Climate warming enhances snow avalanche risk in the Western Himalayas

BALLESTEROS CANOVAS, Juan Antonio, et al.

Abstract

Ongoing climate warming has been demonstrated to impact the cryosphere in the Indian Himalayas, with substantial consequences for the risk of disasters, human well-being, and terrestrial ecosystems. Here, we present evidence that the warming observed in recent decades has been accompanied by increased snow avalanche frequency in the Western Indian Himalayas. Using dendrogeomorphic techniques, we reconstruct the longest time series (150 y) of the occurrence and runout distances of snow avalanches that is currently available for the Himalayas. We apply a generalized linear autoregressive moving average model to demonstrate linkages between climate warming and the observed increase in the incidence of snow avalanches. Warming air temperatures in winter and early spring have indeed favored the wetting of snow and the formation of wet snow avalanches, which are now able to reach down to subalpine slopes, where they have high potential to cause damage. These findings contradict the intuitive notion that warming results in less snow, and thus lower avalanche activity, and have major implications for the Western Himalayan region, an area where [...]
Climate warming enhances snow avalanche risk in the Western Himalayas

J. A. Ballesteros-Cánovas,a,b,1 D. Trappmannb, J. Madrigal-Gonzáleza,c, N. Eckerd, and M. Stoffela,b,e

1Climate Change Impacts and Risks in the Anthropocene, Institute for Environmental Sciences, University of Geneva, CH-1205 Geneva, Switzerland; a, b, d, eDepartment of Earth Sciences, University of Geneva, CH-1205 Geneva, Switzerland; cForest Ecology and Restoration Group, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá, Alcalá de Henares, ES-28805 Spain; dUnité de Recherche (UR) Érosion Torrentielle, Neige et Avalanches (ETNA), Irstea Grenoble/Université Grenoble Alpes, 38402 Saint Martin d’Hères, France; and eDepartment F.-A. Forel for Aquatic and Environmental Sciences, University of Geneva, CH-1205 Geneva, Switzerland

Edited by Martin J. Sharp, University of Alberta, Edmonton, AB, Canada, and accepted by Editorial Board Member David W. Schindler February 6, 2018 (received for review September 26, 2017)

Ongoing climate warming has been demonstrated to impact the cryosphere in the Indian Himalayas, with substantial consequences for the risk of disasters, human well-being, and terrestrial ecosystems. Here, we present evidence that the warming observed in recent decades has been accompanied by increased snow avalanche frequency in the Western Indian Himalayas. Using dendrogeomorphic techniques, we reconstruct the longest time series (150 y) of the occurrence and runout distances of snow avalanches that is currently available for the Himalayas. We apply a generalized linear autoregressive moving average model to demonstrate linkages between climate warming and the observed increase in the incidence of snow avalanches. Warming air temperatures in winter and early spring have indeed favored the wetting of snow and the formation of wet snow avalanches, which are now able to reach down to subalpine slopes, where they have high potential to cause damage. These findings contradict the intuitive notion that warming results in less snow, and thus lower avalanche activity, and have major implications for the Western Himalayan region, an area where human pressure is constantly increasing. Specifically, increasing traffic on a steadily expanding road network is calling for an immediate design of risk mitigation strategies and disaster risk policies to enhance climate change adaptation in the wider study region.

Significance

Climate warming is impacting the cryosphere in high mountain ranges, thereby enhancing the probability for more and larger mass-wasting processes to occur. This tree-ring–based snow avalanche reconstruction in the Indian Himalayas shows an increase in avalanche occurrence and runout distances in recent decades. Statistical modeling suggests that this increase in avalanche activity is linked to contemporaneous climate warming. These findings contradict the intuitive assumption that warming results in less snow, and thus fewer snow avalanches in the region, with major implications for disaster risk management and risk mitigation in a region with steadily increasing human occupation.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. M.J.S. is a guest editor invited by the Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: juan.ballesteros@unige.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716913115/-/DCSupplemental.

Published online March 13, 2018.
Spatial analyses of the areas affected by snow avalanches point to large spatial footprints during the 1970s and 1990s, and especially in the years 1991, 1974, and 2006. By contrast, snow avalanches left smaller spatial footprints before the 1970s. The minimum width of the area affected by snow avalanches in any given year is 132 m, which is much larger than the minimum distance between analyzed trees (SI Appendix, Fig. S1).

Hence, the tree-ring–based snow avalanche reconstruction reveals quite substantial changes in process activity since the 1970s, both in terms of the area affected and the frequency of snow avalanching. The robustness of these patterns of change is clearly supported by the increase in the number of intermediate and strong growth anomalies in the tree-ring records since the 1970s (SI Appendix, Fig. S2). These changes in reconstructed snow avalanching can be explained neither by changes in sample size (i.e., trees available for analysis in any given year) nor by the distribution of trees sampled on the slope (32, 33). In fact, the snow avalanche reconstruction is based on a substantial number of trees covering the entire 20th century (>85 disturbed trees) and on a homogeneous ratio between conifer and broadleaved trees (~1.26; SI Appendix, Fig. S3). A possible masking of old scars (SI Appendix, Fig. S4) after several decades (34, 35) cannot explain the detected trends in activity either, as scars occurred in around 60% of all cases since the 1870s, indicating that our sampling strategy minimized the risk of missing missing scars. Thus, and even if we cannot rule out the possibility that some avalanches may have passed at the site unnoticed (36), especially during the first half of the 20th century, the reconstructed change in snow avalanching is indeed reflecting changes in process behavior.

