Transcriptional Dysregulation in Postnatal Glutamatergic Progenitors Contributes to Closure of the Cortical Neurogenic Period

DONEGA, Vanessa, et al.

Abstract

Progenitors of cortical glutamatergic neurons (Glu progenitors) are usually thought to switch fate before birth to produce astrocytes. We used fate-mapping approaches to show that a large fraction of Glu progenitors persist in the postnatal forebrain after closure of the cortical neurogenesis period. Postnatal Glu progenitors do not accumulate during embryonal development but are produced by embryonal radial glial cells that persist after birth in the dorsal subventricular zone and continue to give rise to cortical neurons, although with low efficiency. Single-cell RNA sequencing reveals a dysregulation of transcriptional programs, which parallels changes in m6A methylation and correlates with the gradual decline in cortical neurogenesis observed in vivo. Rescuing experiments show that postnatal progenitors are partially permissive to genetic and pharmacological manipulations. Our study provides an in-depth characterization of postnatal Glu progenitors and identifies potential therapeutic targets for promoting brain repair.

Reference

DOI: 10.1016/j.celrep.2018.02.030
PMID: 29514086

Available at:
http://archive-ouverte.unige.ch/unige:114256
Transcriptional Dysregulation in Postnatal Glutamatergic Progenitors Contributes to Closure of the Cortical Neurogenic Period

Graphical Abstract

Highlights

- A large population of glutamatergic (Glu) progenitors persists in the postnatal SVZ

- Postnatal Glu progenitors arise from a persistent population of radial glial cells

- ScRNA-seq reveals transcriptional dysregulation in postnatal Glu progenitors

- Changes in m^6A methylation correlate with differentiation potential

Authors

Vanessa Donega, Guillaume Marcy, Quentin Lo Giudice, ..., Muriel Koehl, Denis Jabaudon, Olivier Raineteau

Correspondence

v.donega@umcutrecht.nl (V.D.), olivier.raineteau@inserm.fr (O.R.)

In Brief

Donega et al. revisit the closure of the corticogenesis period by showing that a large population of glutamatergic progenitors remains in the postnatal SVZ. They show a dysregulation of transcriptional programs, which parallels changes in m^6A methylation and correlates with a gradual decline in differentiation potential.
Transcriptional Dysregulation in Postnatal Glutamatergic Progenitors Contributes to Closure of the Cortical Neurogenic Period

Vanessa Donega,1,* Guillaume Marcy,1,2 Quentin Lo Giudice,1 Stefan Zweifel,1 Diane Angonin,1 Roberto Fiorelli,3 Djopher Nora Abrous,4,5 Sylvie Rival-Gervier,6 Muriel Koehl,4,5 Denis Jabaudon,1 and Olivier Raineteau1,3,8,*

1Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
2Neurogenetics Department, Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
3Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland
4Neurocentre Magendie, Neurogenesis and Physiopathology Group, Inserm, U1215, 33077 Bordeaux, France
5Université de Bordeaux, 33077 Bordeaux, France
6Stem Cell and Brain Research Institute U1208, Université Claude Bernard Lyon 1, Inserm, INRA, USC1361, 69500 Bron, France
7Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
8Lead Contact
*Correspondence: v.donega@umcutrecht.nl (V.D.), olivier.raineteau@inserm.fr (O.R.)
https://doi.org/10.1016/j.celrep.2018.02.030

SUMMARY

Progenitors of cortical glutamatergic neurons (Glu progenitors) are usually thought to switch fate before birth to produce astrocytes. We used fate-mapping approaches to show that a large fraction of Glu progenitors persist in the postnatal forebrain after closure of the cortical neurogenesis period. Postnatal Glu progenitors do not accumulate during embryonal development but are produced by embryonal radial glial cells that persist after birth in the dorsal subventricular zone and continue to give rise to cortical neurons, although with low efficiency. Single-cell RNA sequencing reveals a dysregulation of transcriptional programs, which parallels changes in m6A methylation and correlates with the gradual decline in cortical neurogenesis observed in vivo. Rescuing experiments show that postnatal progenitors are partially permissive to genetic and pharmacological manipulations. Our study provides an in-depth characterization of postnatal Glu progenitors and identifies potential therapeutic targets for promoting brain repair.

INTRODUCTION

During neocortical development, glutamatergic neurons are born from progenitors (Glu progenitors) located in the ventricular zone (VZ) and subventricular zone (SVZ) and assemble to form the circuits that underlie cognitive functions. It is classically accepted that the period of cortical neurogenesis closes around embryonic day (E)17.5 in the mouse, with neuronal progenitors switching fate to produce astrocytes (Li et al., 2012).

