Engineering Adaptivity, Universal Autonomous Systems Ethics and Compliance Issues

DI MARZO SERUGENDO, Giovanna

Abstract
This paper summarises some of the discussion held during the panel of the ISOLA’2016 conference on whether artificial systems actually adapt to unforeseen situations and whether we master autonomous adaptive systems. We focus here on three questions: (1) What is a collective adaptive system and what are the elements to consider when engineering a collective adaptive system? (2) What type of universal autonomous system can we envision and what for? and finally (3) How are we considering and integrating ethics, trust, privacy and compliance to laws and regulations in adaptive systems?

Reference

DOI: 10.1007/978-3-319-47166-2_50
Abstract. This paper summarises some of the discussion held during the panel of the ISOLA’2016 conference on whether artificial systems actually adapt to unforeseen situations and whether we master autonomous adaptive systems. We focus here on three questions: (1) What is a collective adaptive system and what are the elements to consider when engineering a collective adaptive system? (2) What type of universal autonomous system can we envision and what for? and finally (3) How are we considering and integrating ethics, trust, privacy and compliance to laws and regulations in adaptive systems?

1 What is adaptivity and how to engineer it?

Figure 1 shows a mind-map describing the different elements participating to the engineering of (artificial) collective adaptive systems [5,6]. First it requires the use of software agents, autonomous in their behaviour, having a common or personal goal, able to sense and act upon their environment. They may be (among others) intelligent, reactive and/or mobile [20]. They can also be embodied into physical devices such as robots, autonomous cars, or purely sitting in electronic/computing environments, e.g. auction agents, soft-bots, or personal digital assistants.

Second, for a collective adaptive system to work as a collective of agents, we need to define an interaction mechanism, usually coded locally in each agent. An interaction mechanism is typically a set of rules, that the agents follow and apply according to their local perceptions. By locally applying their rules, the agents as a collective entity display some emergent behaviour. These rules allow the agents to continuously adapt their behaviour to the sensed conditions and perceived changes in their environment. Here we can identify a spectrum of rules that vary in their capability (or not) to change or adapt. Most of the engineered self-organising systems today adopt interaction mechanisms based on fixed rules. This is typically the case for bio-inspired systems using mechanisms such as evaporation, gradient, flocking, ant foraging, etc. For instance, agents locally apply
flocking rules, and as a collective are able to move in a coherent manner as flocks of birds. A common characteristic of collective adaptive systems is their sensitivity to parameters. Parameters are either set up (and fixed) in advance or may adapt on-the-fly, bringing increased adaptivity [8]. In the spectrum of adaptivity, we further distinguish interaction mechanisms that employ self-modifying rules: starting from a set of rules established at design-time, through evolutionary algorithms, learning and memory (e.g. immune systems), or reinforcement learning, the rules of each agent progressively change and modify themselves to better adapt to the agent’s own observation and goal. If we move further along an adaptivity axis, we consider the next level, the case of interaction mechanisms provided by self-building rules. Here, agents are not provided with rules at design-time, but progressively build their own rules from scratch based on their own experiences [14,12]. Finally, we also consider the whole body of work on autonomic, self-managed systems involving explicit feedback loops [2,13] and revolving around four key activities: Monitor, Analyse, Plan, and Execute functions, also known as the MAPE architecture [4], decoupling the component that is adapted from the one that reasons and enforces the adaptation. Advanced versions of the MAPE architecture involve distribution and different variants supporting decentralised control [19]. Systems are generally designed in a top-down
manner. This is in contrast to self-organising systems that employ multiple implicit feedback loops and decentralised control, and are generally designed in a bottom-up manner.

Moving along Figure 1, the third element of the engineering of collective adaptive systems, necessary to make them trustworthy and possibly deployed on an industrial large-scale basis in everyday life, concerns the **Methods and Tools** we can use to help develop those systems, like **Middleware Infrastructures**, most of them based on blackboard deriving from the early Linda system [11], such as SAPERE or those using nature-inspired coordination [21]; **Patterns** facilitating the understanding and use of self-organising mechanisms [10]. A large body of work is provided by **Analysis and Verification efforts**, in particular the use of **Formal methods** of different kinds and recent works on spatio-temporal logics [3]. There are no actual software engineering methodologies that emerge, even though efforts are provided in this direction since several years [18]. Most of these methods are heavily based on simulations, either purely simulation tools [16] or hybrid prototyping tools [17,9].

Finally, even though recent research provided some answers to some pending issues, we still have no definite solution for formal verification of collective adaptive systems properties, in particular emergent ones; clear techniques for addressing parameters sensitivity of collective adaptive systems, or how to still remain in control of a fully self-* decentralised system once it has been deployed, and how to solve the macro to micro issue, i.e. how to engineer the local agents so that collectively they actually behave as intended.

