inférés appartenant à la classe sharecp:Occurred_Variances_for_Specific_Patient

Cas d’utilisation n°3 : Quelle est la contrainte temporelle qui existe entre deux interventions données?

La classe cp:TemporalConstraints_Between_Interventions est définie par les axiomes suivants :

- \( cp:TemporalConstraints_Between_Interventions \subseteq cp:temporal-contraint-intervention-1\ only cp: Intervention \)
- \( cp:TemporalConstraints_Between_Interventions \subseteq cp:temporal-contraint-intervention-1\ some cp: Intervention \)
- \( cp:TemporalConstraints_Between_Interventions \subseteq cp:temporal-contraint-intervention-2\ only cp: Intervention \)
- \( cp:TemporalConstraints_Between_Interventions \subseteq cp:temporal-contraint-intervention-2\ some cp: Intervention \)

L’axiome ci-dessous a été associé à la classe sharecp:TemporalConstraints_Between_Interventions_SPE dans l’ontologie ShaRE-CP pour faire du raisonnement et déterminer la condition temporelle qui existe entre deux interventions données de l’itinéraire clinique relatif à la prise en charge de la prééclampsie sévère à savoir : l’intervention sharecp:administer_drugs_day2b_h24_h48_spe (intervention 1) qui exécute le processus clinique atomique sharecp:administer_iv_betamethasone le deuxième jour de soins et l’intervention sharecp:administer_drugs_day1_h0_h1_spe (intervention 2) qui exécute dans la première heure de soins un processus clinique composite dans lequel se trouve le processus atomique sharecp:administer_iv_betamethasone.

En appliquant le raisonneur (figure 98), les individus ci-après sont inférés comme appartenant à ladite classe.

Figure 98. Individus inférés appartenant à la classe sharecp:TemporalConstraints_Between_Interventions_SPE
7.3.3.2.2. Utilisation des requêtes SPARQL

*Cas d’utilisation n°1 : Quelle est la date d’entrée d’un patient donné dans l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère ?*

A partir de cette ontologie et en utilisant une requête SPARQL, on peut obtenir la date d’entrée d’un patient donné dans l’itinéraire clinique. A titre d’exemple, la requête SPARQL ci-dessous permet d’obtenir la date d’entrée du patient 007 au sein de l’itinéraire relatif à la prise en charge de la pré-éclampsie sévère. Il faut souligner que dans cette requête, les propriétés avec le préfixe « time » sont des propriétés de données et retournent ainsi des littéraux (en l’occurrence, des valeurs numériques). Le tableau 26 ci-dessous illustre les résultats obtenus à l’issue de cette requête.

**Requête SPARQL**

```sparql
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2019/2/sharecp#>
PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>
PREFIX time: <http://www.w3.org/2006/time#>

WHERE
{
 sharecp:Patient_007 cont:has-carestayencounter ?StayEncounter .
 ?PatientCareCalendar time:hasBeginning ?PatientCareLimitsBeginning .
 OPTIONAL
 {
 ?PatientCareLimitsBeginning time:month ?Month .
 ?PatientCareLimitsBeginning time:day ?Day .
 ?PatientCareLimitsBeginning time:year ?Year .
 ?PatientCareLimitsBeginning time:hour ?Hour .
 ?PatientCareLimitsBeginning time:minute ?Minute .
 }
}
```

<table>
<thead>
<tr>
<th>PatientCareLimitsBeginning</th>
<th>Month</th>
<th>Day</th>
<th>Year</th>
<th>Hour</th>
<th>Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:spe_patientcarestay_007_beginning</td>
<td>8</td>
<td>14</td>
<td>2018</td>
<td>13</td>
<td>57</td>
</tr>
</tbody>
</table>

**Tableau 26. Date d’entrée du patient 007 au sein de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère**
Cas d’utilisation n°2 : Quelle est la date de sortie d’un patient donné dans l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère ?

Il est de même de la date de sortie d’un patient donné de l’itinéraire clinique. A titre d’exemple, la requête SPARQL ci-dessous permet d’obtenir la date de sortie du patient 007 de l’itinéraire relatif à la prise en charge de la pré-éclampsie sévère. Il faut souligner que dans cette requête, les propriétés avec le préfixe « time » sont des propriétés de données et retournent ainsi des littéraux (en l’occurrence, des valeurs numériques). Le tableau 27 ci-dessous illustre les résultats obtenus à l’issue de cette requête.

Requête SPARQL

PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX time: <http://www.w3.org/2006/time#>

SELECT ?PatientCareLimitsEnd Month ?Day ?Year ?Hour ?Minute
WHERE
{
  sharecp:Patient_007 cont:has-carestayencounter ?StayEncounter .
  ?PatientCareCalendar time:hasEnd ?PatientCareLimitsEnd .

  OPTIONAL
  {
    ?PatientCareLimitsEnd time:month ?Month .
    ?PatientCareLimitsEnd time:day ?Day .
    ?PatientCareLimitsEnd time:year ?Year .
    ?PatientCareLimitsEnd time:hour ?Hour .
    ?PatientCareLimitsEnd time:minute ?Minute .
  }
}

+-------------------------+-----+-----+-----+-----+-----+
| PatientCareLimitsEnd    | Month | Day | Year | Hour | Minute |
| sharecp:spe_patientcarestay_007_end | 8    | 19  | 2018 | 14   | 08     |
+-------------------------+-----+-----+-----+-----+-----+

Tableau 27. Date de sortie du patient 007 au sein de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère
**Cas d’utilisation n°3 : Quelle est la contrainte temporelle qui existe entre deux interventions données et quelle est sa durée (durée de l’intervalle de temps entre ces deux interventions)?**

Cette ontologie permet également à travers des requêtes SPARQL (voir ci-dessous) de déterminer des intervalles de temps qui existent entre deux interventions données. Nous allons prendre le cas de deux interventions sharescp:administer_drugs_day2b_h24_h48_spe et sharecp:administer_drugs_day1_h0_h1_spe exécutées dans l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère. Par convention, l’intervention sharecp:administer_drugs_day2b_h24_h48_spe qui exécute le processus clinique atomique sharecp:administer_iv_betamethasone le deuxième jour de soins sera considérée comme l’intervention n°1 et l’intervention sharecp:administer_drugs_day1_h0_h1_spe qui exécute dans la première heure de soins un processus clinique composite dans lequel se trouve le processus atomique sharecp:administer_iv_betamethasone sera considérée comme l’intervention n°2. Le tableau 28 ci-dessous illustre les résultats obtenus à l’issue de cette requête.