More generally, the recent intense snow avalanche activity reconstructed from tree rings is fully supported by direct observations of snow avalanching at adjacent sites, even if these records are too diffuse in space and time to allow sound time series analysis (5). Indeed, during the 1990s, avalanches were recorded in most years in the wider study region (Kullu district), and during the 2000s, more than 15 events were noted, with the largest ones on record in March 2002, March 2003, January 2006, and January 2008 (37). The high snow avalanche frequency reconstructed over the past four decades also matches with 21st century avalanche records from the nearby Lahaul (~40 km) (38), Chamba, and Kinnaur regions (37). By contrast, to avalanche time series reconstructed from tree-ring evidence, such direct observations provide additional information regarding the timing and nature of recent events. Notably, many of the reported avalanches occurred in late winter and/or early spring, and wet snow avalanche deposits predominated in recent observations (39). The above core of evidence supports our findings that a substantial shift in snow avalanche activity occurred over recent decades, not only on the studied slope but also on similar slopes in the surrounding region. Recent climate warming is therefore the most plausible explanation for the drastic increase in process activity at the bottom of slopes, where events are nowadays being felt and hence recorded.

Warming Temperatures Increase Probability of Snow Avalanching

A GLARMA model was used to investigate relationships between monthly climate covariates (40) and the occurrence of snow avalanches since the beginning of the 20th century. Unlike previous work, which relied mostly on logistic regression of classification trees (41–43), we applied a model that explicitly includes an autoregressive component to explain the nonlinear nature of predisposing factors of snow avalanches, such that an avalanche occurrence in 1 y can influence the likelihood of subsequent avalanches via, for example, changes in vegetation patterns (44, 45). Principal component analysis (PCA; details provided in Materials and Methods) was applied to the set of available standardized climate variables and supports a predominant contribution of cumulated precipitation during February and March (PCA axis1 = 24.4%; SI Appendix, Fig. S5). The second component of the PCA is represented by warming air temperatures.
between December and March (PCA axis2 = 16%). The third component of the PCA describes the variability of air temperatures in January (PCA axis3 = 14.8%). It is noteworthy that if combined, the three principal axes of the PCA are able to explain 55.2% of the total variance of climate variables (relative contributions are provided in SI Appendix, Table S3).

A closer look at the GLARMA model outcomes suggests that snow avalanche probabilities are highest if warmer temperatures persist during these months. Thus, the only significant influence on the onset probability of snow avalanche is given by PCA axis2, as shown by the z-ratio tests on parameter estimates (Table 1). The Akaike information criterion (AIC: Materials and Methods) supports the statistical model based exclusively on this first-order autoregressive parameter (AIC = 106.1) against two- or even three-order parameter models (AIC = 116.2 and 115.4, respectively). This finding is consistent with existing significant influences from previous-year conditions on present-year probabilities of snow avalanche occurrence. Interpretation of a GLARMA process is also supported by both the likelihood-ratio test (LRT) and Wald test (SI Appendix, Fig. S6 and Table S4). The fact that this model only points to a first-order term is explained by the intense snow avalanche activity at the study site, which could thus be strong enough to erase longer time-scale memory effects.

Interestingly, model predictions point to an increased probability of snow avalanches toward the second half of the 20th century, which coincides with warming trends observed between December and March, as well as with an increase in accumulated precipitation totals in January and February (Fig. 4A). Both of these tendencies clearly increase the probability of snow avalanching. Nevertheless, any increase in snow avalanche probability above a given threshold of 0.5 will also require notable departures from mean temperatures and cumulated precipitation totals, as shown in Fig. 4B. It is worth noting that all of the assumptions of the GLARMA model are met, as shown by the graphical analyses of residuals (SI Appendix, Figs. S7 and S8). In addition, the fitted GLARMA model shows a high goodness of fit with a deviance-based R^2 of 0.88. These outcomes are also consistent with the performance of the GLARMA model when applied only to the period 1950–2010 (SI Appendix, Tables S5 and S6), therefore underlining the robustness of conclusions, even if, hypothetically, our sampling strategy would have added uncertainties or biases to the reconstruction during the first half of the 20th century.

