Gliding motility powers invasion and egress in Apicomplexa

FRENAL, Karine, et al.

DOI : 10.1038/nrmicro.2017.86
PMID : 28867819

Available at:
http://archive-ouverte.unige.ch/unige:96648

Disclaimer: layout of this document may differ from the published version.
Gliding motility powers invasion and egress in Apicomplexa

Karine Frénal1, Jean-François Dubremetz2, Maryse Lebrun2 and Dominique Soldati-Favre1

Abstract | Protozoan parasites have developed elaborate motility systems that facilitate infection and dissemination. For example, amoebae use actin-rich membrane extensions called pseudopodia, whereas Kinetoplastida are propelled by microtubule-containing flagella. By contrast, the motile and invasive stages of the Apicomplexa — a phylum that contains the important human pathogens Plasmodium falciparum (which causes malaria) and Toxoplasma gondii (which causes toxoplasmosis) — have a unique machinery called the glideosome, which is composed of an actomyosin system that underlies the plasma membrane. The glideosome promotes substrate-dependent gliding motility, which powers migration across biological barriers, as well as active host cell entry and egress from infected cells. In this Review, we discuss the discovery of the principles that govern gliding motility, the characterization of the molecular machinery involved, and its impact on parasite invasion and egress from infected cells.
Toxoplasmosis
A food-borne infection caused by the parasite *Toxoplasma gondii*. The infection is usually mild or even asymptomatic, but can have serious consequences in patients who are immunocompromised and for the fetus in the case of primary infection during pregnancy.

Sporozoites
The infectious and motile stage produced in oocysts and transmitted by the definitive host.

Tachyzoites
The motile and fast-replicative stage of *Toxoplasma gondii* that is able to invade any nucleated cell in the host.

Merozoites
The stage of *Plasmodium* spp. that infects erythrocytes, in which it initiates a new asexual life cycle.

Actomyosin system
A complex that comprises actin filaments, myosin and associated proteins, and that is involved in movement.

Glideosome
A molecular complex that powers gliding motility in apicomplexan parasites.

Emergence of the capping model
The motility of Apicomplexa (historically named Sporozoa) has caught the attention of scientists for more than a century and was named gliding motility early on, on the basis of microscopic observations.
of live specimens (FIG. 2; Supplementary information S1–S5 (movies)). This mode of motility differs substantially from amoeboid motion involving pseudopods, and from the cilary and flagellar motion used by most unicellular organisms. The main hypothesis to explain gliding motility in the early days was slime secretion, as seen in slugs; although this may now seem simplistic, it is not so far from the present concept of gliding motility in Apicomplexa (FIG. 3a). New insights into the process of gliding motility came from the study of Plasmodium spp. sporozoites and the discovery of the circumsporozoite precipitation reaction1, which showed the posterior capping and shedding of antibodies bound to the parasite surface, implying that a parasite surface protein was translocated rearwards. The term ‘capping’ was first used to describe the redistribution of immune complexes on the surface of lymphocytes9 and has been extended to refer to any polarized translocation of surface protein on a cell. Next, it was demonstrated that cytochalasin B blocks the motility of Eimeria magna sporozoites and also inhibits host cell invasion10. This suggested a possible role for actin in invasion, and a link between motility and invasion, both of which were eventually developed as paradigms for gliding motility in Apicomplexa.

Further demonstrations of links between surface ligand capping, motility and microfilaments came from investigations in the Coccidia subgroup of Apicomplexa and Gregarina11–13. The observation of diverse apicomplexan parasites during invasion by electron microscopy established that invasion starts with the apical pole of the parasite facing the host cell plasma membrane, followed by the formation of an intimate junction between the parasite and the host cell plasma membrane that enables the entry of the parasite3. This junction is referred to as the moving junction, tight junction or circular junction. Subsequently, motility and invasion have been understood as the capping of parasite proteins that interact with the host cell surface, accompanied by the shedding of these surface molecules.

Gliding motility involves cell-surface contacts with substrates (FIG. 3b), and, remarkably, the pellicle of apicomplexan zoites (as for all members of the group Alveolata) is visible by electron microscopy as a three-layered structure that encompasses the plasma membrane and the underlying inner membrane complex (IMC), which is composed of one or more vesicular sacs14 (BOX 1). Freeze-fracture analyses of coccidians has demonstrated a remarkable degree of organization within the IMC, revealing the existence of intramembrane particles aligned on the anteroposterior axis of the cell, thus along the direction of gliding, and suggesting that these structures could function as a template for the mechanism of gliding motility15. It took another 20 years of work on the characterization of secretory organelle content to begin to understand the complex mechanism of gliding motility. The Apicomplexa-specific organelles termed rhoptries and micronemes, which are confined to the anterior part of the zoites (BOX 1), were first described in the 1950s and were suggested to be secretory16. Later, a secretory function was demonstrated by experiments that showed apical microneme exocytosis in Sarcozystis muris17. The link between the translocation of microneme proteins on the parasite surface and motility was then established in P. berghei sporozoites, in which the suppression of the gene that encodes a major microneme protein, thrombospordin-related anonymous protein (TRAP), led to the abolition of motility18. Furthermore, it was concurrently established that motility supports invasion, which is an active process powered by the parasite19–21.

A few years later, the major players — the pellicle, the actomyosin system and the micronemes — were set on the stage. A large amount of data generated by many groups led to the concept of the glideosome2. The capping model of the basis of motility is now understood as a host–parasite interacting complex (ligand–receptor) that is translocated from the front to the rear of the parasite by the action of the actomyosin system (FIG. 5c). Rhoptry neck proteins, proteases and a connector were identified as additional key players of motility and invasion that act in a concerted manner in a process that is orchestrated in time and space through signalling cascades of regulatory molecules.