**Requête SPARQL**

```
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX time: <http://www.w3.org/2006/time#>

SELECT DISTINCT ?TemporalConstraintBetweenInterventions ?maxDurationAfter ?minDurationAfter
WHERE
{
 ?TemporalConstraintBetweenInterventions cp:temporal-constraint-intervention-1 sharecp:administer_drugs_day2b_h24_h48_spe .
 ?TemporalConstraintBetweenInterventions cp:temporal-constraint-intervention-2 sharecp:administer_drugs_day1_h0_h1_spe .
 ?TemporalConstraintBetweenInterventions cp:minTimeAfter ?minTemporalConstraintsDuration .
 ?maxTemporalConstraintsDuration time:hours ?maxDurationAfter .
 ?minTemporalConstraintsDuration time:hours ?minDurationAfter .
}
```

<table>
<thead>
<tr>
<th>TemporalConstraintBetweenInterventions</th>
<th>maxDurationAfter (hour)</th>
<th>minDurationAfter (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:TemporalConstraint_After</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

**Tableau 28. Contrainte temporelle entre deux interventions données et durée de l’intervalle de temps**
Cas d’utilisation n°4 : Quelles sont les variances et leurs dates de survenue chez un patient donné au cours de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère ?

La requête ci-dessous permet d’obtenir les variances et leurs dates de survenue chez un patient donné au cours de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère. Le tableau 29 ci-permet d’illustrer le résultat de cette requête.

**Requête SPARQL**

```sparql
PREFIX sharecp: <http://www.semanticweb.org/bediang/ontologies/2018/7/sharecp#>
PREFIX cont: <http://www.semanticweb.org/bediang/ontologies/2018/2/context#>
PREFIX cp: <http://www.semanticweb.org/bediang/ontologies/2015/2/cp#>
PREFIX time: <http://www.w3.org/2006/time#>

WHERE {
 sharecp:Patient_007 cont:has-carestayencounter ?StayEncounter .
 ?VarianceDateTime time:month ?Month .
 ?VarianceDateTime time:day ?Day .
 ?VarianceDateTime time:year ?Year .
 ?VarianceDateTime time:hour ?Hour .
 ?VarianceDateTime time:minute ?Minute .
}
```

<table>
<thead>
<tr>
<th>Variances</th>
<th>Month</th>
<th>Day</th>
<th>Year</th>
<th>Hour</th>
<th>Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharecp:inability_to_perform_abdomino_pelvic_ultrasound_exam</td>
<td>8</td>
<td>15</td>
<td>2018</td>
<td>13</td>
<td>45</td>
</tr>
</tbody>
</table>

Tableau 29. Variance et date de survenue chez le patient 007 au cours de l’itinéraire clinique relatif à la prise en charge de la pré-éclampsie sévère
7.3.3.2.3. Utilisation des règles SWRL

**Cas d’utilisation :** Quels sont les patients qui suivent ou qui sont encore inclus dans l’itinéraire clinique relatif à la prise en charge des patients ayant une pré-éclampsie sévère à l’Hôpital Central de Yaoundé à une date donnée ?

Nous avons traité ce cas en utilisant une règle SWRL. Cette règle SWRL (voir ci-dessous) utilise les concepts et les propriétés de l’ontologie ShaRE-CP ainsi que les prédicats spécifiques au langage SWRL.

Soit les variables t1, t2 et t3 représentant la date d’entrée d’un patient, sa date de sortie et la date du jour respectivement.

**Règle SWRL**

```
cont:Patient(?p), cont:has-carestayencounter (?p, ?cs),
cont:patientcarestayencounter-associated-with-calendar (?cs, ?ca),
time:hasBeginning (?ca, ?be), time:hasEnd (?ca, ?en), sharecp:start-date-literal (?be, ?t1^swrlb:dateTime),
sharecp:end-date-literal (?en, ?t2^swrlb:dateTime),
sharecp:date-of-today (?t3^swrlb:dateTime),
swrlb:greaterThan (?t3, ?t1),
swrlb:lessThan (?t3, ?t2) \rightarrow sharecp:patient-currently-in-cp (?pa)
```
7.4. Discussion

L'utilisation d'une ontologie représente une des alternatives basée sur l'informatique pour l'opérationnalisation et l'aide à la décision associée à l'exécution des itinéraires cliniques en soins de santé [302]. Un des intérêts d'une ontologie est de permettre la représentation des connaissances « sous une forme directement exploitable par la machine, le plus souvent en association avec des règles de production » [303]. Ainsi, à partir d'une base de connaissances (ontologie), il est possible d'effectuer une recherche de données ou d'inférer de nouvelles connaissances en se basant sur le graphe de connaissance sous-jacent.

Ce chapitre, repose d'une part, sur l’ontologie ShaRE-CP développée pour l'exécution d'un itinéraire clinique et de son application dans la prise en charge des patientes souffrant de pré-éclampsie sévère à l'instar de celles dela maternité de l'Hôpital Central de Yaoundé. Cette ontologie ShaRE-CP intègre plusieurs domaines de connaissances à savoir : le domaine de connaissance relatif aux itinéraires cliniques, celui des guidelines, des ressources et du contexte dans lequel sera déploéyé cet itinéraire clinique. D'autre part, il repose sur quelques cas d’utilisation (situations pour lesquelles cette ontologie peut servir comme base de raisonnement ou de résolution du problème) identifiés pour illustrer la recherche de données ou l'inférence de nouvelles connaissances. Ces cas d'utilisation concernent soit la gestion des itinéraires cliniques uniquement, soit la gestion des itinéraires cliniques et leur contextualisation, soit encore la gestion des patients au sein d’un itinéraire clinique.

Compte tenu des interactions entre les itinéraires cliniques et les autres domaines de connaissances sus-cités (les guidelines ou recommandations pour les bonnes pratiques, les ressources et le contexte), l'idée de base est de faciliter et d'améliorer la gestion, l'exécution, le partage et la réutilisabilité des itinéraires cliniques à travers l'utilisation d'outils basés sur la logique de description [304]. En accord avec l’approche du web sémantique, trois techniques ont été utilisées pour rechercher, extraire ou inférer des connaissances à savoir : l’utilisation d’un raisonneur OWL, la définition des requêtes SPARQL et l’établissement de règles d’inférence SWRL.