However, a significant fraction of neural progenitors do not switch fate. For instance, a population of progenitors remain in the postnatal SVZ, contributing to olfactory bulb neurogenesis and parenchymal gliogenesis throughout life (Doetsch et al., 1999). At least some of these progenitors arise from slow-cycling/quietant embryonal radial glial cells that divide between E13.5 and E15.5 (Fuentealba et al., 2015; Furutachi et al., 2015). Fate-mapping analysis demonstrated that they give rise to distinct neuronal and/or glial lineages, depending on their location in the SVZ (Fiorelli et al., 2015). Surprisingly, several reports suggest the persistence of Glu progenitors in the dorsal SVZ (dSVZ) until early adulthood (Brill et al., 2009; Winpenny et al., 2011).

We used Neurog2CreERT2/tdTom mice to permanently and specifically label synchronous cohorts of prenatal and postnatal Glu progenitors to study their lineage relationship and transcriptional specificities. Our results show that Glu progenitors continue to be produced after closure of the period of cortical neurogenesis. Single-cell RNA sequencing (scRNA-seq) reveals that postnatal Glu progenitors show dysregulation in genes involved in metabolism, differentiation, and migration, which parallels a rapid decline in their capacity to migrate and differentiate. Our data suggest that this transcriptional dysregulation in postnatal Glu progenitors may result from decreased N6-methyladenosine (m^6A) methylation of certain proneural genes. Nevertheless, postnatal Glu progenitors remain partially amenable to pharmacological and genetic manipulations.

RESULTS

Fate Mapping of Birth-Dated Cohorts of Glutamatergic Neurons

The recombination efficiency and specificity of the Neurog2CreERT2/tdTom mice was verified by injecting tamoxifen (Tam) at different embryonal time points (i.e., E13.5 and E15.5) and examining brains after 12 and 24 hr (Figures 1A and 1B). The recombined cells initially expressed the Glu progenitor marker, Tbr2, and the proliferation marker Ki67, and rapidly translocated from the VZ to the cortical plate. Fate mapping of
recombined cells was assessed at postnatal day (P)21. Tam injections at either E13.5, E15.5, or E17.5 labeled neurons in subcortical and cortical brain regions in accordance with their date of birth (Figure S1). To confirm the precise labeling of birth-dated cohorts of glutamatergic neurons, we performed a more detailed analysis of recombined cells in the cortex. Tam injection at E13.5 labeled neurons in the deep cortical layers (i.e., L5–L6), which expressed the deep cortical layer marker FoxP2, (Figures 1 C–1E). In contrast, recombination at E15.5 labeled neurons in L3–L4, which expressed the upper layer marker Cux1 (Figures 1 C–1E). Importantly, only a few glial-like cells were labeled (<1% of total tdTom + cells) from E15.5 on. These glial cells were found in clusters, suggesting that only a very limited number of progenitors switched from a glutamatergic to an astrocytic fate (Figure S1). Altogether, these observations confirm that Neurog2CreERT2/tdTom mice allow the specific labeling of birth-dated cohorts of glutamatergic neurons.

A Large Population of Glu Progenitors Persist in the Postnatal SVZ

Having established the lineage and temporal specificity of recombination in the Neurog2CreERT2/tdTom mice, we performed Tam injections in postnatal mice. Recombination at P0.5 revealed that a large pool of Glu progenitors persist in the early postnatal dSVZ and subcallosal zone (SCZ), despite closure of the cortical neurogenic period (Figure 1F; Figure S2A). Recombined cells were confirmed to be Glu progenitors by their expression of Tbr2 (Figure 1G) but exclusion of other lineage markers. The time point at which the dSVZ continues to produce Glu progenitors is likely earlier than previously thought, and this population of Glu progenitors may contribute to the formation of the adult neocortex. Further studies are required to determine the fate of these progenitors and their role in the development and plasticity of the adult neocortex.
markers (e.g., Olig2). Twenty-four hours following recombination, ~20% of Glu progenitors were still actively cycling, but most had exited the cell cycle by P3 (Figure 1H). To follow the long-term fate of these progenitors, we injected Tam in P0.5 pups and sacrificed them at various time points. At P2, most recombined cells were observed in the dSVZ, but their number gradually decreased with age, disappearing by P21 (Figure 1I). In parallel, Glu progenitors gave rise to a cohort of migrating neurons that transiently increased in the corpus callosum and cingulum, as they left the dSVZ and migrated toward the cortex (Figures 1J and 1L). At P21, tdTom+ neurons were observed in the cortex, in the dentate gyrus, and in some subcortical nuclei (Figure 1J; Figure S2B). The number of recombined cortical neurons increased from frontal to caudal brain sections (Figure 1J; Figure S2B). The number of recombined cortical neurons increased from frontal to caudal brain sections (Figure 1J; Figure S2B), with most neurons located in sensory rather than motor neurons.