Actin polymerization and motility

Actin is one of the most abundant proteins in eukaryotic cells. It exists in a monomeric globular form (globular actin (G-actin)) that usually polymerizes into filaments (filamentous actin (F-actin)) through a mechanism that involves a slow nucleation phase followed by a fast elongation phase. The inhibition of parasite motility by...
cytochalasins (which are inhibitors of actin polymerization), indicated a key contribution of parasite actin filaments in motility10,22 (FIG. 4a). The conditional excision of \textit{T. gondii} actin (TgACT1) severely compromised motility, invasion and egress23,24, although the parasites could still be propagated for several days, which raised the possibility of the coexistence of an actin-independent mechanism of motility25,26.

Box 1 | The importance of secretory organelles and the cytoskeleton in the motility and invasion of zoites

Substrate-dependent motility is a hallmark of most invasive zoites. It has been predominantly and extensively studied in cultured \textit{Toxoplasma gondii} tachyzoites, in \textit{Plasmodium berghei} sporozoites isolated from mosquito salivary glands and in ookinetes produced in vitro (which glide approximately 100-times slower than \textit{T. gondii} tachyzoites and \textit{P. berghei} sporozoites at 5 \textmu m min-1)72. By contrast, \textit{Plasmodium falciparum} merozoites, which infect erythrocytes, have either very limited or no gliding motility, and rosetting (that is, the adherence of infected red blood cells to uninfected ones) ensures the direct reinvasion of erythrocytes. Zoites are highly polarized cells that contain secretory organelles at their apical pole: namely, the micronemes and the rhoptries. The content of the micronemes is exocytosed at the apical pole in a calcium-dependent manner and through a membrane fusion process161. Motility can be correlated with the abundance of micronemes; \textit{Plasmodium} spp. sporozoites have the most micronemes and glide for tens of minutes, whereas the merozoite form has few micronemes and does not glide80. The neck of the rhoptries is inserted into the apical polar rings (see the figure, part a), and the content of the rhoptry neck and bulb is successively secreted at the apical tip of the parasites. Invasion is correlated with the presence of rhoptry organelles, as several rhoptry neck proteins are involved in the moving junction, which is built by the parasite to support the traction forces generated during its penetration into the host cell112,123. Ookinetes are able to migrate through the epithelium of the mosquito midgut but do not invade.

The pellicle of Apicomplexa is composed of the plasma membrane (PM) and an inner membrane complex (IMC) formed of one or more flattened vesicular sacs (see the figure, part b). A network of intermediate filament-like proteins, termed alveolins, connects the IMC to the subpellicular microtubules. The crescent shape of the parasite is determined by the left-handed spiral arrangement of its subpellicular microtubules emanating from the apical polar ring and by the underlying alveolin network84. This cytoskeleton maintains the shape of the parasites and, during motility and invasion, influences their trajectory, which is described as a clockwise corkscrew trajectory99–101.

![Adapted with permission from REF. 165, Elsevier.](image-url)
A pool of actin maintained in its globular form. In apicomplexan parasites, several factors contribute to maintaining a low concentration of polymerized actin. First, the apicomplexan F-actin seems to be intrinsically unstable, as it maintains substitutions in residues that usually stabilize the interaction between actin monomers in other organisms. Second, the apicomplexans exhibit a smaller repertoire of actin-binding proteins (ABPs) than many lower eukaryotes, and they lack one of the major actin-nucleating machineries, the actin-related protein 2/3 (ARP2/3) complex. Last, two ABPs — actin-depolymerizing factor (ADF) and profilin — unexpectedly contribute to the high monomer content by sequestering free G-actin and profilin — unexpectedly contribute to the high monomer content by sequestering free G-actin in T. gondii. Thus, apicomplexans have F-actin that is different from the actin in other organisms; how this contributes to gliding motility is discussed below.

Figure 2 Major developments in the history of the capping model. IMC, inner membrane complex; MLC1, myosin light chain 1; MYOA, myosin A; MYOH, myosin H; P. berghei, Plasmodium berghei; P. knowlesi, Plasmodium knowlesi; S. muris, Sarcocystis muris; T. gondii, Toxoplasma gondii; TRAP, thrombospondin-related anonymous protein.

Despite ample functional evidence such as this, actin filaments were found to be unusually short and heterogeneous by electron microscopy and ultracentrifugation, and they were not readily detectable in parasites using microscopy approaches. Recently, the use of chromobodies has enabled the visualization of F-actin in T. gondii for the first time, whereas F-actin in invading merozoites was described in an earlier study.

Gregarina

Large apicomplexan parasites that are ~0.5 mm in size and are capable of infecting terrestrial and marine invertebrates.
the myosin ATPase inhibitor 2,3-butanedione monoxime57 (Fig. 4a). The conserved, short single-headed myosin heavy chain myosin A (MYOA), was then identified in \emph{T. gondii} as the motor that was able to generate the rearward traction force necessary for motility, entry into, and egress from, host cells46. The composition and molecular details of the glideosome have been elucidated in more detail and discovered, respectively49–52, and the importance of the glideosome in motility and invasion has been assessed further23,25,26,53,54 (Supplementary information S6 (table)).