S'agissant de l'utilisation du raisonnement, les langages « RDF Shéma » ou OWL2 permettent de définir des classes et des propriétés ainsi que des hiérarchies et des relations entre ces classes et ces propriétés. La définition de ces relations, hiérarchies entre les classes et entre les propriétés constitue ce que l'on appelle les règles. Ces règles constituent les supports utilisés pour le raisonnement automatique afin de répondre à des questions spécifiques ou d’inférer de nouvelles connaissances [299]. Une inférence est un processus de raisonnement basé sur des connaissances acquises et des règles afin d'obtenir de nouvelles connaissances [299].

Dans le cas de l'ontologie ShaRE-CP, les classes et les propriétés ainsi que les relations et les hiérarchies relatives aux différents domaines de connaissance intégrés dans cette ontologie ont pu être représentées. Sur la base des cas d’utilisation identifiés, un raisonneur a été utilisé afin de tester non seulement la consistant de cette ontologie ShaRE-CP mais aussi d'évaluer sa capacité à servir de support pour la résolution de ceux-ci en utilisant le raisonnement et l’inférence de connaissances [299]. Sur la base des cas d’utilisation identifiés, les réponses fournies et les inférences de connaissances issues de l’exécution du raisonneur automatique sur le graphe de connaissance ShaRE-CP montrent que les approches basées sur les ontologies (à l’instar de celles utilisant le langage OWL2) peuvent constituer des outils favorables à une exécution intelligente des itinéraires cliniques [302].

Par ailleurs, on sait que l’on ne peut tout exprimer sur un graphe de connaissance par des raiossements en OWL. Le raisonnement basé sur le langage OWL2 peut présenter certaines limites notamment dans le cadre de l’exécution certaines relations monodirectionnelles, des relations cycliques ou bien boucle (en raison de l’absence de fonctions permettant d’incrémenter un compteur) ou des limites dans l’expressivité du type de données (par exemple, il est impossible de comparer deux valeurs de propriété durant l’exécution) [302]. Ces limites ont pu être adressées en partie dans l’ontologie ShaRE-CP via l’association de l’ontologie des services OWL-S qui elle, permet de définir les différents types d’interactions qui existent entre les composants d’un service web [212]. Il est tout à fait imaginable que, pour augmenter l’efficacité et la pertinence de cette ontologie (surtout en milieu de soins), que celle-ci soit greffée à des outils supplémentaires permettant de faire des calculs supplémentaires. Il y a donc besoin de combiner toutes ces approches afin d’extraire davantage de connaissances et tirer profit d’un graphe RDF.

En utilisant une base de connaissances (graphe RDF), on peut également utiliser des règles SWRL pour établir des inférences et générer des nouvelles connaissances avec le but d’améliorer l’expressivité du langage OWL2 [23]. Une règle SWRL est composée d’un antécédent et d’une conséquence. Elle permet ainsi d’établir une correspondance (relation d’implication) entre des atomes appartenant d’une part à l’antécédent (‘body’) et d’autre part, à ceux appartenant à la conséquence.
Une fois que les conditions décrites dans l’antécédent sont vraies alors celles décrites dans la conséquence seront satisfaites. En utilisant comme exemple la base de connaissances ShaRE-CP, une règle SWRL permettant de trouver quels sont les patients qui suivent ou qui sont encore inclus dans l’itinéraire clinique à une date donnée, a été implémentée. L’exécution du moteur d’inférence permet ainsi d’infiltrer et d’identifier lesdits patients. D’autres règles d’inférence peuvent être également implémentées pour d’autres cas d’utilisation à l’instar de la prédiction sur les processus cliniques (processus atomiques) qui ne pourraient être exécutés à cause d’un déficit quelconque en ressource de la part d’une institution hospitalière par exemple, etc. Par ailleurs, l’on peut également utiliser le langage SWRL pour effectuer la fusion des ontologies à partir des règles SWRL. Cela se fait en mappant (établissant une correspondance entre) les concepts de l’ontologie source (les atomes pertinents de l’ontologie source sont utilisés dans l’antécédent) avec l’ontologie cible (les atomes correspondants à l’ontologie cible quant à eux sont utilisés dans la conséquence) [305].

La recherche ou l’extraction des connaissances (données sémantiques) à partir d’une ontologie peut également se faire en utilisant des requêtes SPARQL. Il s’agit d’un langage soutenu par le Consortium World Wide Web. Dans ce sens, il est considéré comme le standard en matière d’interrogation des bases de connaissances sémantiques en RDF [75, 300]. Une requête SPARQL est une séquence de modèles de triplets sous la forme « sujet prédicat objet » [306]. Les variables sont précédées de ? et les résultats correspondent aux faits qui satisfont tous les modèles de triplets de la séquence [306]. Dans le cadre de ce travail de recherche, les requêtes SPARQL ont été utilisées pour interroger la base de connaissance intégrée ShaRE-CP. Ces requêtes interrogent selon différents niveaux de spécificités, les liens sémantiques qui existent, d’une part entre les concepts d’une même sous-ontologie de domaine et ceux qui existent entre les concepts appartenant à des sous-ontologies différentes d’autre part.


Le modèle que nous avons présenté à travers cette ontologie permet de raisonner sur plusieurs situations (confère les cas d’utilisation illustrés dans le chapitre 7) qui peuvent concerner le patient au cours de la gestion de ses soins à travers un itinéraire clinique. Ce modèle permet également une intégration avec un système d’information hospitalier ou un dossier de patient électronique afin d’exécuter des raisonnements supplémentaires basés sur les données ou l’évolution cliniquedes patients.

À ce titre, plusieurs auteurs ont déjà mis en place des approches qui vont dans ce sens, en essayant d’exploiter au mieux le potentiel qu’offrent les technologies du web sémantique (OWL2, SWRL, SPARQL). C’est le cas des règles SWRL qui ont été utilisées par certains auteurs pour : la représentation des relations temporelles (par exemple, les intervalles de temps) entre les interventions d’un itinéraire clinique [2, 26] ; la comparaison des valeurs entre des tests diagnostiques consécutifs effectués chez un patient [302] ; la détermination du schéma de prise en charge des patients après les résultats d’un test diagnostique [1] et l’utilisation des informations issues des patients pour proposer des diagnostics, des traitements et une prise en charge ou de générer des alertes en cas d’interactions médicamenteuses néfastes ou d’effets secondaires [23, 27]. Enfin, on peut citer l’utilisation des règles SWRL pour la personnalisation des soins des patients (par exemple, décider si un itinéraire clinique est applicable à un patient ayant une ou des conditions cliniques données) dans un itinéraire clinique à partir des données extraites d’une base sémantique de dossiers patients [77]. Il en est de même pour des approches qui ont utilisé le langage SPARQL : (i) pour créer des itinéraires cliniques personnalisés spécifiques aux hôpitaux en exprimant et en reconstituant explicitement les connaissances sur les itinéraires cliniques d’une part, et à travers une analyse sémantique des données cliniques historiques d’autre part [78] ; et (ii) pour capturer des informations...
sur les patients à partir des données extraites d’une base sémantique de dossiers patients en vue de leur utilisation pour l’application de certaines règles sémantiques ou pour la personnalisation des soins des patients dans un itinéraire clinique [77]. Pour cette dernière approche, il s’agissait en effet de la combinaison de l’utilisation des requêtes SPARQL pour capturer certaines données et de l’application des règles SWRL pour l’exécution de certaines règles.
Chapitre 8
Conclusion et Perspectives

