Uromodulin and Nephron Mass

PIVIN, Edward, et al.

PMID : 30054352
DOI : 10.2215/CJN.03600318
Uromodulin and Nephron Mass

Edward Pivin,1 Belen Ponte,2 Sophie de Seigneux,2 Daniel Ackermann,3 Idris Guessous,4,5 Georg Ehret,6,7 Antoinette Pechère-Bertschi,6 Eric Olinger,2 Markus Mohaupt,1 Bruno Vogt,1 Pierre-Yves Martin,9 Michel Burnier,1 Murielle Bochud,2 Olivier Devuyst,9 and Menno Pruijm1


Every human is born with a certain number of nephrons. Assessing that number (i.e., nephron mass) is important because a low nephron mass at birth is a risk factor for hypertension and/or CKD. A reduced number of nephrons leads to hyperfiltration in the remaining ones, increasing intraglomerular pressure and, in the long term, glomerulosclerosis (1). This mechanism explains why kidney function may continue to decline in patients with CKD even when the primary insult is gone. Unfortunately, estimating nephron mass is not currently possible without kidney biopsy studies.

The level of uromodulin (Tamm–Horsfall protein) in urine is a candidate to estimate nephron mass because the protein is synthesized by the thick ascending limb of the loop of Henle and is essentially released into the urine. We hypothesized that if urinary uromodulin is a proxy of nephron mass, then (1) it should be associated with the known predictors of biopsy-assessed nephron mass in the general population and (2) its excretion should halve after kidney donation.

Urinary uromodulin concentration was measured by a validated ELISA (2) in 24-hour urinary collections of adult participants to the population-based Swiss Kidney Project on Genes in Hypertension (SKIPOGH) study. The study was approved by the institutional ethical review boards of each of the participating centers as a fixed effect and for family clusters as a random effect. The study by Denic et al. (4). Age, female sex, and uric acid were negative predictors whereas height and birth weight were positive predictors of 24-hour urine uromodulin excretion.

A total of 1032 out of 1128 SKIPOGH participants (492 men and 540 women) had a complete 24-hour urine collection (urinary volume ≥300 ml and creatinine excretion ≥0.1 mmol/kg body wt) and were included in the analyses. Mean age was 47±18 years and eGFR was 96±18 ml/min per 1.73 m². Mean 24-hour urine uromodulin excretion was 43.1±22.5 mg and mean birth weight was (available for 61% of participants) 3.34±0.59 kg. The 24-hour urine uromodulin excretion increased at higher birth weight (Figure 1A). In multiple linear regression analysis, 24-hour urine uromodulin excretion was associated with the same predictors of nephron mass as identified in the study by Denic et al. (4). Age, female sex, and uric acid were negative predictors whereas height and birth weight were positive predictors of 24-hour urine uromodulin excretion.

In 35 living kidney donors (25 women, mean age 53±10 years, eGFR 93±18 ml/min per 1.73 m²), urine uromodulin-to-creatinine ratio decreased from 32±23.1 at 1 day before to 14.6±9.4 mg/g at 3 days after kidney donation (P<0.01). At 1 year, urine uromodulin-to-creatinine ratio was 21.6±2.9 mg/g (paired t test: P=0.03; see Figure 1B). The ratios did not decrease in all donors at day 3, possibly because of the presence of confounding factors (e.g., drugs, perfusions, tubular necrosis) in the postoperative period or, alternatively, to preanalytical factors affecting the stability of uromodulin (e.g., storage, sampling) (2). The rise of the ratio at 1 year could point to tubular hypertrophy occurring after kidney donation.

Taken together, these findings add valuable information to the determinants of urinary uromodulin and suggest that 24-hour urine uromodulin excretion is a proxy of nephron mass. These results complete previous studies demonstrating the association of uromodulin excretion with eGFR, markers of tubular function, and genetic variants. They should be appreciated in the light of recent findings reporting that low urinary uromodulin levels are associated with kidney function decline and total mortality even after adjusting for eGFR and other risk factors (5).

When interpreting the association of uromodulin with birth weight, one should remember that nephron mass varies with gestational age, a parameter that was
not available in our study. Although the levels of uromodulin are regulated by nephron mass in the healthy population, the utility of this finding remains uncertain in clinical situations where other factors that affect uromodulin levels such as inflammation, medication, and (pre) diabetes also play a role. In conclusion, urinary excretion of uromodulin correlates with all known predictors of nephron mass, including birth weight, in the healthy population and in living kidney donors. These data substantiate the measurement of urinary uromodulin levels as a useful surrogate marker for nephron mass in the general population.

Acknowledgments
M. Bochud, O.D., and M.P. codirected the study. M.P. is supported by a grant from the Swiss National Science Foundation (FN320030-169191). O.D. is supported by the Swiss National Centre of Competence in Research Kidney Control of Homeostasis (NCCR Kidney. CH) program and the Swiss National Science Foundation (31003A_169850).

Disclosures
None.

References

Published online ahead of print. Publication date available at www.cjasn.org.

AFFILIATIONS
1 Service of Nephrology and Hypertension and 4 Division of Chronic Disease, University Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland; 2 Service of Nephrology, Department of Specialties of Internal Medicine, 3 Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, 5 Service of Cardiology, Department of Specialties of Internal Medicine, and 6 Hypertension Unit, Geneva University Hospitals, Geneva, Switzerland; 7 University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselpital, Bern University Hospital and University of Bern, Bern, Switzerland; 8 Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland; and 9 Institute of Physiology, University of Zurich, Zurich, Switzerland