Outcome and treatment of nocardiosis after solid organ transplantation: new insights from a European study

LEBEAUX, David, et al.

Abstract
Solid organ transplant (SOT) recipients are at risk of nocardiosis, a rare opportunistic bacterial infection, but prognosis and outcome of these patients are poorly defined. Our objectives were to identify factors associated with one-year mortality after nocardiosis and describe the outcome of patients receiving short-course antibiotics (≤120 days).

Reference

PMID: 28329348
DOI: 10.1093/cid/cix124
Outcome and treatment of nocardiosis after solid organ transplantation: new insights from a European study

Authors:
David Lebeaux,1 Romain Freund,2,3 Christian van Delden,4,5 Hélène Guillot,6 Sierk D. Marbus,7 Marie Matignon,8 Eric Van Wijngaerden,9 Benoit Douvry,10 Julien De Greef,11 Fanny Vuotto,12 Leila Tricot,13 Mario Fernández-Ruiz,14 Jacques Dantal,15 Cédric Hirzel,5,16 Jean-Philippe Jais,2,3 Veronica Rodriguez-Nava,17 Frédérique Jacobs,18 Olivier Lortholary,1 Julien Coussement 18 on behalf of the European Study Group for Nocardia in Solid Organ Transplantation

Affiliations:
1 Université Paris Descartes, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Centre d’Infectiologie Necker-Pasteur and Institut Imagine, Paris, France
2 Université Paris Descartes, INSERM UMR 1138 Team 22, Paris, France
3 Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Biostatistics Unit, Paris, France
4 Transplant Infectious Diseases Unit, Hôpitaux Universitaires de Genève, Geneva, Switzerland
5 Swiss Transplant Cohort Study, Switzerland
6 Sorbonne Universités, UPMC Université Paris 06, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Service des Maladies Infectieuses et Tropicales, Paris, France
7 Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
8 Assistance Publique-Hôpitaux de Paris, Groupe Henri Mondor-Albert Chenevier, Nephrology and Transplantation Department, Centre d’Investigation Clinique-BioThérapies 504 and Institut National de la Santé et de la Recherche Médicale U955 and Paris Est University, Créteil, France
9 Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
10 Service de Pneumologie et de Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
11 Department of Internal Medicine and Infectious Diseases, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
12 Infectious Diseases Unit, Huriez Hospital, CHRU Lille, Lille, France

© The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com
Corresponding author: Dr. David Lebeaux, Hôpital Necker Enfants Malades, Centre d’Infectiologie Necker-Pasteur, 149 Rue de Sèvres, 75015 Paris, France. Phone: +33 1.44.38.17.42 / fax: +33.1.44.49.54.40. E-mail: david.lebeaux@yahoo.fr

40-word summary: In our study of 117 organ-transplant recipients with nocardiosis, a history of tumor, invasive fungal infection, donor age and no acute rejection were independently associated with one-year mortality. Short-course antibiotic treatment (≤120 days), used in 17 patients, appeared promising.

Running title: Outcome of nocardiosis after SOT

Members of the European Study Group for Nocardia in Solid Organ Transplantation:

Individual collaborators and scientific groups who are members of the European Study Group for Nocardia in Solid Organ Transplantation are listed in the Supplementary data or in the author list.
ABSTRACT

Background: Solid organ transplant (SOT) recipients are at risk of nocardiosis, a rare opportunistic bacterial infection, but prognosis and outcome of these patients are poorly defined. Our objectives were to identify factors associated with one-year mortality after nocardiosis and describe the outcome of patients receiving short-course antibiotics (≤120 days).

Methods: We analyzed data from a multicenter European case-control study that included 117 SOT recipients with nocardiosis diagnosed between 2000 and 2014. Factors associated with one-year all-cause mortality were identified using multivariable conditional logistic regression.

Results: One-year mortality was 10-fold higher in patients with nocardiosis (16.2%, 19/117) than in control transplant recipients (1.3%, 3/233, p<0.001). A history of tumor (odds ratio [OR] 1.4; 95% confidence interval [CI] 1.1-1.8), invasive fungal infection in the six months before nocardiosis (OR 1.3; 95%CI 1.1-1.5) and donor age (OR 1.0046; 95%CI 1.0007-1.0083) were independently associated with one-year mortality. Acute rejection in the year before nocardiosis was associated with improved survival (OR 0.85; 95%CI 0.73-0.98). Seventeen patients received short-course antibiotics (median duration 56 [24-120] days) with a one-year success rate (cured and surviving) of 88% and a 5.9% risk of relapse (median follow-up 49 [6-136] month).

Conclusions: One-year mortality was 10-fold higher in SOT patients with nocardiosis than in those without. Four factors, largely reflecting general medical condition rather than severity and/or management of nocardiosis, were independently associated with one-year mortality. Patients receiving short-course antibiotic treatment had good outcomes, suggesting this may be a strategy for further study.

Keywords: Nocardia, mortality, organ transplantation, prognosis, opportunistic infections
LIST OF ABBREVIATIONS

16S rRNA: 16S ribosomal ribonucleic acid
95% CI: 95% confidence interval
ATG: antithymocyte globulin
CCI: Charlson comorbidity index
CMV: cytomegalovirus
CNS: central nervous system
CRP: C-reactive protein
NS: not significant
OFN: Observatoire Français des Nocardioses
OR: odds ratio
SOT: solid organ transplantation
spp.: species
SXT: trimethoprim–sulfamethoxazole (cotrimoxazole)
INTRODUCTION

Nocardia spp. is a filamentous environmental Gram-positive bacterium that causes infection in immunocompromised patients, such as solid organ transplantation (SOT) recipients [1]. Because inhalation is the main portal of entry for *Nocardia*, lung involvement is frequent and bacteria may subsequently spread to other organs, such as the brain [1].

Although several reports have indicated that nocardiosis is associated with increased mortality in SOT recipients, a precise assessment of its impact on outcome is still lacking [2]. Indeed, reported post-SOT nocardiosis mortality rates vary from 0 to 70%, depending on the characteristics of the studied populations and durations of follow-up [3-8]. Furthermore, prognostic factors have not been precisely identified, because only limited-size retrospective studies have been published. Of note, a univariate analysis performed in a study of 31 patients with nocardiosis (including nine transplant recipients) suggested that dissemination and presence of brain abscesses were associated with increased mortality [9].