Les itinéraires cliniques sont de plus en plus utilisés en soins de santé pour améliorer la qualité et l'efficience des soins. Ces itinéraires cliniques intègrent très souvent des données issues de plusieurs domaines de connaissances, notamment : les données issues des recommandations de la littérature scientifique (médecine basée sur les preuves) mais surtout, les données du contexte (par exemple, la disponibilité des ressources matérielles, financières, humaines ou autres) dans lequel les interventions requises au sein d'un itinéraire clinique doivent être réalisées.

Lors du développement d’un itinéraire clinique, la maîtrise de la cohérence de tous ces éléments de connaissance ainsi que la complexité de la gestion de leur évolution dans le temps et l’espace constituent des défis importants. Il est donc important d’établir un modèle sémantique commun permettant de représenter et de décrire les concepts et les liens sémantiques propres à un itinéraire clinique d’une part, et d’autre part, représenter et décrire les concepts et les liens sémantiques associés aux domaines de connaissances qui interagissent avec celui-ci (guidelines, contexte, ressources, etc.).

Ce travail de recherche a permis de développer une ontologie dénommée Shareable and Reusable Clinical Pathway Ontology (ShaRE-CP). Il s’agit d’un modèle sémantique modulaire de gestion des itinéraires cliniques qui intègre quatre domaines de connaissance à savoir : les itinéraires cliniques, les guidelines, les ressources en santé et le contexte dans lequel un itinéraire clinique est déployé. Cette ontologie décrit d’une part, les concepts et les relations qui existent au sein de ces quatre domaines de connaissance. D’autre part, elle identifie et met en évidence les liens et autres interactions sémantiques qui existent entre les concepts issus des différents domaines de connaissance.

L’ontologie ShaRE-CP a été utilisée pour représenter les faits et les données issus de l’itinéraire clinique destiné à la prise en charge des patientes ayant une pré-éclampsie sévère à l’Hôpital Central de Yaoundé ; des recommandations de bonnes pratiques (guidelines OMS) pour la prise en charge des patientes souffrant de pré-éclampsie et d’éclampsie ; des ressources requises pour la prise en charge des patientes souffrant de pré-éclampsie et d’éclampsie et enfin, du contexte de l’Hôpital Central de Yaoundé y compris la possibilité de connecter à un éventuel Système d’Information Hospitalier ou dossier patient électronique. Les interactions sémantiques entre les différents faits et connaissances ont également été représentés.

En s’appuyant sur certains cas d’utilisation, le fonctionnement et la consistance de l’ontologie ShaRE-CP ont été testés et validés au travers de l’exécution d’un moteur de raisonnement, d’applications des règles SWRL et d’interrogations via des requêtes SPARQL afin de générer ou d’extraire des connaissances.

La description des liens sémantiques qui existent au sein des itinéraires cliniques d’une part et d’autre part, de ceux qui existent entre les itinéraires cliniques et d’autres domaines de connaissances connexes comme les guidelines et le contexte (ressources, règles et autres contraintes y compris des données des patients) rendent ces itinéraires cliniques plus explicites et détaillés. Les technologies du web sémantique offrent les possibilités de connecter de manière intégrée et plus expressive les données ou les connaissances issues de ces différents domaines de connaissance. Elles offrent également d’énormes potentialités pour la construction et l’extraction des connaissances utiles pour l’amélioration des services et de la qualité des soins.

Le modèle développé au cours de ce travail scientifique fournit un cadre générique qui peut aider à la mise en place d’un système d’aide à la décision pour une planification pertinente et cohérente des soins (à l’échelle d’un système de santé ou d’un hôpital). Il aiderait ainsi à concevoir des itinéraires cliniques dits intelligents c’est-à-dire qui respectent au mieux les différentes contraintes issues des domaines de connaissances connexes (guidelines, contexte) aux itinéraires cliniques. A ce titre, ce modèle pourrait permettre aux gestionnaires de santé ou de soins, de soutenir le développement efficace et efficient des itinéraires cliniques ; de vérifier leur cohérence (vérifier les incompatibilités) et leur pertinence avec les domaines de connaissance connexes tels que les guidelines et le contexte (à l’échelle d’un système de santé ou d’un hôpital). Cela permettrait par exemple, de tester l’utilisabilité
d’un itinéraire clinique dans un contexte donné et améliorer ainsi sa « praticabilité » (utilisation effective) par la mise en œuvre intelligente des adaptations nécessaires.

Ce modèle peut également servir de support pour la gestion (exécution et suivi) des soins à l’échelle d’un patient. De plus, son caractère modulaire offre la possibilité de le connecter aux données des patients contenues dans un dossier patient électronique. De ce fait, il pourrait aider les cliniciens ou les gestionnaires de soins à suivre l’exécution des soins (interventions) chez un patient ou un groupe de patients donné au cours d’un itinéraire clinique; de moniter l’atteinte des objectifs cliniques attendus ; d’identifier la survenue des variances et leur temporalité au cours de l’exécution d’un IC et enfin, d’établir les liens entre la survenue de ces variances et les évènements qui se sont produits dans le contexte (ex : l’hôpital) dans lequel un IC est exécuté et qui peuvent expliquer leur survenue. En outre, cette intégration entre les données cliniques et les données du contexte (comme par exemple, la disponibilité des ressources) peut aider à détecter précocement la capacité d’un hôpital donné à pouvoir délivrer ou non des soins dans le cadre d’un itinéraire clinique donné et faciliter la prise de décision sur la nécessité de garder ou d’évacuer un patient donné.