Glideosome composition, assembly and anchoring to the cytoskeleton. The glideosome is confined to the space between the plasma membrane and the IMC, and is conserved throughout the species in the Apicomplexa phylum4. It is composed of MYOA and the associated protein myosin light chain 1 (MLC1 (REF. 49)); named MYOA tail domain-interacting protein (MTIP) in \emph{Plasmodium spp.}51 and the three gliding-associated proteins GAP45, GAP50 (REFS 50,56) and GAP40 (REF. 51) (Fig. 4c). MYOA is a small myosin that lacks a proper tail domain, which is usually responsible for the localization and function of the motor through its interaction with cargo molecules57. Despite this, MYOA is a fast motor in both \emph{T. gondii} and \emph{P. falciparum}, and has kinetic and mechanical properties that are similar to those of fast skeletal muscle myosin and a velocity that is compatible with the speed of gliding tachyzoites and sporozoites (~3 μm s-1)49,58. The head domain of MYOA converts the chemical energy released by ATP hydrolysis into directed movement along F-actin. To do so, the myosin light chain (MLC1 or MTIP) binds to the degenerated IQ motif of the short MYOA neck domain, which acts as a lever arm to transduce the energy into movement56–66 (Fig. 4d). In Coccidia parasites, two additional ‘essential light chains’ (ELC1 and ELC2) compete for a second binding site in the MYOA neck domain and contribute to the speed of the motor, probably by increasing the length of the lever arm and its rigidity49,61. In \emph{T. gondii}, the conserved amino-terminal extension of MLC1 brings MYOA to its site of action within the pellicle, anchoring it to the IMC through its association with GAP45 (REF. 51) (Fig. 4c).

The glideosome component GAP45 is produced in the cytosol of all apicomplexans and is targeted to the plasma membrane by N-terminal acylation, whereas its conserved carboxy-terminal domain associates with the IMC53,62. GAP45 recruits MYOA to the IMC and ensures the integrity of the pellicle during motility by forming a bridge that is fluidly anchored into the plasma membrane and that maintains the appropriate spacing between the IMC and the plasma membrane51. \emph{T. gondii} expresses two additional orthologues of GAP45, TgGAP70 and TgGAP80, which assemble into the glideosome containing TgMYOA at the apical cap and the glideosome containing TgMYOC (another myosin motor protein), respectively, at the basal pole of the parasite63.

Interestingly, the glideosome is abundantly modified by phosphorylation and acylation in both \emph{Toxoplasma gondii} and \emph{Plasmodium spp.}63, but site-directed

Figure 3 | Gliding motility in Apicomplexa. a) The motility of Toxoplasma spp. tachyzoites can be visualized by the trails (shown in green) deposited on a coated surface, which demonstrate circular gliding. The circular motion on a 2D surface is translated into a helical movement in tissues or in a 3D matrigel, and this helical movement can be described as a clockwise corkscrew trajectory that is linked to the left-handed twisted microtubules of the zoite cytoskeleton49–52. b) An \emph{Eimeria nieschulzi} sporozoite (S) gliding along a rat erythrocyte (E) in vitro. Several sites of interaction are visible (indicated by the white arrows). The black arrows indicate the forward gliding of the sporozoite and the stretching of the erythrocyte. c) A generalized model of gliding motility in Apicomplexa. The exocytosis of secretory microneme organelles (orange) occurs at the apical pole of the parasite. During this process, transmembrane adhesive proteins that are embedded into the microneme membrane become inserted into the parasite plasma membrane (pPM), where they interact with extracellular receptors on the host cell (shown in black). Gliding motility results from the rearward translocation of these adhesin–receptor complexes, which is powered by the myosin motors (blue) along actin filaments (yellow) in the space between the inner membrane complex (IMC) and the pPM. hPM, host cell plasma membrane.

P. \textit{berghei} sporozoites46, whereas in \emph{T. gondii} coronin relocates to the posterior pole of the parasite concomitantly to microneme secretion but does not affect motility47. Thus, actin polymerization is clearly important for the process of gliding motility in Apicomplexa.

The glideosome machinery

The involvement of a myosin motor in the glideosome machinery, which powers motility and invasion, was initially postulated on the basis of experiments that used 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Pellicle
In apicomplexans, the three-layered structure comprising the plasma membrane and the underlying inner membrane complex.

Inner membrane complex (IMC). In apicomplexans, one or more flattened vesicular sacs, also named alveoli, that are visible as double-membranous structures underneath the plasma membrane. The IMC is composed of only one alveolus in Plasmodium spp. or of a patchwork of alveoli in Toxoplasma gondii or Eimeria spp.

Rhoptries
Club-shaped secretory organelles that are located at the apical pole of parasites and are composed of two subcompartments: the neck and the bulb.

Micronemes
Elliptic secretory organelles that are located at the apical pole of parasites.

Actin-binding proteins (ABPs). Proteins that bind to globular and/or filamentous actin and influence, for example, monomer sequestration or delivery, filament nucleation, polymerization, depolymerization, stability and capping.

Myosin
A molecular motor that binds to cargo and converts chemical energy released by ATP hydrolysis into directed movement along tracks of actin filaments.

Acylation
The co-translational or post-translational addition of a lipid onto protein residues; examples include myristoylation (in which a 14-carbon saturated fatty acid is added onto a glycine residue at position 2) and palmitoylation (in which a 16-carbon saturated fatty acid is added onto a cysteine residue).

Conoid
A cone-shaped, apical structure that is present in coccidian parasites and is made of spirally arranged tubulin fibres. The conoid protrudes in a calcium-dependent manner during motility, invasion and egress.