Theoretically, factors that could influence the outcome of nocardiosis include its presentation (e.g., presence of cerebral abscesses [9]), possible co-infections with other opportunistic pathogens (e.g., *Aspergillus* and cytomegalovirus [CMV] [6]), therapeutic modalities (e.g., appropriateness of antibiotics according to species identification and antimicrobial susceptibility testing [2]), occurrence of adverse effects associated with antibiotics (e.g., toxicity of trimethoprim-sulfamethoxazole [SXT] [6, 10, 11]) and presence of co-morbidities [12]. Improved understanding of the impact of nocardiosis on outcomes after SOT and of factors associated with outcomes may help delineate a group of patients requiring a specific initial diagnostic work-up, treatment and/or follow-up.

Another challenge in the field of post-SOT nocardiosis is the optimal duration of antibiotic treatment with regard to the risk of relapse on the one hand and to the adverse effects and costs of these agents on the other. Current recommendations suggest at least six months of antimicrobial therapy for pulmonary or soft tissue infections and a minimum of 9-12 months for brain abscess [13]. These guidelines are based on a retrospective study of 25 pulmonary cases published in 1982 that described a high rate of relapse (60%, 3/5 patients) among patients who received SXT alone for less than four months [14]. Strikingly, a more recent study that included 12 heart transplant recipients suggested that a shorter (≤120 days) treatment course was feasible in pulmonary nocardiosis, without relapse [15].
We recently reported the results of a multicenter case-control study conducted to identify risk factors for nocardiosis [16]. In the present study, our primary objective was to identify factors associated with all-cause mortality one year after diagnosis of nocardiosis in the SOT population. Our secondary objective was to assess the risk of relapse associated with short-course (≤120 days) antibiotic treatment for *Nocardia* infection.
MATERIAL AND METHODS

Study design and participants

In our previously published retrospective case-control study, 351 SOT recipients (117 patients with post-transplant nocardiosis and 234 matched control transplant recipients, details of whom can be found elsewhere [16]) were included from 36 hospitals in Western Europe (participating centers are listed in the Appendix and in the author list) [16]. The present study includes the same 351 patients. Patients with nocardiosis were included if they met all the following criteria: (1) SOT recipient; (2) isolation of Nocardia spp. in a clinical sample after transplant; (3) signs and/or symptoms suggestive of nocardiosis; (4) diagnosis made between January 2000 and December 2014. To avoid selection bias, cases were identified in each institution using systematic and comprehensive screening of local microbiological, pathology and transplantation databases.

Variables

Data were collected from the patients’ medical records by local investigators using dedicated case-report forms. The date of diagnosis was defined as the day on which the first clinical sample (e.g., sputum) that allowed identification of Nocardia spp. was collected. Variables potentially associated with patient outcome were divided into three groups:

(1) Collected patient characteristics included: age, sex, comorbidities at time of nocardiosis (Charlson Comorbidity Index (CCI), Supplementary Table 1) [17], transplant details (history of previous transplant, donor age, type of donation (deceased vs. living), organ transplanted), immunosuppressive regimen used, history of acute allograft rejection and history of opportunistic infections (CMV infection and/or disease as defined elsewhere [18], CMV serostatus at time of transplantation, bloodstream infection and history of treated proven or probable invasive fungal infection in the six months before nocardiosis). High-dose corticosteroids were defined as >20 mg/day of prednisone for at least one month or >2 pulses of 500 mg of intravenous methylprednisolone. High calcineurin inhibitor trough levels were defined as >10 ng/mL for tacrolimus and >300 ng/mL for cyclosporine.

(2) Factors related to the characteristics of nocardiosis included: time from transplant to nocardiosis, time between occurrence of symptoms and diagnosis, sites of infection, eventual dissemination (defined as the involvement of at least two non-contiguous organs and/or positive blood cultures), biological blood values at
the time of *Nocardia* infection (kidney function, C-reactive protein, leukocytes, neutrophils, lymphocytes), additional pathogens (identification of at least one other microbial pathogen at the time of *Nocardia* diagnosis), *Nocardia* species, susceptibility to SXT.

(3) Factors associated with the treatment of nocardiosis included the antimicrobial agents used, appropriateness of the antimicrobial agents prescribed in the first two weeks of therapy in the initial regimen (appropriateness being defined as the administration of antibiotics with *in vitro* activity against the infecting strain [19]), use of bactericidal antibiotics (amikacin, carbapenems, third-generation cephalosporin restricted to ceftriaxone and cefotaxime [20]) in the first two weeks of treatment, occurrence of antibiotic-related adverse effects and need for surgery due to nocardiosis. Total duration of antibiotic treatment was recorded and a short-course was defined as ≤120 days [15].

Relapse was defined as the association of clinical and radiological signs of nocardiosis with isolation of the same *Nocardia* species found at initial diagnosis, after the cessation of antimicrobial treatment for nocardiosis. Determination of nocardiosis as the cause of death was based on physician analysis of the medical chart.

Microbiology

To identify the species of each *Nocardia* strain, amplification and sequencing of a fragment of the gene coding for the 16S ribosomal RNA (16S rRNA) or *hsp65* genes were mandatory, as described previously [16]. Ideally, antibiotic susceptibility testing was performed by determination of the minimal inhibitory concentration (MIC) in broth microdilution [21] but MICs evaluated by E-test® strips or antibiotic disk diffusion on agar plates were considered acceptable when performed by a trained microbiologist [22-25]. When antibiotic susceptibility testing was missing, stored strains were *a posteriori* sent to the French expert laboratory for nocardiosis (Observatoire Français des Nocardioses, Lyon, France) to perform the missing tests.

Statistical methods

Final analysis was conducted after all data had been recorded and verified. Continuous data are presented as median (range) or mean (± standard deviation), as appropriate. Categorical data are presented as numbers and percentage of total. The primary outcome was survival 12 months after diagnosis of *Nocardia* infection. Survival was assessed using Kaplan-Meier curves and compared between groups using log-rank tests. Univariate analyses were performed using Fisher’s exact test or chi-square test, as appropriate, to compare
categorical variables, and Student t-tests were performed to compare continuous variables. A bilateral p-value <0.05 was considered as statistically significant. Variables with a p-value <0.2 on univariate analysis were included in the final multivariable conditional logistic regression analysis. All statistical analyses were performed using R Statistical software (version 3.2.0; R Foundation for Statistical Computing, Vienna, Austria).