L’ontologie ShaRE-CP à ce niveau de conception et de développement est une preuve de concept. Bien que ce modèle offre déjà de nombreuses possibilités pour la gestion des itinéraires cliniques, leur contextualisation et la gestion des soins des patients en leur sein, l’ontologie ShaRE-CP reste encore perfectible. De nombreuses activités sont envisagées pour l’améliorer.

L’amélioration du modèle afin de résoudre des cas d’utilisation supplémentaires
Le modèle de cette ontologie devra être amélioré pour répondre à des questions (cas d’utilisation) supplémentaires que l’on pourrait se poser dans le futur. A titre d’exemples, en voici quelques-unes :
- En quoi est-ce que l’apparition d’une nouvelle technologie (ex : un dispositif médical.) au sein d’une institution hospitalière peut-elle faire repenser les activités d’un itinéraire clinique donné?
- Etant donné tous les autres patients déjà inclus dans un itinéraire clinique donné (ou dans d’autres itinéraires cliniques de l’hôpital), peut-on exécuter cet itinéraire clinique pour un patient donné dans les délais prévus ?
- Faut-il inclure ou garder un patient présentant des caractéristiques cliniques particulières pour qu’il suive un itinéraire clinique donné ou alors faut-il le référer ?

Le développement d’un outil graphique pour la modélisation et le développement des itinéraires cliniques dits intelligents
Le développement d’une application avec une interface graphique pour la modélisation et le développement des itinéraires cliniques en tenant compte automatiquement des interactions avec les autres domaines de connaissance (guidelines, contexte), aura pour but de faciliter l’appropriation des soins basés sur les itinéraires cliniques par les gestionnaires de santé ou de soins et soutenir le développement des itinéraires cliniques dits intelligents. En plus des règles inhérentes aux technologies du web sémantique (à l’instar de la vérification de la consistance des ontologies), un tel outil facilitera: (i) la description, la modélisation et le développement des itinéraires cliniques, (ii) la visualisation des itinéraires cliniques de manière à faciliter la discussion entre experts, et (iii) aidera à répondre à des questions de type « What if » (si je modifie tel élément dans un itinéraire clinique, quel est son implication sur le reste de l’itinéraire clinique ?).Cet outil sera donc capital pour la planification et la gestion des soins des patients.

L’intégration de ce modèle au sein d’un Système d’Information Hospitalier
Enfin, l’intégration de ce modèle au sein d’un SIH nous paraît également comme étant une perspective intéressante. A l’instar des cas d’utilisation que nous avons identifiés, cette intégration permettrait d’assurer de manière pertinente et efficace l’exécution des soins des patients, le suivi de leur évolution et la gestion des connaissances y compris des ressources associées à ces itinéraires cliniques. De plus, ce graphe de connaissance basé sur les itinéraires cliniques peut faire partie d’un graphe de connaissance plus général d’un hôpital de manière à rendre toutes les applications qui y sont développées plus intelligentes.


108. Allen D, Rixson L. How has the impact of “care pathway technologies” on service integration in stroke care been measured and what is the strength of the evidence to support their effectiveness in this respect? Int J EvidBasedHealthc. 2008;6:78–110.


239. Torre R, Bertazzoni G. [Nursing Intervention Classification (N.I.C.) and Nursing Outcome Classification (N.O.C.) of Iowa University: a description of methods, tools and contents]. Profinferm. 2003;56:143–58.


Annexe 1 : Définition des classes (axiomes) relatives à l'ontologie de l'itinéraire clinique

\[
\begin{align*}
\text{cp:Clinical_Pathway} & \subseteq \text{cp:sets only cp:Expected_LOS} \\
\text{cp:Clinical_Pathway} & \subseteq \text{cp:designed-for only cp:Clinical_Condition} \\
\text{cp:Clinical_Pathway} & \subseteq \text{cp:has-outcome only cp:Outcome} \\
\text{cp:Clinical_Pathway} & \subseteq \text{cp:has-outcome some cp:Outcome} \\
\text{cp:Clinical_Pathway} & \subseteq \text{cp:has-intervention only cp:Intervention} \\
\text{cp:Clinical_Pathway} & \subseteq \text{cp:has-intervention some cp:Intervention} \\
\text{cp:expected_LOS} & \subseteq \text{time:Interval} \\
& \quad \subseteq \text{cp:associated-with-calendar only cp:Care_Calendar} \\
& \quad \subseteq \text{'time:days duration' only xsd:decimal} \\
& \quad \subseteq \text{'time:hours duration' only xsd:decimal} \\
\text{cp:Care_Calendar} & \subseteq \text{'time:Temporal entity'} \\
& \quad \subseteq \text{'time:has beginning' only cp:Care_Calendar_Limits} \\
& \quad \subseteq \text{'time:has end' only cp:Care_Calendar_Limits} \\
\text{cp:Care_Calendar_Limits} & \subseteq \text{time:GeneralDateTimeDescription} \\
& \quad \subseteq \text{time:day only xsd:gDay} \\
& \quad \subseteq \text{time:month only xsd:gMonth} \\
& \quad \subseteq \text{time:year only xsd:gYear} \\
& \quad \subseteq \text{time:hour only xsd:nonNegativeInteger} \\
& \quad \subseteq \text{time:minute only xsd:nonNegativeInteger} \\
\text{cp:Outcome} & \subseteq \text{cp:is-outcome-of only cp:Clinical_Pathway} \\
& \quad \subseteq \text{cp:is-outcome-of some cp:Clinical_Pathway} \\
& \subseteq \text{cp:expected-for only cp:Care_Phase} \\
& \subseteq \text{cp:expected-for some cp:Care_Phase} \\
& \subseteq \text{cp:has-condition-outcome only cp:Condition_Outcome} \\
& \subseteq \text{cp:reached-by only cp:Intervention} \\
& \subseteq \text{cp:reached-by some cp:Intervention} \\
& \subseteq \text{cp:made-up-of only cp:Outcome} \\
& \subseteq \text{cp:outcome-id only noc:NOC_Classification}
\end{align*}
\]
cp:Condition_Outcome \subseteq cp:\text{is-condition-of} \text{ only } cp:Outcome

\text{cp:Measurement} \subseteq \text{cp:Condition\_Outcome}

\text{cp:Care\_Phase} \subseteq \text{time:Interval}

\subseteq \text{cp:associated\-with-}calendar \text{ only } \text{cp:Care\_Calendar}