Finally, our results confirm that ongoing climate warming has been responsible for a shift in snow avalanching on subalpine slopes in the Western Indian Himalayas in recent decades (9, 10, 46). According to direct observations, this influence concerns wet snow avalanche activity in particular. Process-based studies also highlight that increasing air temperature would lead to a rise in liquid water content of the snowpack and an increase in its shear deformation rate, which, in turn, favor increased strain at the interface of slab and/or weak layers, and thus, ultimately, the release of wet snow avalanches (12). The increased avalanching in the Western Indian Himalayas is thus likely to result from the preservation of a sufficiently thick snow cover in high-elevation avalanche release areas combined with more frequent crossing of the melting point of snow, which, in turn, results in more frequent, mostly wet, snow avalanches. The transformation of dry snow packs into wet snow packs is decisive for the release of snow avalanches in the region, as the reconstructed increase in process activity occurred even in the absence of increased snowfall. This conclusion for the Western Himalayas is in line with observed changes in the typology and timing of avalanche activity in the European Alps (19), as well as with existing, yet still scarce, data on any related elevation-dependent change in these patterns (24, 25).

Also, above a certain threshold, the increase in the liquid water content of snow in motion will tend to reduce friction, increasing avalanche runout distances (47), while conserving high-impact pressures even close to the point of rest (48), thereby smoothing the avalanche path (9, 12). The documented increase in the extent of avalanches and the severe damage observed in trees (SI Appendix, Figs. S2–S4) further support the fact that the current late-winter and/or early-spring warming has enhanced the occurrence of wet snow avalanches that are able to reach the bottom of subalpine slopes in the Western Indian Himalayas. Given the potentially dramatic consequences of such high-magnitude events with larger extent and higher pressures, we conclude that ongoing climate warming is...
null deviance is 137.61 on 109° df, residual deviance is 15.57 on 105° df, and the AIC is 106.1154. Pr(>|z|) is the probability of finding the observed Z-ratio in the normal distribution of Z with a critical point of |z|: *P = 0.05; **P = 0.001.

Material and Methods

Sampling was conducted on a characteristic east-facing snow avalanche slope in the Western Himalayas, located between the villages of Solang and Dhundi, Kullu district, Himachal Pradesh, India (longitude/latitude: 32.33° N/ 77.14° E; Fig. 1). The slope includes different, rather unconfined, avalanche paths with the highest release areas (26) at 4,200 m above sea level (masl) and lowest runout locations at 2,600 masl. The avalanche path and runout zones are covered by a loose-forest stand growing on a rather homogeneous slope with an average angle of ~35°. The transport zone is partially vegetated and has a mixed forest of maple and spruce, with an average slope of ~20° and a maximum slope width of ~1,500 m. The runout zone ends at the contact of the slope with the Beas River at ~2,600 masl. Precipitation in winter is controlled primarily by western disturbances.

Due to the lack of reliable long-term climate data in the area, we used gridded temperature and precipitation records from the University of East Anglia, Climatic Research Unit Climatic Research Unit TS3.2 dataset (49) and the Global Precipitation Climatology Centre (gpcc.dwd.de). The selection of these particular gridded datasets was based on (i) their temporal coverage (i.e., 1900–2010) and (ii) significant positive correlations with available records of the Indian Meteorological Department (IMD) at the monthly scale. Reliability of datasets was validated with meteorological records from the Manali station and with NASA’s Tropical Rainfall Measuring Mission (https://trmm.gsfc.nasa.gov) data (SI Appendix, Fig. S9). We also used the IMD’s long-term records from the Shimla station to detect trends in different time windows (SI Appendix, Fig. S10).

Fig. 4. (A) Snow avalanche predictions based on the retained generalized linear mixed model (gray line) vs. the retained GLARMA model (colored surfaces) for the 20th and early 21st centuries using the same covariates. Circles represent information gathered from tree-ring records. Red dots indicate years with snow avalanche activity according to our reconstruction, and blue dots mark years without snow avalanche activity according to our reconstruction. Similarly, the red-colored areas given by the GLARMA represent avalanche probabilities exceeding 0.5. (B) Predictions for the probability of snow avalanches to occur as a function of PCA2. Principal climatic variables in terms of their individual contribution with the PCA2 are included below the plot. Min, minimum; Prec., precipitation; Temp., temperature.
We thank P. Morel for her help in the laboratory and represents ..., the order of the autoregressive term. To validate the inclusion of the autoregressive parameters in the model, we tested the null hypothesis that autoregressive parameters do not have any relevant contribution. Two independent tests were applied to test the aforementioned null hypothesis: (i) a likelihood ratio test and (ii) a Wald test. P values equal or lower than 0.05 suggest the rejection of the null hypothesis; thus, a GLARMA model is supported. We used the AIC with a correction for small sample sizes (AICc) to select the appropriate autoregressive order in the GLARMA model. AICc criteria combine a measure of goodness of fit with a penalty term based on the number of parameters (k) used in the model. The influence of fixed parameters (e.g., parameters associated with PCA components as explanatory variables) in the linear model was tested using a z-ratio with a threshold probability of 0.05 for rejection of the null hypothesis that a given parameter is equal to zero. GLARMA models were conducted with package “glimma” in the R environment (31).

ACKNOWLEDGMENTS. We thank P. Morel for her help in the laboratory and A. Bhattacharyya and M. Shekhar for their support during fieldwork, as well as the editor-in-chief Inder M. Verma and two anonymous referees for their valuable suggestions. We thank the Indian Himalayan Climate Adaptation Programme (www.ihcap.in) for the Swiss Agency for Development and Cooperation for financial support.