Ethical aspects

As previously described, this work was approved by local ethics committees and fulfilled the regulatory standards of each participating country [16].
RESULTS

Participants and overall mortality

One hundred and seventeen SOT recipients with nocardiosis were included from 36 European institutions; full case descriptions can be found elsewhere [16]. The median duration of follow-up from the date of nocardiosis diagnosis was 45.3 [0.1-151.9] months. One-year all-cause mortality was significantly higher in patients with nocardiosis (16.2%, 19/117) than in control transplant patients (1.3%, 3/233) (p<0.001) (Figure 1A). In the nocardiosis non-survivors, death occurred after a median of 134 [4-359] days post-infection. Nocardiosis was listed as the cause of death in 52.6% of the non-survivors (10/19); when comparing deaths related or not to nocardiosis, there was no statistically significant difference in the length of time between nocardiosis and death (100 [19-302] days vs. 149 [4-359] days, p=0.57).

Prognostic factors

In univariate analysis (Table 1), one-year mortality was significantly higher in patients with an additional pathogen at the time of diagnosis of nocardiosis, invasive fungal infection in the six months before nocardiosis, older donor age and longer time from transplantation to nocardiosis (all p<0.05). No therapeutic variables were associated with survival at one year. In multivariable analysis (Table 2), history of tumor (defined as a non-metastatic tumor [if active or initially treated in the 5 years before diagnosis of nocardiosis] or metastatic solid tumor), invasive fungal infection in the six months before nocardiosis and older donor age were independently associated with increased one-year mortality. Conversely, acute rejection in the year before nocardiosis was associated with a better survival. Survival analyses are shown in Figures 1B to D.

Description of initial management

During the first two weeks of treatment, appropriate antibiotics were prescribed in 94.6% of the patients (105/111) based on results of antibiotic susceptibility testing (Supplementary Tables 2 and 3). Bactericidal antibiotics were used as initial therapy in 66/109 of the patients (60.6%) and two simultaneous appropriate antibiotics in 48/111 (43.2%). At least one antibiotic-attributed adverse effect was reported in 46.6% of the patients (54/116), affecting the bone marrow (n=24), kidneys (n=22), digestive system (n=11) and/or skin (n=5). Twenty-three patients required surgery (23/117, 19.7%).

<table>
<thead>
<tr>
<th>Participant</th>
<th>Antibiotics</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Positive</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Negative</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Risk of relapse and short-course antibiotic treatment

Twenty-seven patients (23.0%) received short-course antibiotic treatment. However, the impact of antibiotic duration on the risk of relapse could only be assessed in 17 patients, as death occurred within 120 days in 10 of these patients (37.0%). These 10 patients died while still receiving active antimicrobial therapy against *Nocardia* and half of these deaths (5/10) were directly attributed to nocardiosis. A detailed description of the 17 analyzable patients is provided in Table 3; the median duration of antibiotic treatment was 56 [24-120] days. Compared with the entire cohort, the 17 patients in whom antibiotics were deliberately given for ≤120 days were less likely to have disseminated disease (2/17 [11.8%] vs. 50/117 [42.7%], p<0.01) and tended to less frequently have CNS infection (1/17 [5.9%] vs. 30/117 [25.6%], p=0.12). After a median follow-up of 49 [6-136] months, 15 of the 17 patients were cured (88.2%, including 2/2 with disseminated infection, 1/1 with CNS infection and 11/12 with lung infection), one died within the first year (5.9%) and one relapsed (5.9%). The patient who died had *Candida* bloodstream infection at the time of diagnosis. Among the 15 patients who did not relapse despite administration of short-course antibiotics, all received appropriate initial antibiotics (15/15, 100%) but the percentages of patients who received bactericidal antibiotics (7/15, 46.7%) or an association of two appropriate antibiotics (5/15, 33.3%) in the first two weeks of treatment were not significantly different to those observed in the entire cohort (p=0.46 and p=0.65 respectively). After cessation of therapy, secondary prophylaxis with SXT was given to 62.5% (10/16) of the patients who had received short-course antibiotics.

Seven patients (7/117, 6.0%) had a relapse during follow-up. These patients had a median duration of treatment of 165 [51-501] days with one patient receiving short-course treatment (51 days). This patient, who had isolated lung infection, had relapsing nocardiosis despite the use of appropriate and bactericidal antibiotics in the first two weeks of treatment. Among the 7 patients who relapsed, a single one died within one year, due to an episode of acute allograft rejection.

Among 98 survivors at one year, 92 (93.9%) had no relapse after a median follow-up of 4.3 [1-12.6] years. Among these survivors, the median duration of treatment was 195 [24-1981] days. Duration of antibiotic treatment was significantly longer in patients with disseminated or CNS nocardiosis (Supplementary Figure 1). In the 8/117 patients who had an infection limited to the skin and soft-tissues (6.8%), the median duration of antibiotic treatment was 103 [35-351] days and 6 of these patients (75.0%) required surgery. Cure was
achieved in 7 patients (87.5%, including 4 patients with short-course antibiotics) and one patient (12.5%) relapsed 137 days after the end of therapy (which included >4 months of antibiotics and no surgery).
DISCUSSION

In our European cohort, one-year all-cause mortality was more than ten-times higher in the 117 SOT recipients with nocardiosis than in control transplant recipients. Four factors were independently associated with risk of death one year after nocardiosis: a history of tumor, invasive fungal infection in the 6 months before nocardiosis, donor age and absence of acute organ rejection in the year before nocardiosis.

The mortality rate observed in our study (16.2%, 19/117) is comparable to that in a previous study reporting on 35 patients with post-SOT nocardiosis (6-month mortality=14.3%, 5/35) [6] but appears to be lower than in other reports (~30%) [4, 5]. This apparent discrepancy may be explained by the different outcome periods used in the various studies and the large proportion of lung recipients in the two latter studies. Higher mortality rates have been reported in patients with fungal opportunistic infections after SOT, including pneumocystosis (90-day mortality 23.1%, 6/26) [26], aspergillosis (12-week mortality, 39.3%, 44/112) [27] and mucormycosis (90-day mortality 58.2%, 57/105) [27]. We were, therefore, not surprised to observe that occurrence of an invasive fungal infection in the 6 months prior to nocardiosis (reported in 17.0% of our cohort and in 37.5% of the patients who died) was independently associated with an increased risk of death, as has been suggested previously [8].