2 **What about a universal autonomous system?**

There exists problems of very high complexity, such as **hyper-complex or wicked problems**, defined by [15] as “those that defy conventional approaches to understanding, planning, design, implementation and execution because: (1) The stakeholder interests are so diverse and divisive; (2) Interdependencies are so complex and so little understood; (3) Behaviours are so dynamic and chaotic (unpredictable)”. Wicked problems have no purely algorithmic solution and need a combination of machine processing and human-based experience and heuristics to be solved. These are problems where stakeholders have different views and understanding of the problem, and the problem itself is subject to changing constraints. This is typically the case with computational or societal problems, where human intelligence, dynamically changing data, the Internet services, networks of sensors and machines need to be combined to address them. These are problems for which we often do not know if they have a good solution, or even less how to reach a reasonable solution if it exists.

A possible vision is to develop a new type of computer, a **Social Computer** [7] - a “machine-enhanced society”. An instance of a Social Computer is a network of humans (individuals, groups) and machines (computers, data, services, sensors) able together and together only to assist experts in solving a specific large-scale (scientific or societal) problem that cannot be tackled by either computers...
or humans alone. It innately integrates human abilities based on intelligence, competences and skills with machine processing power so that they complement each other. A Social Computer is a Computer because it accepts input data, can store and process it, and can produce output results. It is, however, also Social since it is based on collaboration between humans and machines. In addition and by design, it must operate in an ethical, law-abiding, correct and trustable way.

Examples of primitive social computers encompass groups of coworkers supported by computing resources, people playing massively multiplayer online games, or a single person whose activity would be supported by a network of machines. In these cases, however, the matter at hand is often not presented under the form of a problem to be solved, or the decomposition of problems into subtasks; furthermore the links between humans and/or machines are not established in any principled, problem-solving way. A lot of burden is still placed on humans to identify problems and their solution.

The types of problems we envision a Social Computer should be able to solve, and the environments in which it should exist, are of a much higher complexity. We anticipate that people and society, by using and interacting in principled ways through a Social Computer, will be able to solve hyper-complex problems. Such issues can be computational (e.g. how to solve a scientific problem that cannot be completely formalised), consensual (e.g. how to reduce the costs of health insurance) or controversial (e.g. how to reduce our carbon footprint, more generally how to reach UN defined sustainable goals). Addressing them will require collecting partial solutions from diverse human and machine clusters, assessing opinion from experts and from the public, predicting the outcome and consequences of individual subproblems, and other similar tasks impossible to achieve by humans or machines independently. A Social Computer is an integration of humans and machines collaborating together on-demand to solve problems and answer questions. It frees users from organisational burden, helping them in breaking down problems into manageable tasks; it allows deep and exhaustive search of information and data mining in order to obtain partial solutions; and it exploits at best the different human and computational resources to obtain effective solutions. Social Computers are not fixed, pre-defined entities like today’s computers, but are dynamic, evolving collaborations of humans and/or machines, adapting themselves to the problem at hand.

Social Computers can also be seen as tools supporting decisions during the process of establishing public policies. They help gather, understand and create evidence in support of policy-making processes.

3 What about privacy, trust, ethics and compliance to laws and regulations?

Central to Social Computers above, and central to any adaptive system are the notions of ethics, privacy, trust and legal aspects. Most of the ICT developments so far were however primarily guided by the market, leaving behind ethical, legal,
and psychological considerations. Today's services offer no ethical warranty. Privacy is becoming a very fragile matter, with sensitive data often stored, used and aggregated unbeknownst to their owners, sometimes with malicious intent. For instance, people have not fully grasped the impact of the reputation of their online persona and their online actions, with undesired social or professional consequences. Society regularly define, revisit and enforces laws. Autonomous systems should not only adapt to unforeseen circumstances in their environment, but also be fully compliant with current regulations when first deployed and able to adapt - on their own - to any law or regulation change. The vision and proposal here is double: (1) we need to address ethical, trust, privacy and law-abiding considerations from the start, i.e. providing those consideration by design (ethics by design, privacy by design, compliance by design [1]); (2) we need also to develop research for engineering autonomous systems able to adapt to changes of laws and regulations on-the-fly. For autonomous systems, this could be provided by an ethical middleware or an ethical operating system ensuring in a built-in manner all those considerations; and/or ethical principles to be included into individual agents and global systems developed with them.

4 Conclusion

The considerations above have engineering concerns in mind. Including ethics, privacy and trust by design renders autonomous systems apparently more acceptable. Some questions still need to be considered: (1) How do we define the ethics to integrate into those systems? this shouldn’t be left to individuals but thought at some universal world-wide level; (2) What about legal issues arising from situations involving autonomous systems? who is responsible when an accident, a failure or any harm happens: the user, the programmer, the designer, the company’s manager? (2) To which extent is it a good thing to develop the “ultimate” adaptive system so intelligent that it may decide to question the usefulness of humans or even take over? Fortunately, ethicists, lawyers and philosophers are already busy thinking this through.

References