Mutagenesis has failed to identify phosphorylation sites that have an effect on the assembly of the motor complex. By contrast, the calcium-dependent phosphorylation of TgMYOA affects its motor function. In addition, acylation has a crucial role in the positioning of the glideosome within the pellicle. Mutations in the N-terminal acylation sites of TgGAP45 cause the protein to fail to anchor the glideosome to the plasma membrane and impair the integrity of the pellicle during motility and parasite invasion. It remains to be determined whether the glideosome undergoes a disassembly process following motility, invasion or egress.

To generate traction, MYOA must be firmly anchored to the parasite cytoskeleton, possibly through GAP50 (REF. 50) and GAP40 (REF. 51) on the parasite IMC side and to extracellular host cell substrates on the other side (FIG. 4c). The indirect link with the underlying alveolin network and the subpellicular microtubules is made by a family of glideosome-associated proteins with multiple-membrane spans (GAPMs) that are present in the IMC of T. gondii and P. falciparum, and have been shown to interact with both alveolins and GAP50 (REF. 68) (FIG. 4c). GAP40, GAP50 and GAPMs also seemed to be crucial for the biogenesis of the IMC during intracellular replication. These findings suggest a connection between the IMC and the basket of subpellicular microtubules, a role previously associated with the intramembrane particles visualized by electron microscopy in Eimeria spp. and T. gondii.

Disruption of components of the glideosome supports their role in gliding.
Consistent with a role for these molecules in gliding, the conditional depletion of MYOA, myosin light chain (MLC1 or MTL1), the essential light chains (ELC1 and ELC2) or GAP45 has a substantial effect on the motility of T. gondii tachyzoites or P. berghei ookinetes, compromising their survival. By contrast, the calcium-dependent phospho-myosin regulatory light chains (ELC1 and ELC2) or GAP45 had a sublethal effect on P. berghei ookinetes, compromising their survival. In addition, the covalent modification of MLC1 by the calcium-dependent protein 6 (TgMIC6)–TgMIC3–TgMIC2–TgMIC1–TgMIC4, TgMIC2–TgMIC2-associate protein (TgM2AP) and TgMIC8–TgMIC3 (REF. 80). TgMIC1 binds to sialic acid on the surface of host cells, which functions as major determinant of invasion by coccidians. In Plasmodium spp. merozoites, many ligands have been identified and classified into two families of proteins, the erythrocyte-binding antigens (EBAs) and the reticulocyte binding-like homologues (RBHs), which are released from the micronemes and rhoptries, respectively. Their expression fluctuates to adapt to polymorphisms of erythrocyte receptors and also to evade the immune system. An exception to this is RH5, which is non-redundant and thus an attractive target for intervention.

In P. berghei sporozoites, the adhesin PfTRAP has been demonstrated to be essential for gliding motility. Subsequently, TRAP-like and TRAP-related proteins have been linked to the motility of other stages of P. berghei, as well as the motility of T. gondii, in which the TRAP homologue is named TgMIC2 (REF. 84) (BOX 2). Mutations in the tail domain of MIC2 and TRAP that are facing the glideosome complex impair the motility of sporozoites and tachyzoites, respectively. However, the deletion of TgMIC2 does not completely abolish motility, which suggests that other microneme proteins may participate in gliding.

Adhesive complexes and the glideosome
For the past decade, the connection between the glideosome and adhesins was assumed to be mediated by the homotetrameric glycolytic enzyme aldolase (ALD) through its F-actin-binding activity. Compellingly, the cytoplasmic tail moieties of several conserved adhesins, such as the micronemal proteins MIC2, TRAP and apical membrane antigen 1 (AMA1), as well as PIRH family members, were shown to bind to ALD, mainly in vitro. In addition, TgALD-depleted T. gondii parasites showed a defect in motility and invasion, and a substantial loss of fitness. Another report showed that this fitness loss could be due to an accumulation of toxic metabolites caused by...
Microneme exocytosis
- Actin polymerization (FRM1)
- F-actin stabilization (GAC)
- F-actin translocation (MYOH)

F-actin translocation along the parasite (MYOA)

- Extracellular matrix
- Adhesins

GAP50
MLC1 (also known as MTIP)
GAC
GAP40
MYOA
Adhesin
GAPM
ROM4
Host cell receptor

MYOH
MYOA
Actin
Microneme
Apical polar rings
pPM
IMC
Microtubule
Alveolin network
Direction of movement

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
incomplete glycolysis, which cast some doubt on the role of TgALD as a connector. Finally, TgALD was proven dispensable for gliding in parasites that are grown in the absence of glucose. The physiologically relevant glideosome-associated connector (GAC) was discovered following the functional characterization of a large armadillo repeats-containing protein that accumulates at the apical tip of T. gondii tachyzoites and in the invasive stages of malaria parasites. T. gondii GAC (TgGAC) binds to F-actin, translocates along the parasite during motility and invasion, and binds to the tail of the adhesin TgMIC2. Concordantly, the tip of the parasite is also the site at which the FRM1 produces F-actin in the narrow space of the pellicle to fuel gliding motility.