Other patient characteristics were also independently associated with death after nocardiosis. First, we observed that a history of tumor was an independent prognostic factor after nocardiosis. Second, donor age was independently associated with one-year mortality, an observation that is in agreement with data from the French transplantation agency (Agence de la Biomédecine) reporting that donor age was associated with reduced graft and recipient survival after heart, lung, liver and kidney transplantation [28].

Of interest, we observed significantly lower mortality among patients who experienced an acute rejection episode in the year before nocardiosis. Although this observation may appear surprising, these patients tended to have received higher doses of corticosteroids in the six months before diagnosis and to more frequently have a high calcineurin inhibitor level, suggesting that although a higher degree of immunosuppression may increase the risk of post-SOT nocardiosis, it is associated with a better outcome [16]. This association may be explained by the fact that patients with a high degree of immunosuppression are more closely monitored and promptly investigated in case of fever or respiratory symptoms leading to earlier diagnosis, but one can also
hypothesize that a greater inflammatory response may be associated with a worse prognosis in Nocardia infection.

Strikingly, no therapeutic variable was associated with patient survival. Because of the non-interventional design of our study, we cannot rule out a beneficial effect of the early use of appropriate antibiotics, or the impact of using antibiotic combinations or bactericidal versus bacteriostatic antibiotics. Expert recommendations regarding the initial choice of antibiotics [13] should therefore be followed, initially using antibiotics active against a broad spectrum of Nocardia species, such as SXT, amikacin, third-generation cephalosporins (restricted to ceftriaxone and cefotaxime), carbapenem (restricted to imipenem and meropenem) or linezolid. Antibiotic combinations that include bactericidal antibiotics should be considered for severe cases, including CNS nocardiosis. Treatment should be adapted as soon as possible to molecular biology-based species identification and results of antimicrobial susceptibility testing.

A somewhat controversial finding when considering current recommendations is our data regarding the duration of treatment for nocardiosis. Guidelines propose at least a six-month antibiotic course for nocardiosis, but few data are available to support this statement. In 1982, Wallace and co-workers reported 25 cases of pulmonary nocardiosis (in patients without SOT) and described a higher rate of relapse among patients receiving less than four months of treatment [14]. Almost thirty years later, in a retrospective description of 12 cases of nocardiosis after heart transplantation who received short-course (≤120 days) antibiotic treatment, Tripodi et al [15] reported that none of their patients who were treated with 3-4 weeks of intravenous bactericidal antibiotics followed by 1-3 months of oral antibiotic relapsed. Reducing antibiotic treatment duration could have potential benefits, such as cost-savings and reduction in the risk of adverse events, especially among transplant recipients. Indeed, 46.5% of our patients experienced at least one drug-related adverse effect. Among 17 analyzable patients (including only two with disseminated infection and one with CNS infection) receiving short-course antibiotic treatment frequently followed by secondary prophylaxis with SXT, we observed an 88.2% cure rate without relapse, one nocardiosis-independent death and one relapse. Our results should be interpreted with caution because of the risk of selection bias associated with the non-randomized design but, together with the findings of Tripodi et al [15], support the need for a randomized controlled trial on the duration of antibiotic treatment for nocardiosis. Such a study should take into account important factors that were not available in our study (e.g., dosing of antibiotics, potential reduction or tapering of immunosuppressive drugs, patient compliance). However, the relatively low number of events
(<20% deaths at one year and rare relapses) observed in our study and the rarity of nocardiosis after SOT would make such a trial difficult to perform.

Once therapy is stopped, the role of secondary prophylaxis using low-dose SXT has not yet been determined. Secondary prophylaxis with SXT was prescribed to 62.5% (10/16) of our patients receiving short-course antibiotic treatment, which may explain the low incidence of relapse. However, we and others have shown previously that the low doses of SXT used to prevent pneumocystosis after SOT are not effective as primary prophylaxis against nocardiosis [16]. Because such prophylaxis is usually well tolerated and also prevents other opportunistic infections, we would recommend its use at higher dosage (800 mg sulfamethoxazole per day) as secondary prophylaxis.

Our study has several limitations, including its retrospective design, lack of data regarding reduction or tapering of immunosuppressive drugs or compliance to therapy, and the fact that antibiotic dose adjustment to body weight or kidney function was not taken into account. The limited size of our study and its design may explain the absence of a significant association between the severity of nocardiosis (e.g., presence of brain abscess) and mortality [9]. Antibiotic susceptibility testing was not standardized with only 40% of the bacterial strains sent to the French expert laboratory and most tests were performed by antibiotic disk diffusion on agar plates. However, although disk diffusion is not considered a gold-standard by the CLSI, it has been shown to have a high percentage agreement with reference methods [21, 22].

In conclusion, we provide the first assessment of factors associated with one-year mortality after post-SOT nocardiosis. Our findings support the suggestion that short-course antibiotic treatment may be a strategy for further study.
ACKNOWLEDGMENTS

The authors would like to thank Dr. Karen Pickett for her editorial suggestions and Niels Wiemer for his support during the final phase of this project.

FUNDING

This work was supported by two grants entitled « Bourse Junior 2015 – Société de Pathologie Infectieuse de Langue Française » (DL) and « Prix Fonds Carine Vyghen pour le don d’organes 2014 » (JC).