In parallel, Glu progenitors gave rise to a cohort of migrating neurons that transiently increased in the corpus callosum and cingulum, as they left the dSVZ and migrated toward the cortex (Figures 1J and 1L). At P21, tdTom+ neurons were observed in the cortex, in the dentate gyrus, and in some subcortical nuclei (Figure 1J; Figure S2B). The number of recombined cortical neurons increased from frontal to caudal brain sections (Figure 1J; Figure S2B), with most neurons located in sensory rather than motor neurons increased from frontal to caudal brain sections (Figure 1J; Figure S2B). The number of recombined cortical neurons increased from frontal to caudal brain sections (Figure 1J; Figure S2B), with most neurons located in sensory rather than motor neurons.

The number of recombined cortical neurons increased from frontal to caudal brain sections (Figure 1J; Figure S2B), with most neurons located in sensory rather than motor neurons increased from frontal to caudal brain sections (Figure 1J; Figure S2B). The number of recombined cortical neurons increased from frontal to caudal brain sections (Figure 1J; Figure S2B), with most neurons located in sensory rather than motor neurons.

We next investigated the origin and transcriptional specificities of postnatal Glu progenitors. Injection of Tam at E13.5 or E15.5 revealed a large pool of GFP+ cells that persisted in the postnatal dSVZ and continued generating proliferating Tbr2+ cells at P2 (Figures 2G and 2H) as well as at P21 (Figures 2I and 2J). Together, these results indicate that postnatal Glu progenitors do not accumulate during embryonic development but are produced by embryonic radial glial cells (RGs) that persist after birth in the dSVZ, in accordance with recent studies (Fuentealba et al., 2015; Furutachi et al., 2015). To explore the mechanisms of the decreased neurogenic capacity of postnatal Glu progenitors, we performed scRNA-seq of tdTom+ cells isolated by flow cytometry from microdissected pallium at E15.5 or P2. Unbiased clustering combined with interrogation of cell-cycle and post-mitotic markers revealed several cell clusters (Figures 3A and 3B), corresponding to actively cycling recombined cells (i.e., progenitors) and their immediate progeny (i.e., nascent neurons) (Figure 3B). Expression of lineage-specific transcripts, such as Neurog2 and Tbr2, confirmed their Glu identity (Figure 3C). Transcriptional differences increased during differentiation, with 597 (8%) and 1,425 (20%) genes being differentially regulated between E15.5 and P2 progenitors and nascent neurons, respectively (Figures 3D and 3E; Table S1; see https://genenbrowser.lyon.insERM.fr for an interactive dataset). Thus, while the vast majority (~90%) of E15.5 top 1,000 expressed genes were also expressed in P2 progenitors, only 40% of the E15.5 top 1,000 genes were similarly expressed in nascent neurons at P2 (Figure 3F). Interestingly, transcripts enriched in Glu progenitors (i.e., Sox2, Pax6, Neurog2, and Tbr2) were upregulated at P2, suggesting a transcriptional dysregulation leading to the persistence of progenitor traits in nascent neurons (Figure 3G). Knowing that m6A methylation plays a role in cortical neurogenesis by regulating the expression of proneural transcripts (Yoon et al., 2017), we assessed whether this mRNA modification was decreased in postnatal Glu progenitors. Transcriptional analysis confirmed a downregulation of transcripts coding for proteins of the methyltransferase complex, Mettl3 and Mettl14 (Figure 3G), while expression of YTHDF2, which has been shown to localize m6A-tagged transcripts to decay sites (Wang et al., 2015), was not changed (data not shown). To assess m6A methylation level in Glu progenitors, we performed an mRNA dot blot assay to detect m6A modifications (Figures 3H and 3I). Our results reveal a 65% decrease in m6A level in the postnatal dSVZ, compared to the E15.5 pallium. All together, these data suggest that epitranscriptomic modifications participate in the transcriptional dysregulation observed in postnatal Glu progenitors and their immediate progeny.