Disengagement of adhesive complexes

During host cell entry, parasites shed some of their surface adhesins. The concentration gradient of adhesive molecules generated as a consequence of this shedding presumably contributes to the reorientation of the parasite to face the cell with its apex, which is a necessary step for invasion. In T. gondii, the intramembrane serine protease of the rhomboid family rhomboid-like protease 4 (TgROM4) cleaves adhesins (for example, TgMIC2 and TgAMA1) in their transmembrane domain (Fig. 4d), and this leads to the disengagement of host receptor–parasite ligand interactions. Interestingly, the deletion of TgROM4 has no effect on parasite survival in vitro and is not compensated for by other rhomboid proteases. However, the non-cleaved ligand–receptor complexes are translocated rearwards and accumulate at the posterior pole of the parasite, leading to tachyzoites exhibiting stationary twirling motility (visualized as upright parasites twirling on their posterior pole; Supplementary information S4 (movie)) instead of productive helical motility (Supplementary information S2 (movie))

Gliding motility in vitro

Substrate-dependent motility has been predominantly studied in cultured T. gondii tachyzoites (Supplementary information S2–S4 (movies)), in P. berghei sporozoites isolated from mosquito salivary glands (Supplementary information S1 (movie)) and in oocinates produced in vitro (Supplementary information S5 (movie)). Freshly isolated sporozoites can glide on a surface for tens of minutes, whereas oocinates are able to glide for tens of minutes on a mosquito midgut surface but at a speed 100-times slower than that of sporozoites. All of these zoites are crescent shaped and move in a circular motion on 2D surfaces that is translated into a helical movement in tissues or 3D matrigels. In a 3D substrate, this movement can be described as a clockwise corkscrew trajectory, which is linked to the left-handed twisted microtubules of the parasite cytoskeleton.

The force generated at the surface of tachyzoites has been measured using a laser trap and shown to become directional after a short lag phase, which might correspond to the signalling cascade that leads to microneme secretion and/or actin polymerization. The directionality of the force observed along the anteroposterior axis of the parasite probably correlates with the direction of F-actin and follows the subpellicular microtubules. In P. berghei, sporozoite motility has been investigated using reflection interference contrast and traction force microscopy, which has provided a deeper insight into the spatiotemporal dynamics of gliding motility. This technique has revealed that the circular locomotion observed on a substrate is characterized by a continuous sequence of ‘stick-and-slip’ steps, and that the connected transient forces correlated with the...
association and dissociation of substrate contact sites that were dependent on actin dynamics103. In addition, the retrograde flow of adhesin proteins is faster than the speed of parasite migration and was dependent on the presence of F-actin, which indicates that force production is not linearly coupled to the rearward translocation of adhesins104. In the absence of TRAP-like protein (TLP), this retrograde flow was even faster but less force was measured, which suggests that TLP is involved in coupling these two processes.

The glideosome and egress and invasion

Egress from infected cells is a key event for the dissemination of the parasites105 and involves the rupture of the PVM and the host cell plasma membrane. In *T. gondii*, this process is assisted by the release of the micronemal perifrolin-like protein TgPLP1, which forms pores in the PVM and the host cell plasma membrane106,107 and by host calpain 1, which is a cysteine protease that remodels the host cytoskeleton108. In addition, tachyzoite motility imposes a mechanical force that ensures the rupture of the PVM and the host plasma membrane (FIG. 5a). Consequently, mutants with defective actin dynamics or glideosome components fail to exit perforated host cells45-47,51,53,76. In *P. falciparum* merozoites, egress is a tightly regulated process that is initiated 15 hours before exit from the infected erythrocyte109. The schizonts activate a series of parasite and host proteases that induce considerable changes in the erythrocyte cytoskeleton, leading to the curling and egression of the plasma membrane, thus ejecting the parasites into the bloodstream110 (Supplementary information S7 (movie)). It is still unclear whether motility contributes to the rupture of the membranes or whether the osmotic pressure is sufficient to induce merozoite release111.

Invasion by *T. gondii* is a fast process that occurs with limited apparent changes to the host cell membrane. Tachyzoites initiate a pivoting movement, followed by a brief decrease in motion that coincides with moving junction formation on the host cell membrane, before entering the host cell by rotational progression112 using a screw-like motion2 (FIG. 5b). During invasion, a ring-shaped complex of F-actin, ARP2/3 and cortactin is observed in the host cell at the site of the moving junction113 (FIG. 5c). This remodelling of the cortical actin cytoskeleton is thought to be important for anchoring the parasite to the host cell and for initiating the deformation of the host cell membrane during invasion113,114. The remodelling seems to be even more crucial for parasites that have substantially impaired gliding motility: for example, when TgMYOA is deleted14. Likewise, the attachment and invasion of red blood cells by *Plasmodium* spp. merozoites are completed in approximately 20 seconds, but accompanied by substantial deformations of the erythrocyte membrane115,116. Interestingly, when PIEBA-175 binds to its host receptor glycophorin A, it elicits a phosphorylation cascade in the host cell that includes components of the erythrocyte cytoskeleton and leads to the mechanical destabilization of the cell membrane117 (FIG. 5d). Although erythrocyte actin is more dynamic than previously assumed18, merozoite entry does not involve host actin reorganization at the moving junction119. During invasion, the concentration of parasite actin has been visualized as a ring posterior to the moving junction, which supports a role for gliding during invasion29,39.

Invasion crucially depends on the discharge of rhoptries120, and concordantly, *Plasmodium* spp. ookinete that only traverse the epithelial midgut of the mosquito do not have rhoptries. The content of the rhoptry neck contributes to the formation of the moving junction, which is visible as a ring-like structure by immunofluorescence (FIG. 5b) and forms a solid platform122 with the host cell plasma membrane, through which the motile zoite glides (FIG. 5c,d).