CONFLICTS OF INTEREST

The authors declare no conflicts of interest related to this article.
REFERENCES

Figure 1. One-year survival curves after diagnosis of post-solid organ transplantation nocardiosis. Survival was assessed using Kaplan-Meier curves and compared among groups using log-rank tests. A. Survival curves of patients with nocardiosis (n=117) and matched control transplant recipients (n=234). B to D. Survival curves among patients with nocardiosis according to the presence of invasive fungal infection (including Pneumocystis pneumonia) in the 6 months before nocardiosis (B), history of tumor defined as a non-metastatic tumor (if active or initially treated in the 5 years before diagnosis of nocardiosis) or metastatic solid tumor (C) and episode of acute rejection in the year before nocardiosis (D).
Table 1. Factors associated with one-year all-cause mortality in univariate analysis among the 117 patients with post-solid organ transplantation nocardiosis.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Dead at 1 year n=19</th>
<th>Alive at 1 year n=98</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at diagnosis (years) (mean ± SD)</td>
<td>61.4 (12.3)</td>
<td>54.5 (13.5)</td>
<td>0.07</td>
</tr>
<tr>
<td>Male (n, %)</td>
<td>14 (73.7)</td>
<td>60 (61.2)</td>
<td>0.44</td>
</tr>
<tr>
<td>Charlson comorbidity index† at diagnosis n=112 (mean, SD)</td>
<td>4.13 (1.7)</td>
<td>3.71 (1.8)</td>
<td>0.34</td>
</tr>
<tr>
<td>History of tumor ‡ n=112</td>
<td>3 (18.8)</td>
<td>5 (5.2)</td>
<td>0.08</td>
</tr>
<tr>
<td>Transplantation characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of previous transplant</td>
<td>1 (5.2)</td>
<td>17 (17.3)</td>
<td>0.30</td>
</tr>
<tr>
<td>Donor age (mean ± SD) n=110</td>
<td>54.5 (15.8)</td>
<td>46.0 (16.8)</td>
<td>0.044</td>
</tr>
<tr>
<td>Deceased donor (vs living)</td>
<td>18 (94.7)</td>
<td>89 (90.8)</td>
<td>1</td>
</tr>
<tr>
<td>Non-thoracic (pancreas, liver, kidney) organ</td>
<td>12 (63.2)</td>
<td>66 (67.3)</td>
<td>0.79</td>
</tr>
<tr>
<td>Immunosuppressive regimen and rejection data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclosporine A at diagnosis</td>
<td>4 (21.1)</td>
<td>17 (17.3)</td>
<td>0.75</td>
</tr>
<tr>
<td>Tacrolimus at diagnosis</td>
<td>15 (78.9)</td>
<td>78 (80.0)</td>
<td>1</td>
</tr>
<tr>
<td>High CNI level in the month before Nocardia infection</td>
<td>5 (26.3)</td>
<td>46 (46.9)</td>
<td>0.16</td>
</tr>
<tr>
<td>Use of antiproliferative agents (AZA or MMF) at diagnosis</td>
<td>14 (73.7)</td>
<td>81 (82.7)</td>
<td>0.35</td>
</tr>
<tr>
<td>Corticosteroids at diagnosis (mg*) (mean ± SD) n=115</td>
<td>7.0 (4.0)</td>
<td>9.1 (7.2)</td>
<td>0.12</td>
</tr>
<tr>
<td>Acute rejection episode in the year before diagnosis n=116</td>
<td>2 (10.5)</td>
<td>30 (30.6)</td>
<td>0.09</td>
</tr>
<tr>
<td>Acute rejection episode in the six months before diagnosis n=116</td>
<td>1 (5.3)</td>
<td>24 (24.5)</td>
<td>0.07</td>
</tr>
<tr>
<td>High-dose steroids in the six months before diagnosis n=116</td>
<td>1 (5.3)</td>
<td>19 (19.4)</td>
<td>0.19</td>
</tr>
<tr>
<td>Plasma exchange in the six months before diagnosis n=116</td>
<td>0 (0)</td>
<td>5 (5.1)</td>
<td>0.59</td>
</tr>
<tr>
<td>Depleting antibodies** (ATG or Rituximab) in the six months before diagnosis n=116</td>
<td>0 (0)</td>
<td>6 (6.1)</td>
<td>0.59</td>
</tr>
<tr>
<td>SXT prophylaxis at diagnosis</td>
<td>2 (10.5)</td>
<td>19 (19.4)</td>
<td>0.52</td>
</tr>
<tr>
<td>Associated infectious diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMV infection in the six months before diagnosis</td>
<td>3 (15.8)</td>
<td>14 (14.3)</td>
<td>1</td>
</tr>
<tr>
<td>CMV disease in the six months before diagnosis</td>
<td>2 (10.5)</td>
<td>3 (3.1)</td>
<td>0.19</td>
</tr>
<tr>
<td>CMV serostatus</td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>Risk Level</td>
<td>Cases/Percentage</td>
<td>Controls/Percentage</td>
<td>p-Value</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Low risk: D-R-</td>
<td>5 (26.3)</td>
<td>17 (17.3)</td>
<td></td>
</tr>
<tr>
<td>Intermediate risk: D-R+ or D+R+</td>
<td>10 (52.6)</td>
<td>50 (51.0)</td>
<td></td>
</tr>
<tr>
<td>High risk: D+R-</td>
<td>4 (21.1)</td>
<td>27 (27.6)</td>
<td></td>
</tr>
<tr>
<td>Bloodstream infection in the six months before diagnosis</td>
<td>1 (5.3)</td>
<td>5 (5.1)</td>
<td><0.01</td>
</tr>
<tr>
<td>Additional pathogena at diagnosis</td>
<td>12 (63.2)</td>
<td>28 (28.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>Fungal infectionb in the six months before diagnosis n=112</td>
<td>6 (37.5)</td>
<td>13 (13.5)</td>
<td>0.029</td>
</tr>
</tbody>
</table>