Postnatal Glu Progenitor Differentiation Can Be Partially Rescued

We next focused on the transcriptional specificities of P2 Glu progenitors and nascent neurons. Classification of transcripts differentially expressed in Glu progenitors highlighted depressed transcriptional and metabolic activities at P2 that correlates with reduced potential of Glu progenitors to differentiate postnatally (Figure 3J). Classification of differentially expressed transcripts in nascent neurons highlighted downregulation of generic programs of differentiation and migration, and an upregulation of genes involved in neuronal death (Figure 3K), in line with our histological observations. A KEGG analysis further highlighted...
paralleled perturbation of several key signaling pathways, such as Wnt canonical signaling (Figure 3L), as previously suggested (Li et al., 2012). A more detailed analysis into downregulated GO terms, revealed a decrease in several genes, including Ctnnb1 (i.e., β-catenin) and other Wnt signaling transcripts such as, Fzd1 and Lef1 (Figures 4A and 4B). Protein-protein interaction (PPI) analysis further emphasized the central role of β-catenin, as most of the downregulated genes at P2 encode for proteins that interact with it (Figure 4C). To assess if migration and differentiation of postnatal Glu progenitors could be reactivated, we performed experiments to rescue downregulated signaling and transcriptional pathways. We first used a glycogen synthase kinase 3β (GSK3β) inhibitor, AR-A014418, to activate the canonical Wnt signaling pathway. Our results showed increased tdTom+ cells in the dSVZ, which was paralleled by increased proliferation (Figures 4D–4F). Next, we selected Bcl11a as a candidate gene for overexpression, as this transcription factor is among the top 10 differentially expressed (i.e., downregulated) transcription factors at P2 (Figure 4G). Bcl11a has been shown to regulate both migration and fate specification during embryonic development (Wiegrefe et al., 2015; Greig et al., 2016). Overexpression of Bcl11a increased proliferation in the dSVZ (Figure 4H). In addition, our results show a significant increase in migration towards the cortex and increased number of cells that adopted bipolar morphologies (Figures 4H–4J). Together, these results demonstrate that Glu progenitors remain permissive to both pharmacological and genetic manipulation.

DISCUSSION

Our work highlights the persistence of a large population of Glu progenitors in the postnatal forebrain, after the closure of the cortical neurogenic period. Fate mapping and scRNA-seq reveal a dysregulation of transcriptional and signaling pathways that contribute to restricting the neurogenic potential of postnatal Glu progenitors early after birth. Rescuing experiments, however, show that postnatal progenitors remain partially permissive to genetic and pharmacological manipulations, suggesting that they could be recruited for cortical repair.

Figure 2. Postnatal Glu Progenitors Originate from a Pool of Slow-Cycling RGCs that Accumulate in the SVZ during Corticogenesis

(A–F) tdTom+ cells recombined at embryonal time points do not remain in the postnatal dSVZ (C–D’) but generate the different Glu projection neurons embryonically. tdTom+ cells in the pallium 24 hr after TAM injection (A and B) and at P2 or P21 in L5–L6 (C and E) or L2–L3 (D and F) are indicated. (G–J) In utero electroporation (IUE) of transposon-GFP in the pallium at embryonal time points E13.5 (G) and E15.5 (I and J) highlight persisting RGCs (see arrows) in the dSVZ that continue giving rise to proliferating Tbr2+ cells at P2 (G and H) as well as at the later postnatal time point P21 (I and J). Scale bars: 500 μm in (E) and (F); 200 μm in (C), (D), and (J); 100 μm in (A), (B), (C’), and (D’); and 25 μm in (G) and (J). Data are presented as mean ± SEM.
Figure 3. Dysregulation of Neurogenic Transcriptional Coding in Postnatal Glu Progenitors

(A and B) Hierarchical clustering (A) and t-SNE of individual cells recombined at E15.5 and P2 allows distinguishing 2 clusters of cells, actively cycling cells (i.e., progenitors), and their immediate progeny (i.e., nascent neurons) (B).

(C) Feature plot showing the expression of transcripts of the Glu lineage.

(D) Venn diagrams showing the number of differentially expressed transcripts in progenitors or nascent neurons.

(E and F) Transcriptional differences increase as differentiation progresses, as reflected by the percentage of transcripts differentially expressed between E15.5 and P2 (E), as well as the gradual loss of transcripts expressed at E15.5 in P2-sorted cells (F).