\subseteq \text{\lq time:interval in\rq } \text{only } \text{cp:Expected\_LOS}

\subseteq \text{\lq time:interval in\rq } \text{some } \text{cp:Expected\_LOS}

\subseteq \text{\lq time:interval in\rq } \text{only } \text{cp:Care\_Phase}

\subseteq \text{\lq time:interval equals\rq } \text{only } \text{cp:Care\_Phase}

\subseteq \text{\lq time:interval meets\rq } \text{only } \text{cp:Care\_Phase}

\text{cp:Care\_period} \subseteq \text{cp:Care\_Phase}

\subseteq \text{cp:Care\_Phase and \lq time:has beginning\rq some cp:Care\_Calendar\_Limits}

\subseteq \text{cp:Care\_Phase and \lq time:has end\rq some cp:Care\_Calendar\_Limits}

\subseteq \text{\lq time:days duration\rq only } \text{xsd:decimal}

\subseteq \text{\lq time:hours duration\rq only } \text{xsd:decimal}

\text{cp:Care\_Step} \subseteq \text{cp:Care\_Phase}

\text{cp:Care\_Period \ Disjoint With } \text{cp:Care\_Step}

\text{cp:Disease} \subseteq \text{cp:Clinical\_Condition}

\text{cp:Procedure} \subseteq \text{cp:Clinical\_Condition}

\text{cp:Disease \ Disjoint With } \text{cp:Procedure}

\text{cp:Variance} \subseteq \text{time:Instant}

\subseteq \text{cp:occurs\-during only } \text{cp:Intervention}

\subseteq \text{cp:occurs\-during some } \text{cp:Intervention}

\subseteq \text{cp:detecting\-variance\-date\-time only } \text{cp:Variance\_Date\_Time}

\subseteq \text{cp:detecting\-variance\-date\-time some } \text{cp:Variance\_Date\_Time}

\text{cp:Variance\_Date\_Time} \subseteq \text{time:GeneralDateTimeDescription}

\subseteq \text{time:day only } \text{xsd:gDay}

\subseteq \text{time:month only } \text{xsd:gMonth}

\subseteq \text{time:year only } \text{xsd:gYear}

\subseteq \text{time:hour only } \text{xsd:nonNegativeInteger}

\subseteq \text{time:minute only } \text{xsd:nonNegativeInteger}

\subseteq \text{time:second only } \text{xsd:decimal}
cp:Intervention ≡ process:SimpleProcess

⊆ process:Process
⊆ time:TemporalEntity
⊆ cp:is-intervention-of only cp:Clinical_Pathway
⊆ cp:performed-during only cp:Care_Phase
⊆ cp:performed-during some cp:Care_Phase
⊆ cp:reaches only cp:Outcome
⊆ reaches some Outcome
⊆ performs only Clinical_Process
⊆ performs some Clinical_Process


⊆ service:ServiceModel

process:CompositeProcess ≡ process:Process and (process:composedOf exactly 1 owl:Thing)

⊆ process:Process
⊆ process:computedEffect max 1 owl:Thing
⊆ process:computedInput max 1 owl:Thing
⊆ process:computedOutput max 1 owl:Thing
⊆ process:computedPrecondition max 1 owl:Thing
⊆ process:invocable max 1 rdfs:Literal
⊆ cp:is-performed-by only cp:Intervention
⊆ cp:is-performed-by some cp:Intervention
⊆ process:composedOf only process:ControlConstruct
⊆ process:composedOf some process:ControlConstruct
Disjoint With process:SimpleProcess
Disjoint With process:AtomicProcess

process:AtomicProcess

⊆ process:Process
⊆ process:hasClient value process:TheClient
⊆ process:performedBy value process:TheServer
⊆ cp:process-id only (snomed-ct:Snomed_CT_Ontology or nic:NIC_Classification or chop:CHOP_Classification)
⊆ cp:has-alternative only Process:AtomicProcess
Disjoint With Process:SimpleProcess
Disjoint With Process:CompositeProcess
cp: Clinical_Process \( \subseteq \) process:Process
\[\equiv \] process:AtomicProcess or process:CompositeProcess
\[\equiv \] cp:Diagnostic_Tests or cp:Activity_Safety or cp:Assessment_Monitoring or cp:Consult_Referral or cp:Diet_Nutrition or cp:Discharge_Planning or cp:Treatment or cp:PatientEducation_PsychosocialSupport

Process: controlConstruct \( \subseteq \) process:components only ObjectList:List
\[\subseteq \] process:timeout max 1 owl:Thing

Process: controlConstructBag \( \subseteq \) ObjectList:List
\[\subseteq \] ObjectList:first only (process:ControlConstruct and process:AtomicProcess)
\[\subseteq \] ObjectList:rest only process:ControlConstructBag

Process: controlConstructList \( \subseteq \) ObjectList:List
\[\subseteq \] ObjectList:first only (process:ControlConstruct and process:AtomicProcess)
\[\subseteq \] ObjectList:rest only process:ControlConstructList

cp: Repeat_Every \( \subseteq \) process:Iterate
\[\subseteq \] cp:repeat-process only (process:ControlConstruct or process:AtomicProcess)
\[\subseteq \] cp:repeat-process some (process:ControlConstruct or process:AtomicProcess)
\[\subseteq \] cp:repeat-period some cp:Repeat_Period
\[\subseteq \] cp:repeat-period only cp:Repeat_Period
\[\subseteq \] cp:number-of-iteration only rdfs:Literal
\[\subseteq \] cp:number-of-iteration some rdfs:Literal

cp: Repeat_Period \( \subseteq \) time:DurationDescription
\[\subseteq \] 'time:days duration' only xsd:decimal
\[\subseteq \] 'time:hours duration' only xsd:decimal

process: Iterate \( \subseteq \) process:ControlConstruct
process: Perform \( \subseteq \) process:ControlConstruct
\[\subseteq \] process:process exactly 1 owl:Thing

cp: TemporalConstraints \( \subseteq \) time:TemporalEntity

cp: TemporalConstraints_Between_Interventions \( \subseteq \) cp: TemporalConstraints
\[\subseteq \] cp:temporal-constraint-intervention-1 only cp:Intervention
\[\subseteq \] cp:temporal-constraint-intervention-1 some cp:Intervention
\[\subseteq \] cp:temporal-constraint-intervention-2 only cp:Intervention
\[\subseteq \] cp:temporal-constraint-intervention-2 some cp:Intervention
\[ \subseteq \text{cp:maxTime only cp:Temporal\_Constraints\_Duration} \]
\[ \subseteq \text{cp:minTime only cp:Temporal\_Constraints\_Duration} \]
\[ \text{cp:Temporal\_Constraints\_Duration} \subseteq \text{time:DurationDescription} \]
\[ \subseteq \text{time:minutes only xsd:decimal} \]
\[ \subseteq \text{time:hours only xsd:decimal} \]
\[ \subseteq \text{time:days only xsd:decimal} \]
\[ \subseteq \text{time:weeks only xsd:decimal} \]
Annexe 2 : Définition des classes (axiomes) relatives à l’ontologie des recommandations (guidelines)