Biological characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cases/Percentage</th>
<th>Controls/Percentage</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerular filtration rate \downarrow (ml/min/1.73m2) at diagnosis (mean, SD) n=115</td>
<td>41.4 (24.3)</td>
<td>50.1 (27.6)</td>
<td>0.19</td>
</tr>
<tr>
<td>WBC count at diagnosis (x1000/mm3) (mean, SD) n=115</td>
<td>11.3 (5.8)</td>
<td>11.5 (6.7)</td>
<td>0.88</td>
</tr>
<tr>
<td>Neutrophil count at diagnosis (x1000/mm3) (mean, SD) n=105</td>
<td>9.5 (5.6)</td>
<td>9.8 (6.7)</td>
<td>0.98</td>
</tr>
<tr>
<td>Lymphocyte count at diagnosis (x1000/mm3) (mean, SD) n=105</td>
<td>0.6 (0.4)</td>
<td>0.8 (0.6)</td>
<td>0.35</td>
</tr>
<tr>
<td>C-reactive protein at diagnosis (mg/L) (mean, SD) n=109</td>
<td>91.8 (67.5)</td>
<td>128.4 (90.9)</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Nocardiosis characteristics and treatment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cases/Percentage</th>
<th>Controls/Percentage</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from transplantation to diagnosis (days) (mean, SD)</td>
<td>1611.7 (1692.7)</td>
<td>976.2 (1277.7)</td>
<td>0.046</td>
</tr>
<tr>
<td>Time from symptoms to diagnosis (days) (mean, SD) n=114</td>
<td>19.4 (18.4)</td>
<td>25.9 (24.1)</td>
<td>0.21</td>
</tr>
<tr>
<td>Disseminated infection</td>
<td>9 (47.4)</td>
<td>41 (41.8)</td>
<td>0.85</td>
</tr>
<tr>
<td>Lung or pleural involvement</td>
<td>16 (84.2)</td>
<td>85 (86.7)</td>
<td>0.72</td>
</tr>
<tr>
<td>Central nervous system involvement</td>
<td>8 (42.1)</td>
<td>22 (22.4)</td>
<td>0.13</td>
</tr>
<tr>
<td>Skin and soft-tissue involvement</td>
<td>5 (26.3)</td>
<td>32 (32.7)</td>
<td>0.78</td>
</tr>
<tr>
<td>Bloodstream infection</td>
<td>2 (10.5)</td>
<td>7 (7.1)</td>
<td>0.64</td>
</tr>
<tr>
<td>\textit{Nocardia} species</td>
<td></td>
<td></td>
<td>0.33</td>
</tr>
<tr>
<td>\textit{N. farcinica}</td>
<td>8 (42.1)</td>
<td>33 (33.7)</td>
<td></td>
</tr>
<tr>
<td>\textit{N. non-farcinica}</td>
<td>11 (57.9)</td>
<td>65 (66.3)</td>
<td></td>
</tr>
<tr>
<td>Strain susceptible to SXT n=113</td>
<td>14 (73.7)</td>
<td>85 (86.7)</td>
<td>0.44</td>
</tr>
<tr>
<td>Appropriate antibioticsc during the first two weeks of treatment n=111</td>
<td>15 (88.2)</td>
<td>90 (95.7)</td>
<td>0.23</td>
</tr>
<tr>
<td>Administration of carbapenems, 3GC, amikacin or SXT during the first two weeks of treatment n=113</td>
<td>15 (83.3)</td>
<td>89 (93.7)</td>
<td>0.15</td>
</tr>
<tr>
<td>Bactericidal antibiotic (carbapenems, 3GC, amikacin) during the first two weeks of treatment n=109</td>
<td>10 (62.5)</td>
<td>56 (60.2)</td>
<td>1</td>
</tr>
<tr>
<td>Association of two appropriate antibiotics during the first two weeks of treatment n=111</td>
<td>7 (41.2)</td>
<td>41 (43.6)</td>
<td>1</td>
</tr>
</tbody>
</table>
Antibiotic-related adverse effects n=116

\[\begin{array}{ccc}
& 9 (47.4) & 45 (46.4) \\
Need for surgery & 4 (21.1) & 19 (19.4)
\end{array}\]

NOTE. 3GC: Third-generation cephalosporin (restricted to ceftriaxone and cefotaxime); ATG: antithymocyte globulin; AZA: azathioprine; CMV: cytomegalovirus; CNI: calcineurin inhibitor; diagnosis: date of the diagnosis of nocardiosis; MMF: mycophenolate mofetil; n: number of data analyzed (when <117); PCP: Pneumocystis pneumonia; SD: standard deviation; SXT: trimethoprim–sulfamethoxazole; WBC: white blood cell. Data are n (%) unless otherwise indicated.

†Apart from “history of tumor”, none of the other individual variables of the Charlson comorbidity index were associated with one-year mortality, with p-values > 0.2. ‡defined as a non-metastatic tumor (if active or initially treated in the 5 years before diagnosis of nocardiosis) (n=7) or metastatic solid tumor (n=1). *All the corticosteroid doses are expressed in milligrams (mg) of methylprednisolone equivalent per day. **In the 6 months before diagnosis of Nocardia infection, none of our patients received other types of lymphocyte-depleting or modulating antibodies. ¶As estimated by MDRD formula. §Fifty-one additional microbial pathogens were identified at time of nocardiosis among forty patients: 19 fungi, 11 CMV, 8 Gram-negative bacteria, 4 Gram-positive bacteria, 3 C. difficile, 2 Legionella spp., 1 HHV8, 2 other viruses and 1 Toxoplasma gondii. 19 patients experienced at least one invasive fungal infection (10 aspergillosis, 3 mucormycosis, 3 invasive candidiasis, 2 Alternaria spp., 1 Fusarium spp., 1 Scedosporium spp., 1 Pneumocystis). 5Appropriate antibiotic is defined as a drug with demonstrated in vitro activity against the isolated Nocardia strain.
Table 2. Factors associated with one-year all-cause mortality after multivariable conditional logistic regression analysis among 117 patients with nocardiosis after solid organ transplantation.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>OR [95%CI]</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of tumor *</td>
<td>1.4 [1.1-1.8]</td>
<td>0.02</td>
</tr>
<tr>
<td>Fungal infection† in the 6 months before diagnosis</td>
<td>1.3 [1.1-1.5]</td>
<td><0.01</td>
</tr>
<tr>
<td>Donor age (per year)</td>
<td>1.0046</td>
<td>0.02</td>
</tr>
<tr>
<td>Acute rejection episode in the year before diagnosis</td>
<td>0.85 [0.73-0.98]</td>
<td>0.03</td>
</tr>
</tbody>
</table>