Box 2 | Transmembrane adhesive proteins are crucial for gliding and invasion

Adhesins of the thrombospondin-related anonymous protein (TRAP) family are transmembrane proteins that are stored in micronemes and discharged apically onto the surface of the parasite during gliding motility. These ligands bind to host cell receptors or the extracellular matrix, and are crucial for generating the forces necessary to propel the parasite forwards100. They are translocated rearwards on the surface of the parasite and have been associated with gliding in all motile stages. They are composed of a signal peptide (SP), von Willebrand factor type A (VWA) and thrombospondin type 1 repeat (TSP) domains (which are usually involved in multiprotein complexes10), a transmembrane domain (TMD) and a cytoplasmic tail (see the figure).

In *Plasmodium berghei* sporozoites, two non-redundant adhesins have an important role in motility and invasion: PbTRAP and PbS6. PbTRAP is secreted from the micronemes, binds to the heparin sulfate proteoglycans expressed on the surface of hepatocytes and is translocated to the rear of the parasites during motility. The consequences of deleting PbTRAP show that this protein is crucial for the motility of sporozoites, the invasion of the mosquito salivary glands and the invasion of rodent hepatocytes11. The PbTRAP-related protein PbS6 has a similar role in gliding motility and is required for efficient malaria transmission106. In addition, *P. berghei* TRAP-like protein (PbTLP) probably acts together with PbTRAP and PbS6 to regulate motility in sporozoites, and it is particularly involved in regulating the attachment sites during gliding to achieve continuous movement107.

The gliding migration of the *P. berghei* oocysteine through the mosquito midgut epithelium has also been shown to rely on the TRAP family member circumsoropozoite- and TRAP-related protein (PcCTR). PcCTR is a microneme protein that is secreted on the surface of the oocysteine, and its disruption in *P. berghei* has been shown to result in defective oocysteine motility and infectivity such that no oocysteines are found in the mosquito midgut epithelium11.

In *Toxoplasma gondii* tachyzoites, the TRAP family member microneme protein 2 (TgMIC2) forms a complex with MIC2-associated protein (TgM2AP). The carboxy-terminal domain of TgMIC2, which is located downstream of the TMD, binds to gliding-associated connector (GAC) and therefore bridges the glideosome complex. The inducible depletion of TgMIC2 does not impair microneme secretion but severely affects the gliding motility of tachyzoites, especially the helical movement, thus leading to a marked defect in invasion and egress. In addition, TgMIC2-depleted parasites have been shown to be avirulent in a mouse model and to confer protection against a new challenge8, which demonstrates the importance of adhesins for efficient infection by apicomplexan parasites.
In *T. gondii*, rhoptry discharge follows microneme secretion and crucially depends on the presence of the microneme protein TgMIC8 (REF 121), although the mechanistic contribution of TgMIC8 is not understood. Similarly, the glycoporin A-binding protein PIEBA-175 is reported to be a prerequisite for rhoptry secretion122. The moving junction was first observed more than 30 years ago by electron microscopy, following erythrocyte invasion of *P. knowlesi* merozoites3, and the molecular details of the moving junction in *T. gondii* emerged recently in a study that identified an assembly of proteins originating from micronemes and rhoptries123. AMA1, which is secreted from the micronemes, associates with the pre-formed complex of four rhoptry neck proteins (RON2, RON4, RON5 and RON8) secreted into the host cell123 (FIG. 5c). Exposed on both sides of the junction, AMA1 and RON2 form a tight complex that maintains the close apposition of parasite and host cell membranes124-126.

The solved structure of AMA1–RON2 complexes in *T. gondii* and *P. falciparum* highlights the strong affinity required to withstand the mechanical shear forces enacted by the moving junction during invasion127,128. Remarkably, when TgAMA1 is actively engaged with TgRON2 in host cell penetration, TgAMA1 becomes less susceptible to cleavage by rhomboid proteases. This enables the two proteins to maintain the integrity of the two cells during the entire invasion process129. Only a short ectodomain of RON2 is bound to AMA1; the majority of RON2 is localized to the cytosolic face of the host cell membrane as part of a complex with RON4, RON5 and RON8 (REFS 124,130,131). This complex delineates the moving junction in *T. gondii*, and recruits the cytosolic host proteins ALG2-interacting protein X (ALIX; also known as programmed cell death 6-interacting protein), tumour susceptibility gene 101 protein (TSG101), CBL-interacting protein of 85 kDa (CIN85; also known as SH3 domain-containing kinase-binding protein 1) and CD2-associated protein (CD2AP), which comprise a set of adaptor proteins known to connect membrane proteins to the underlying cytoskeleton123. Similarly, in *P. falciparum*, the localization of PfAMA1 during invasion is visible as a ring shape within a ring of PIRON4 (REFS 58,59). The AMA1–RONS complex may provide a physical link between the cortical cytoskeletons of the parasite and the host cell, and thus act as a stable structure on which the zoite applies traction during invasion. Concordantly, genetic approaches in *T. gondii* have validated the contribution of the AMA1–RONS complex to invasion133-136, although parasite motility was not substantially affected (Supplementary information S6 (table)). Although a TgAMA1-null mutant could be obtained in *vitro*137, the upregulation of TgAMA1 homologues that sustain residual invasion confirmed the crucial role of the moving junction in host cell penetration134,138.