(G) Feature plots showing downregulation of methyltransferases Mettl3 and Mettl14 in P2 progenitors and upregulation of m^6A-tagged transcripts Sox2, Pax6, Neurog2, and Tbr2.

(H) Dot blot showing decreased m^6A levels at P2 and methylene blue staining confirming equal mRNA loading on membrane.

(I) Quantification of m^6A levels.

(J) GO showing downregulation in P2 progenitors of transcripts involved in transcription and metabolism.

(K) GO analysis showing downregulation of migration, differentiation, and cell death in P2 nascent neurons.

(L) KEGG pathway analysis highlighting dysfunctional signaling pathways.

Data are presented as mean ± SEM.
The perinatal period has long been considered as a period of exclusive cortical gliogenesis associated with the maturation of embryonically born neurons into functional circuits. This view is currently challenged by the demonstration of neurogenesis in specific cortical regions. Thus, GABAergic progenitors accumulate in the early postnatal white matter and give rise to a subpopulation of cortical interstitial interneurons (Frazer et al., 2017). In addition, the migration of interneurons into the frontal cortex has been shown to persist early after birth in rodents (Inta et al., 2008; Le Magueresse et al., 2012), as well as in human babies (Paredes et al., 2016). Our results reveal that this persisting neurogenesis is not restricted to the GABAergic lineage but also includes neurons of the glutamatergic lineage. Indeed, our work identifies a small population of cortical Satb2/Cux1+ neurons that are generated at birth. Surviving neurons develop spines and intracortical axonal projections, supporting their integration into cortical networks. Our results further indicate that these neurons arise from a large population of pallial RGCs that do not switch fate toward astrogenesis and persist in the dSVZ. These results are in line with recent mosaic analysis with double markers (MADM) experiments suggesting that only 1 out of 6 neurogenic RGCs produce glia (Sao et al., 2014).

Our results underline a rapid decline in the capacity of Glu progenitors to differentiate and migrate, thereby contributing to the closure of the period of cortical neurogenesis. Our scRNA-seq data shed light on the mechanisms mediating this gradual loss of neurogenic potency. Epitranscriptomic changes are emerging as key mechanisms in mediating temporal control over lineage progression. m^6A is the most prevalent mRNA modification in eukaryotic cells (Desrosiers et al., 1975) and has recently been suggested to regulate transcriptional pre-patterning during corticogenesis (Yoon et al., 2017). Our results identify m6A methylation as a possible mechanism leading to the transcriptional dysregulation that we observe in postnatal Glu progenitors. In addition to these epitranscriptomic modifications, KEGG pathway analysis highlights changes in several key signaling pathways, such as those involved in astrogenesis (i.e., Jak-Stat and Notch signaling pathways; Rowitch and Kriegstein, 2010), suggesting that they may concomitantly affect the differentiation potential of Glu progenitors. Another signaling pathway that is dysregulated is the Wnt signaling pathway. This is in agreement with a previous study describing a gradual increase in GSK3β activity from E15.5 on, which results in the phosphorylation of Neurog2, thereby affecting its activity.
(Li et al., 2012). In line with a decreased transcriptional activity of Neurog2, 64% of its target genes (Gohike et al., 2008) are down-regulated at P2, while only 2% are upregulated, despite the persistence of Neurog2 expression.

Importantly, postnatal Glu progenitors appear to be still permissive to intrinsic/extrinsic manipulation. We show that proliferation and migration of postnatal Glu progenitors can be promoted by genetic or pharmacological manipulations. Our experiments, however, reveal that these manipulations are not sufficient for promoting long-term neuron survival, suggesting that the cortex is not permissive to the integration of these newborn neurons under physiological conditions. However, recent observations suggest that permissiveness of the environment might be increased following injury, such as after neonatal chronic hypoxia, where cortical de novo neurogenesis has been observed (Fagel et al., 2009; Bi et al., 2011; Falkner et al., 2016; Azim et al., 2017). It is likely that our results will provide important information to guide future research in this context.

EXPERIMENTAL PROCEDURES

Further details can be found in the Supplemental Experimental Procedures.

Ethical Statement

All animal experiments were performed in accordance with international guidelines from the EU directive 2012/63/EU and approved by the Animal Care and Use Committee CELYNE (APAFIS#187 & #188).