NOTE. *defined as a non-metastatic tumor (if active or initially treated in the 5 years before diagnosis of nocardiosis) (n=7) or metastatic solid tumor (n=1). † 19 patients experienced at least one invasive fungal infection (10 aspergillosis, 3 mucormycosis, 3 invasive candidiasis, 2 *Alternaria* spp., 1 *Fusarium* spp., 1 *Scedosporium* spp., 1 *Pneumocystis*).
<table>
<thead>
<tr>
<th>Patient</th>
<th>Age at time of diagnosis</th>
<th>Lung involvement †</th>
<th>Disseminated infection</th>
<th>CNS infection</th>
<th>Skin and soft-tissue</th>
<th>Type of positive sample</th>
<th>Nocardia species</th>
<th>Antibiotic treatment duration (days)</th>
<th>Outcome at one year</th>
<th>Secondary prophylaxis with SXT, dose‡, duration*</th>
<th>Length of follow-up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>Multilobar, bilateral</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Sputum, bronchial aspirate, BAL and pleural fluid</td>
<td>ND</td>
<td>42</td>
<td>Alive, no relapse</td>
<td>Yes, 2800, till death</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Abscess fluid</td>
<td>N. farcinica</td>
<td>90</td>
<td>Alive, no relapse</td>
<td>Yes, 5600, 6m</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>Unilobar, unilateral</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Bronchial aspirate, BAL and blood</td>
<td>N. nova complex</td>
<td>47</td>
<td>Alive, no relapse</td>
<td>Yes, 2400, 12m</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>Multilobar, bilateral</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Sputum</td>
<td>N. farcinica</td>
<td>24</td>
<td>Alive, no relapse</td>
<td>Yes, 1600, ND</td>
<td>132</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>Multilobar, bilateral</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Sputum</td>
<td>N. abscessus</td>
<td>51</td>
<td>Relapse, alive at one year</td>
<td>Yes, 1600, ND</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>Multilobar, bilateral</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Bronchial aspirate and BAL</td>
<td>N. nova complex</td>
<td>39</td>
<td>Alive, no relapse</td>
<td>Yes, 1200, ND</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>65</td>
<td>Multilobar, unilateral</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Bronchial aspirate and BAL</td>
<td>N. farcinica</td>
<td>76</td>
<td>Alive, no relapse</td>
<td>Yes, 2400, 4m</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>69</td>
<td>Multilobar, bilateral</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Bronchial aspirate and BAL</td>
<td>N. farcinica</td>
<td>70</td>
<td>Alive, no relapse</td>
<td>No</td>
<td>63</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Skin biopsy</td>
<td>N. flavarosea</td>
<td>56</td>
<td>Alive no relapse</td>
<td>No</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>71</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Abscess fluid</td>
<td>N. farcinica</td>
<td>102</td>
<td>Dead, no relapse*</td>
<td>Yes, 5600, 5m</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>Unilobar, unilateral</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>BAL</td>
<td>N. farcinica</td>
<td>45</td>
<td>Alive, no relapse</td>
<td>No</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>Multilobar, bilateral</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>BAL</td>
<td>N. farcinica</td>
<td>33</td>
<td>Alive at one year, no relapse</td>
<td>Yes, 2400, till death</td>
<td>136</td>
</tr>
<tr>
<td>#</td>
<td>Age</td>
<td>Lung involvement</td>
<td>Diagnostic procedure</td>
<td>Isolated pathogen</td>
<td>Duration of treatment (days)</td>
<td>Outcome 1 year</td>
<td>Follow-up</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>32</td>
<td>None</td>
<td>Yes</td>
<td>Skin biopsy</td>
<td>N. abscessus</td>
<td>90</td>
<td>Alive</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>60</td>
<td>Unilobar, unilateral</td>
<td>Yes, Yes, Yes</td>
<td>Abscess fluid</td>
<td>N. cerradoensis</td>
<td>47</td>
<td>Alive</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>Multilobar, bilateral</td>
<td>No, No, No</td>
<td>Pleural fluid</td>
<td>ND</td>
<td>90</td>
<td>Alive</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>67</td>
<td>None</td>
<td>No, No, Yes</td>
<td>Skin biopsy</td>
<td>N. anaemiae</td>
<td>105</td>
<td>Alive</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>56</td>
<td>Unilobar, unilateral</td>
<td>No, No, No</td>
<td>Sputum and BAL</td>
<td>ND</td>
<td>120</td>
<td>Alive</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE. † Lung involvement was assessed with lung CT-scan (CT) for all patients except patients 1 and 9. ‡ dose was expressed as sulfamethoxazole weekly dose in milligrams. *Death unrelated to nocardiosis. BAL: bronchoalveolar lavage, CNS: central nervous system, m: months, ND: not determined, SXT: trimethoprim–sulfamethoxazole.
European Study Group for Nocardia in Solid Organ Transplantation. Individual collaborators and scientific groups who participated actively to this study and are members of the European Study Group for Nocardia in Solid Organ Transplantation are listed below in alphabetical order:

Belgium

James R. ANSTEN, Department of Infectious Diseases, CUB-Hôpital Erasme, Brussels, Belgium
Martine ANTOINE, Department of Cardiac Surgery, CUB-Hôpital Erasme, Brussels, Belgium
Nathalie AUSSELET, Department of Infectious Diseases, CHU UCL Namur, Université Catholique de Louvain, Yvoir, Belgium
Asmae BELHAJ, Department of Cardiovascular Surgery, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, Université Catholique de Louvain, Yvoir, Belgium
Jerina BOELENS, Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
Hans DE BEENHOUWER, Laboratory of Clinical Microbiology, OLVZ Aalst, Aalst, Belgium
Catherine DENIS, Department of Medical Microbiology, Antwerp University Hospital (UZA), Edegem, Belgium
Erwin HO, Department of Medical Microbiology, Antwerp University Hospital (UZA), Edegem, Belgium
Margareta IEVEN, Department of Medical Microbiology, Antwerp University Hospital (UZA), Edegem, Belgium
Stijn JONCKHEERE, Laboratory of Clinical Microbiology, OLVZ Aalst, Aalst, Belgium
Christiane KNOOP, Lung Transplant Clinic, Department of Pneumology, CUB-Hôpital Erasme, Brussels, Belgium
Alain LE MOINE, Renal Transplant Clinic, Department of Nephrology, CUB-Hôpital Erasme, Brussels, Belgium
Hector RODRIGUEZ-VILLALOBOS, Department of Microbiology, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
Judith RACAPÉ, Centre de Recherche Biostatistiques, Epidémiologie et Recherche Clinique, École de Santé Publique, Brussels, Belgium
Sandrine ROISIN, Department of Clinical Microbiology, CUB-Hôpital Erasme, Brussels, Belgium
Bernard VANDERCAM, Department of Infectious and Tropical Diseases, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
Marie-Laure VANDERZWALMEN, Department of Infectious Diseases, CUB-Hôpital Erasme, Brussels, Belgium
Gaëlle VANDRAECHEM, Department of Infectious Diseases, CUB-Hôpital Erasme, Brussels, Belgium
Steven VAN LAECKE, Renal Division, Ghent University Hospital, Ghent, Belgium
Jan VERHAEGEN, Laboratory of Clinical Bacteriology and Mycology, University Hospitals Leuven, Leuven, Belgium