In *Plasmodium* spp., it was not possible to knockout AMA1 and RON4; however, the conditional depletion of *P. berghei* AMA1 (PbAMA1) and PfAMA1 caused a defect in merozoite invasion139,140 and in the sealing of the parasitophorous vacuole at the end of invasion142. By contrast, the conditional depletion of PfAMA1 does not affect the entry of sporozoites137,138, but blocking the interaction of AMA1–RON2 with a 20-residue peptide — ‘R1 peptide’, which specifically binds AMA1 — inhibits hepatocyte invasion by *P. falciparum* sporozoites141. Moreover, the deletion of a distant PfAMA1 homologue, PIMAEBL, severely impairs hepatocyte invasion by *P. falciparum* sporozoites without having an effect on gliding motility141. This suggests that PfAMA1 and the homologue PIMAEBL are not fully redundant, but further work is required to determine whether they act together.

Other studies suggest that AMA1 has functions in signal transduction. In support of this, the phosphorylation of S610 on the tail of PfAMA1 by *P. falciparum* cAMP-dependent protein kinase (PfPKA) is important for efficient erythrocyte invasion by malaria parasites142,143. In *T. gondii*, the binding of the ectodomain of TgAMA1 to TgRON2 generates an outside-in signal that leads to the dephosphorylation of S527 on the cytosolic tail of TgAMA1, thus increasing invasion efficiency129.

Signalling and gliding motility

It remains unclear what specific signalling pathways act to regulate the activity of the glideosome. However, a decrease in potassium concentration, which occurs when the integrity of the infected host cell is compromised, increases intracellular calcium levels in both *T. gondii* and *Plasmodium* spp.122,144. This spike in calcium concentration can mediate signalling by activating specific kinases and coordinating microneme secretion, and hence has an effect on gliding motility, invasion and egress145,146. Fluctuations in intracellular calcium concentrations have been monitored during the motility of both tachyzoites147 and sporozoites148 using the calcium indicator Fluo-4 and the Förster resonance energy transfer (FRET)-based sensor TN-XXL, respectively. Apicomplexans lack calmodulin-dependent kinases, which are part of the calcium signalling apparatus in higher animals, but instead have several calcium-dependent protein kinases (CDPKs) that are usually found in plants149. TgCDPK1 is essential for microneme exocytosis150, whereas TgCDPK3 is only important for egress151-153 (Supplementary information S6 (table)). Furthermore, TgCDPK3 is required for the initiation of motility, as it phosphorylates TgMYOA154. In *P. falciparum*, a peptide that specifically inhibits PfCDPK1 (which is an orthologue of TgCDPK3) causes a defect in merozoite microneme secretion and blocks invasion154. Moreover, parasites that are depleted of PfCDPK5 develop to the segmented schizont stage but are unable to rupture the PVM; however, following mechanical release, merozoites are fully competent to invade new red blood cells155. Together, these findings suggest that calcium signalling is important for parasite microneme secretion, motility and invasion. In addition to responding to changes in extracellular potassium concentration, parasites also react to low pH, which triggers the calcium-dependent secretion of micronemes and activates gliding motility156.
Calcium signalling

Microbe secretion

Motility

Rhoptry secretion

Moving junction formation and motility-driven penetration

Host cell

Calcium signalling

Rhoptry secretion

Moving junction formation and motility-driven penetration

Differential interference contrast (DIC)

RON2

Merge

hPM

Moving junction formation:

AMA1–RON2–RON4–RON5

Calcium release:

RH5, RIPR and CYRPA

RBC membrane deformation

Pore formation?

Motility-driven penetration

Primary contact:

MSPs

Reorientation:

EBLs and Rhs

Apical polar rings

Glycophorin A

EBA-175
(50,637)

Ca²⁺

Basigin

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Several other proteins and molecules have been linked to signalling pathways that regulate the glideosome. cGMP-dependent protein kinase (PKG) triggers microneme secretion and parasite egress in a calcium-independent manner. Recently, phosphatidic acid has been identified as an important lipid mediator of microneme secretion that acts in parallel to calcium. The production of inositol-1,4,5-triphosphate by phospholipidinositol phospholipase C (PI-PLC) and the concurrent calcium mobilization that occurs before microneme secretion are linked to the generation of diacylglycerol (DAG). DAG can be interconverted to phosphatidic acid through the action of diacylglycerol kinase 1 (DGK1). The relevance of phosphatidic acid is linked to acylated pleckstrin homology domain-containing protein (APH), which is present at the surface of micronemes, conserved across the Apicomplexa phylum and acts as phosphatidic acid-detecting protein. Notably, the conditional depletion of TgAPH leads to a severe block in microneme secretion and consequently to an abrogation of the function of the glideosome. In addition, a C2 domains-containing protein (DOC2.1), which is also conserved across the apicomplexans, mediates apical microneme exocytosis in a calcium-dependent manner. Last, a large protein localized at the apical polar ring of tachyzoites, and therefore named T. gondii RNG2 (TgRNG2), has been shown to affect microneme secretion in a poorly understood manner.

The apical tip of parasites is a strategic position from which organelles are secreted, FRM1-dependent actin nucleation and polymerization occurs, and motility is initiated. In T. gondii, apical lysine methyltransferase (TgAKMT) is concentrated at the apical polar ring of intracellular tachyzoites and quickly relocalizes to the cytosol in motile parasites. The deletion of TgAKMT leads to severe defects in motility, invasion and egress without having an effect on microneme secretion (Supplementary information 5c (table)). Remarkably, TgAKMT is a prerequisite for the accumulation of TgGAC at the tip of the parasite, which indicates the importance of protein methylation in glideosome function. Interestingly, TgGAC also has a pleckstrin homology domain that binds to phosphatidic acid, and this binding further supports the role of phosphatidic acid signalling in the regulation of gliding motility.