Gdl:Guidelines $\subseteq$ dcterms:subject only gdl:Subjects
  $\subseteq$ dcterms:subject some Subjects
  $\subseteq$ dcterms:creator only gdl:Creators
  $\subseteq$ dcterms:creator some gdl:Creators
  $\subseteq$ dcterms:publisher only gdl:Publishers
  $\subseteq$ dcterms:publisher some gdl:Publishers
  $\subseteq$ dcterms:contributor only gdl:Contributors
  $\subseteq$ dcterms:coverage only dcterms:Location
  $\subseteq$ dcterms:language only dcterms:LinguisticSystem
  $\subseteq$ dcterms:language some dcterms:LinguisticSystem
  $\subseteq$ dcterms:source only dcterms:BibliographicResource
  $\subseteq$ dcterms:available only xsd:gYear
  $\subseteq$ dcterms:available some xsd:gYear
  $\subseteq$ dcterms:identifier only rdfs:Literal
  $\subseteq$ gdl:has-recommendations only gdl:Guidelines_Recommendations
  $\subseteq$ gdl:has-recommendations some gdl:Guidelines_Recommendations
  $\subseteq$ gdl:has-evidence-grading-method only gdl:Evidence_Grading_Method
  $\subseteq$ gdl:has-institution only rdfs:Literal
  $\subseteq$ gdl:has-institution some rdfs:Literal
  $\subseteq$ gdl:Evidence_Grading_Method
    $\subseteq$ gdl:has-description only rdfs:Literal
    $\subseteq$ gdl:has-description some rdfs:Literal
  $\subseteq$ gdl:Guidelines_Recommendations
    $\subseteq$ gdl:has-evidence-quality only gdl:Recommendation_Evidence_Quality
    $\subseteq$ gdl:has-intervention only gdl:Related_Interventions
    $\subseteq$ has-status only Guidelines_Recommendations_Status
    $\subseteq$ has-status some Guidelines_Recommendations_Status
    $\subseteq$ gdl:has-strength only gdl:Recommendation_Strength
gdl:has-strength some gdl:Recommendation_Strength

⊆ gdl:has-recommendation-conditions only gdl:Recommendation_Conditions

⊆ dcterms:identifier only rdfs:Literal

dcterms:BibliographicResource

⊆ gdl:has-url only rdfs:Literal

⊆ dcterms:bibliographicCitation only rdfs:Literal

Gdl:Subject SameAs mesh:MeSH_RDF_ID
Annexe 3 : Définition des classes (axiomes) relatives à l'ontologie des ressources

res:Drug ⊆ res:has-description only rdfs:Literal
⊆ res:has-description some rdfs:Literal
⊆ res:has-drug-administration-route only res:Drug_Administration_Route
⊆ res:has-drug-administration-route some res:Drug_Administration_Route
⊆ res:has-drug-dosage only res:Drug_Dosage
⊆ res:has-drug-dosage some res:Drug_Dosage
⊆ res:has-drug-presentation-form only res:Drug_Presentation_Form
⊆ res:has-drug-presentation-form some res:Drug_Presentation_Form
⊆ res:has-drug-inn only res:Drug_INN
⊆ res:has-drug-inn some res:Drug_INN
⊆ res:has-drug-galenic-form only res:Drug_Galenic_Form
⊆ res:has-drug-galenic-form some res:Drug_Galenic_Form

res:Medical_Consumable ⊆ res:has-description only rdfs:Literal
res:Medical_Equipment ⊆ res:has-description only rdfs:Literal
Annexe 4 : Définition des classes (axiomes) relatives à l'ontologie du contexte

cont:Patient \subseteq \text{cont:belongs-to only cont:Community}
\subseteq \text{cont:belongs-to some cont:Community}
\subseteq \text{cont:lives-in only cont:Setting}
\subseteq \text{cont:lives-in some cont:Setting}
\subseteq \text{cont:has-carestayencounter only cont:Patient_Care_Stay_Encounter}

cont:Patient_Care_Stay_Encounter \subseteq \text{cont:is-connected-to only his:Medical_Record}
\subseteq \text{cont:has-patient-status only cont:Patient_Clinical_Status}
\subseteq \text{cont:has-patient-status some cont:Patient_Clinical_Status}

cont:Community \subseteq \text{cont:has-status only cont:Community_Status_Rules}

cont:Setting \subseteq \text{cont:has-status only cont:Setting_Status_Rules}

cont:Health_Institution \subseteq \text{cont:has-department only cont:Health_Institution_Department}
\subseteq \text{cont:has-department some cont:Health_Institution_Department}
\subseteq \text{cont:has-level-of-care only cont:Health_Institution_Care_Level}
\subseteq \text{cont:has-level-of-care some cont:Health_Institution_Care_Level}
\subseteq \text{cont:has-role only cont:Health_Institution_Roles}
\subseteq \text{cont:has-role some cont:Health_Institution_Roles}
\subseteq \text{cont:within only cont:Setting}
\subseteq \text{cont:within some cont:Setting}
\subseteq \text{cont:has-status only cont:Health_Institution_Status_Rules}

cont:Health_Institution_Roles \subseteq \text{cont:works-for only cont:Health_Institution_Departments}
\subseteq \text{cont:works-for some cont:Health_Institution_Departments}

cont:Individual_Related_Preconditions \subseteq \text{cont:Context_Related_Preconditions}

cont:Community_Related_Preconditions \subseteq \text{cont:Context_Related_Preconditions}

cont:Health_Institution_Related_Preconditions \subseteq \text{cont:Context_Related_Preconditions}

cont:Setting_Related_Preconditions \subseteq \text{cont:Context_Related_Preconditions}

cont:Diet_Behavior_Experiences_Preferences_Preconditions \subseteq \text{cont:Individual_Related_Preconditions}

cont:Educational_Preconditions \subseteq \text{cont:Individual_Related_Preconditions}

cont:Financial_Preconditions \subseteq \text{cont:Individual_Related_Preconditions}