France

Benoit BARROU, AP-HP, Département d’Urologie, Néphrologie et Transplantation, Groupe Hospitalier Pitié Salpétrière Charles Foix et Université Pierre et Marie Curie, Paris, France
Pascal BATTISTELLA, Service de Chirurgie Cardiaque et Vasculaire, CHU A de Villeneuve, Montpellier, France
Emmanuelle BERGERON, Research group on Bacterial Opportunistic Pathogens and Environment UMR5557 Ecologie Microbienne, French Observatory of Nocardiosis, Université de Lyon 1, CNRS, VetAgro Sup, Lyon, France
Nicolas BOUVIER, Service de Néphrologie, Université de Caen – Normandie, Caen, France
Sophie CAILLARD, Nephrology and Transplantation Department, Strasbourg University Hospital, Strasbourg, France
Eric CAUMES, Sorbonne Universités, UPMC Université Paris 06, AP-HP, Hôpital Pitié-Salpêtrière, Services des Maladies Infectieuses et Tropicales, Paris, France
Hélène CHAUSSADE, Service de Médecine Interne et Maladies Infectieuses, CHU Bretonneau, Tours, France
Cécile CHAUVET, Service de Transplantation Rénale, Hôpital Edouard HERRIOT, Lyon, France
Romain CROCHETTE, Service de Néphrologie, CHU Pontchaillou, Rennes et Faculté de Médecine, Université de Rennes, Rennes, France
Eric EPAILLY, Chirurgie Cardiaque, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
Marie ESSIG, CHU Limoges, Service de Néphrologie, Dialyse et Transplantation, Limoges, France
Sébastien GALLIEN, Service de Maladies Infectieuses et Tropicales, Hôpital Saint-Louis - AP-HP, Université Paris Diderot Paris 7, Paris, France
Romain GUILLAUME, Service d’Anesthésie-Réanimation, Hôpital Européen Georges Pompidou, Paris, France
Canan HEREL, Service de Néphrologie-Transplantation Rénale, Hôpital Foch, Suresnes, France
Bruno HOEN, Service des Maladies Infectieuses et Tropicales, Dermatologie et Médecine Interne, CHU Hôpital Ricou, Pointe à Pitre, France
Nassim KAMAR, Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse and INSERM U1043, IFR–BMT, CHU Purpan, Université Paul Sabatier, Toulouse, France
Thierry LE GALL, Service d’Anesthésie-Réanimation, Hôpital Européen Georges Pompidou, Paris, France

Charlene LEVI, Service de Transplantation, Néphrologie et Immunologie Clinique, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France

Arnaud LIONET, Service de Néphrologie et Transplantation Rénale, Hôpital Huriez, Lille, France

Hélène LONGUET, Néphrologie et Immunologie Clinique, CHU Tours, Tours, France

Giovanna MELICA, Immunologie Clinique et Maladies Infectieuses, APHP, Hôpital Henri Mondor, Créteil, France

Anaick MIEL, Service des Maladies Infectieuses et Tropicales, Dermatologie et Médecine Interne, CHU Hôpital Ricou, Pointe à Pitre, France

Hélène MOREL, Service de Maladies Infectieuses et Tropicales, Hôpital Saint-Louis - AP-HP, université Paris Diderot Paris 7, Paris, France

Salima OULD AMMAR, Service de Chirurgie Thoracique et Cardio-Vasculaire, Groupe Hospitalier Pitié-Salpêtrière, Paris, France

Sabine PATTIER, Département de Cardiologie, Institut du Thorax, CHU Nantes, Nantes, France

Marie-Noelle PERALDI, Service de Néphrologie et Transplantation, Hôpital Saint-Louis Université Paris 7-Diderot, Paris, France

Johnny SAYEGH, LUNAM Université, Angers, FRANCE et Service de Néphrologie-Dialyse-Transplantation, CHU Angers, Angers, France

Anne SCEMLA, Université Paris Descartes, Sorbonne Paris Cité, AP-HP, Hôpital Necker Enfants Malades, Service de Néphrologie-Transplantation, Paris, France

Agathe SENECHAL, Service de Pneumologie, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France

Jérome TOURRET, AP-HP, Département d’Urologie, Néphrologie et Transplantation, Groupe Hospitalier Pitié-Salpêtrière Charles Foix et Université Pierre et Marie Curie, Paris, France

Switzerland

Swiss Transplant Cohort Study (STCS)

Katia BOGGIAN, Service of Infectious Diseases, Department of Internal Medicine, University Hospital St. Gallen, Switzerland

Adrian EGLI, Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland
Christian GARZONI, Department of Internal Medicine and Infectious Diseases, Clinica Luganese, Lugano, Switzerland

Matthias HOFFMANN, Service of Infectious Diseases, Department of Internal Medicine, University Hospital St. Gallen, Switzerland

Hans H. HIRCH, Transplantation & Clinical Virology; Department Biomedicine, University of Basel, Basel, Switzerland; Infectious Diseases & Hospital Epidemiolgy, University Hospital Basel, Basel, Switzerland

Nina KHANNA, Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland

Oriol MANUEL, Infectious Diseases Service and Transplantation Center, University Hospital and University of Lausanne, Lausanne, Switzerland

Pascal MEYLAN, Institute of Virology, University Hospitals Lausanne, Lausanne, Switzerland

Nicolas J. MUELLER, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich Transplant Center, University Hospital Zurich, Switzerland

Klara M. POSFAY-BARBE, Department of Pediatrics, Pediatric Infectious Diseases Unit, University Hospitals of Geneva & University of Geneva, Geneva, Switzerland

Diem-Lan VU, Service of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland

Maja WEISSER, Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland

The Netherlands

Albert M. VOLLAARD, Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands

Herman F. WUNDERINK, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands

Scientific groups

Société Francophone de Transplantation (SFT)

Groupe Transplantation et Infection (GTI)

Groupe Recherche de la Société de Pathologie Infectieuse de Langue Française (SPILF) / Collège des Universitaires des Maladies Infectieuses et Tropicales (CMIT)

Réseau National de Recherche Clinique en Infectiologie (RENARCI)