Animals

The Neurog2CreERT2 transgenic mouse line was crossed with the reporter line Rosa26Rtomo (tdTom) (Madisen et al., 2010), allowing the specific labeling of Glu progenitors and their immediate progeny. For fate mapping of birth-dated cohorts of Glu progenitors, tamoxifen was administered to Neurog2CreERT2/tmTom transgenic mice at various embryonal and postnatal time points. The morning when a plug was observed was considered as E0.5, and the day of birth was defined as P0.

In Utero Electroporation

In utero electroporation was performed at E13.5 or E15.5 to investigate the embryonal origin of postnatal Glu progenitors, using a mixture of transposon pPB-EBFP-P2A-GFP and hyperactive piggyBac transposase.

Immunohistochemistry

Animals were sacrificed with an overdose of pentobarbital and fixed by transcardial perfusion with PBS followed by 4% paraformaldehyde (PFA; w/v). Brains were dissected and post-fixed in 4% PFA at 4°C. Free-floating vibratome serial sections were cut at a thickness of 50 μm. Immunostainings were performed as described previously.

Quantifications

Images were taken on a Leica SPE confocal laser microscope using 10×/0.3 NA, 20×/0.75 NA, or 40×/1.25 NA oil objectives (HCPL Fluotar) and the software LAS (Leica Microsystems, v3.1.2.16221). Quantifications were performed on coronal sections by counting the number of cells either by eye from confocal images or from z stack mosaic images of the entire dSVZ on ImageJ. Depending on the analysis, quantifications were done either on a single series of sections or on at least 3 equally spaced sections of the SVZ. Images for Sholl analysis were taken with a z-step of 0.29 μm and a resolution of 1,024 × 1,024. Sholl analysis was performed on Neurolucida 360 software (MBF Bioscience). Images were processed using Photoshop (CC2015.5, Adobe Systems Software).

Single-Cell Capture, cDNA Library Preparation, and Sequencing

The brains of E15 and P2 mice were harvested and placed on ice-cold Hank’s balanced salt solution (HBSS) for microdissection. A total of 230 cells were obtained (121 at E15.5 and 109 at P2). Reverse transcription and pre-amplification of the single-cell cDNAs were done within the integrated fluidic circuit (iFC) chip using the SMARTer Ultra Low RNA kit for Illumina (Clontech) according to the C1 protocol. Upon termination of the run, amplified cDNA was harvested, and the concentration of cDNA was assessed on a SpectraMax Gemini Fluorimeter (Molecular Devices). RNA-seq libraries of the harvested cDNA were prepared using the Illumina Nextera XT DNA Sample Preparation Kit. Libraries were multiplexed and sequenced using the Illumina HiSEQ500 platform.

Statistical Analysis

Data are expressed as mean ± SEM (n ≥ 3). Significance was tested on GraphPad Prism 7 by using an unpaired t test or 2-way ANOVA followed by Bonferroni post hoc test.

Data and Software Accessibility

The accession numbers for the data reported in this paper are GEO: GSE109556 and have been posted to Mendeley at https://doi.org/10.17632/k659r9gv1.1.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, four figures, and two tables and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.02.030.

ACKNOWLEDGMENTS

We are grateful to Arthur Butt for critical reading of the manuscript, as well as to Ludovic Télley for guidance in performing the single-cell RNA-seq analysis and I. Durand (CRCL, Lyon) for her advice regarding cell sorting. We thank A. Simon, D. Frasher, and R. Kaestli for their help in setting up the histological mapping; J. Lachuer, C. Rey, and S. Croze (genomic platform ProfiliXpert, Lyon) for their expert help with C1 single-cell RNA-seq; and B. Smatti (imaging platform CiQle, Lyon) for their expert help with C1 single-cell RNA-seq; and B. Smatti (imaging platform CiQle, Lyon) for their expert help with C1 single-cell RNA-seq; and B. Smatti (imaging platform CiQle, Lyon) for their expert help with C1 single-cell RNA-seq; and B. Smatti (imaging platform CiQle, Lyon) for their expert help with C1 single-cell RNA-seq; and B. Smatti (imaging platform CiQle, Lyon) for their help in using the slide scanner. This work was supported by a grant from the “Programme Avenir Lyon Saint-Etienne.” V.D. was supported by grants from IRMÉ (“Institut pour la Recherche sur la Moelle épiplène et l’Encéphale”) and from the FRC (“Fédération pour la Recherche sur le Cerveau”) and G.M. was supported by a PhD fellowship from the Labex Cortex.
AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