cont:Medical_Surgical_Family_Preconditions \subseteq \text{cont:Individual_Related_Preconditions}
cont:Beliefs_Religious_Preconditions \subseteq cont:Community_Related_Preconditions
cont:Socio_Cultural_Preconditions \subseteq cont:Community_Related_Preconditions
cont:Equipment_Consumable_Drug_Preconditions \subseteq cont:Health_Institution_Related_Preconditions
cont:Human_Preconditions \subseteq cont:Health_Institution_Related_Preconditions
cont:Infrastructural_Preconditions \subseteq cont:Health_Institution_Related_Preconditions
cont:Organizational_Regulatory_Preconditions \subseteq cont:Health_Institution_Related_Preconditions
cont:Infrastructural_Environmental_Preconditions \subseteq cont:Setting_Related_Preconditions
cont:Legal_Preconditions \subseteq cont:Setting_Related_Preconditions
cont:Political_Governance_Preconditions \subseteq cont:Setting_Related_Preconditions
cont:Socio_Economic_Preconditions \subseteq cont:Setting_Related_Preconditions
cont:Status_Region \subseteq cont:satisfies-preconditions only cont:Context_Related_Preconditions
\subseteq cont:does-not-satisfy-preconditions only cont:Context_Related_Preconditions
cont:From_Other_Causes \subseteq cont:Causes_Of_Variance
\subseteq cont:is-related-to-other-causes only cont:Status_Region
cont:From_Missing_Resources \subseteq cont:Causes_Of_Variance
cont:Other_Causes_From_HealthCare_Providers \subseteq cont:From_Other_Causes
cont:Other_Causes_From_Family_Community \subseteq cont:From_Other_Causes
cont:Other_Causes_From_Health_Institution \subseteq cont:From_Other_Causes
cont:Other_Causes_From_Patient \subseteq cont:From_Other_Causes
cont:Other_Causes_From_Setting \subseteq cont:From_Other_Causes
cont:Missing_Ressources_From_HealthCare_Providers \subseteq cont:From_Missing_Resources
cont:Missing_Ressources_From_Family_Community \subseteq cont:From_Missing_Resources
cont:Missing_Ressources_From_Health_Institution \subseteq cont:From_Missing_Resources
cont:Missing_Ressources_From_Patient \subseteq cont:From_Missing_Resources
cont:Missing_Ressources_From_Setting \subseteq cont:From_Missing_Resources
Annexe 5 : Définition des classes (axiomes) relatives à l’ontologie ShaRE-CP (intégration des ontologies des itinéraires cliniques, des recommandations (guidelines), des ressources et du contexte

Interactions between clinical pathway and context domains

Cp:Clinical_Pathway \subseteq cp:deployed-in only cont:Health_Institution
\subseteq cp:applied-to only cont:Patient_Care_Stay_Encounter

Process:AtomicProcess
\subseteq cp:is-under-responsability-of only cont:Health_Institution_Departments
\subseteq process:hasPrecondition only cont:Context_Related_Preconditions

cp:Variance \subseteq cp:occurs-on only cont:Patient_Care_Stay_Encounter
\subseteq cp:is-caused-by only cont:Causes_of_Variance
\subseteq cp:is-caused-by some cont:Causes_of_Variance

cp:Clinical_Condition \subseteq cp:is-clinical-condition-of only cont:Patient_Care_Stay_Encounter

Cont:Patient_Care_Stay_Encounter
\subseteq cont:patientcarestayencounter-associated-with-calendar only cp:Care_Calendar
\subseteq cont:patientcarestayencounter-associated-with-calendar some cp:Care_Calendar
\subseteq cont:follows only cp:Clinical_Pathway
\subseteq cont:has-clinical-condition only (cp:Disease or cp:Procedure)

cont:Health_Institution_Departments \subseteq cont:has-responsibility-of only process:AtomicProcess
cont:Context_Related_Preconditions \subseteq expr:Condition

Interactions between clinical pathway and health resources domains

Process:AtomicProcess \subseteq cp:requires only res:Health_Resources
res:Health_Resources \subseteq res:is-required only process:AtomicProcess

Interactions between clinical pathway and guidelines domains

cp:Clinical_Pathway \subseteq cp:implements only gdl:Guidelines_Recommendations

cp:Clinical_Condition \subseteq cp:is-part-of only gdl:Subjects

gdl:Guidelines_Recommendations \subseteq gdl:implemented-by only cp:Clinical_Pathway

process:AtomicProcess \subseteq cp:supported-by only gdl:Guidelines_Recommendations
\subseteq cp:is-not-supported-by only gdl:Guidelines_Recommendations
Interactions between guidelines and health resources domains

gdl:Guidelines_Recommendations \subseteq gdl:supports only process:AtomicProcess
\subseteq gdl:is-against only process:AtomicProcess

gdl:Related_Interventions \subseteq gdl:requires only res:Health_Resources
res:Health_Resources \subseteq res:is-required only gdl:Related_Interventions

Interactions between guidelines and context domains

gdl:Guidelines_Recommendations
\subseteq gdl:concerns only (cont:Patient_Status or cont:Community or cont:Health_Institution_Care_Level or cont:Setting)
\subseteq gdl:does-not-concern only (cont:Patient_Status or cont:Community or cont:Health_Institution_Care_Level or cont:Setting)

Interactions between context and health resources domains

cont:Patient \subseteq cont:has-resource only sharecp:Resource_Statement
\subseteq cont:does-not-have-resource only sharecp:Resource_Statement
cont:Community \subseteq cont:has-resource only sharecp:Resource_Statement
\subseteq cont:does-not-have-resource only sharecp:Resource_Statement
cont:Setting \subseteq cont:has-resource only sharecp:Resource_Statement
\subseteq cont:does-not-have-resource only sharecp:Resource_Statement
cont:Health_Institution \subseteq cont:has-resource only sharecp:Resource_Statement
\subseteq cont:does-not-have-resource only sharecp:Resource_Statement
sharecp:Resource_Statement \subseteq sharecp:has-resource only res:Health_Resources
\subseteq sharecp:does-not-have-resource only res:Health_Resources
cont:Health_Institution_Roles \subseteq cont:has-skill only sharecp:Resource_Statement
\subseteq cont:does-not-have-skill only sharecp:Resource_Statement
cont:From_Missing_Resources \subseteq cont:is-related-to-missing-resources only res:Health_Resources
\subseteq cont:is-related-to-missing-resources some res:Health_Resources
sharecp:Resources_Statement
\subseteq sharecp:resourcestatement-associated-with-calendar only cp:Care_Calendar