Conclusions and unresolved issues

Although the capping model of gliding motility in Apicomplexa was conceptually formulated more than a century ago, the actual composition of the glideosome and the molecular details of its assembly and function have only emerged in the past 10 years. On the basis of the available data and in the absence of an alternative model, the glideosome seems to account for three crucial steps of the lytic cycle of Apicomplexa — motility, invasion and egress. Given the essential nature of invasion for an obligate intracellular parasite, functional redundancy and compensatory mechanisms exist as backup systems. In agreement with this, the deletion of TgMYOA or TgAMA1 in T. gondii is a clear example of parasite adaptation to deleterious conditions, whereby a reliance on a less powerful homologue sustains a vital function. Recently, considerable methodological advances have led to the precise positioning of key effector molecules, such as F-actin motors and adhesins, and to the elucidation of the signalling pathways that are involved in coordinating invasion and egress through organelle discharge. Future challenges and endeavours reside in the identification of the kinase substrates that ensure parasite dissemination and in understanding how the key players that power motility are orchestrated in time and space to achieve a concerted action. A non-exhaustive list of unresolved questions to be addressed includes the following: what is the mechanism that controls the ATPase activity of myosins? What is the contribution of post-translational modifications to glideosome assembly and function? Is the glideosome disassembled and recycled? Where and how are actin dynamics regulated to control gliding? What are the molecular bases for the force generation and propulsion of parasites during motility and invasion? What is the machinery and triggering factor that governs ejection discharge? Future work should aim to address these questions as technological advances move the field forwards.
This study provides the first time-lapse video microscopy of the three distinct forms of motility of T. gondii tachyzoites.

This study identifies the two components of the glideosome associated with the IMC.

Bihet, M. et al. Genetic impairment of parasite myosin motors uncovers the contribution of host cell dynamics to Toxoplasma invasion forces. BMC Biol. 14, 97 (2016)

This study uses time-lapse video microscopy tracking and highlights the host cell membrane remodelling that contributes to the invasion of tachyzoites lacking MyoA.

This work revisits the topology of the glideosome within the pellicle and associates the MYOA motor complex with the IMC.

This work revisits the topology of the glideosome within the pellicle and associates the MYOA motor complex with the IMC.

This work revisits the topology of the glideosome within the pellicle and associates the MYOA motor complex with the IMC.

This work revisits the topology of the glideosome within the pellicle and associates the MYOA motor complex with the IMC.

This work revisits the topology of the glideosome within the pellicle and associates the MYOA motor complex with the IMC.

This work revisits the topology of the glideosome within the pellicle and associates the MYOA motor complex with the IMC.
Aldolase is essential for energy production and
parasite gliding motility and invasion by the malaria parasite.

This study solves the structure of AMA1 in complex with a RON2 peptide, which reveals the buried nature of the interface and the dominant surface area that is necessary to resist the mechanical forces applied during the penetration of host cells by the parasite.

Krishnamurthy, S. et al. Not a simple tether binding of Toxoplasma gondii AMA1 to RON2 during invasion protects AMA1 from rhomboid-mediated cleavage and leads to desphosphorylation of its cytosolic tail. mbio.7, e00754-16 (2016).

Intracellular calcium stores

In the paper by Yang, A. S.; Carey, A. F.; Lovett, J. L. & Sibley, L. D., Intracellular calcium stores play an important role in calcium-dependent protein kinase activity.

The loss of calcium-dependent protein kinase activity

In the paper by Bargieri, D. Y.; Mital, J.; Meissner, M.; Soldati, D. & Ward, G. E., The loss of calcium-dependent protein kinase activity can be observed in the parasite P. berghei. This study identifies the contribution of protein methylation to motility and invasion.

Malaria vaccine candidate AMA-1 reveals an important role in erythrocyte invasion

In the paper by K. Leykauf; K. Bargieri; D. Y. Mital; J. Meissner; M. Soldati; D. & Ward, G. E., Malaria vaccine candidate AMA-1 reveals an important role in erythrocyte invasion. This study identifies the contribution of protein methylation to motility and invasion.

TgAMA1 plays a critical role in host cell invasion

In the paper by Bradley, P. J., The moving junction protein RON8 plays a critical role in host cell invasion. This study identifies the contribution of protein methylation to motility and invasion.

TgAMA1 plays a critical role in host cell invasion

In the paper by TgAMA1 plays a critical role in host cell invasion. This study identifies the contribution of protein methylation to motility and invasion.

Calcium-dependent protein kinase activity

In the paper by Calcium-dependent protein kinase activity plays an important role in calcium-dependent protein kinase activity.

Calcium-dependent protein kinase activity

In the paper by Calcium-dependent protein kinase activity plays an important role in calcium-dependent protein kinase activity.

Calcium dynamics of Toxoplasma gondii

In the paper by Calcium dynamics of Toxoplasma gondii provides insights into the role of calcium dynamics in the parasite.

Calcium-dependent protein kinase activity

In the paper by Calcium-dependent protein kinase activity plays an important role in calcium-dependent protein kinase activity.

Calcium-dependent protein kinase activity

In the paper by Calcium-dependent protein kinase activity plays an important role in calcium-dependent protein kinase activity.

Calcium-dependent protein kinase activity

In the paper by Calcium-dependent protein kinase activity plays an important role in calcium-dependent protein kinase activity.

Calcium-dependent protein kinase activity

In the paper by Calcium-dependent protein kinase activity plays an important role in calcium-dependent protein kinase activity.