Dental implants in the elderly population: a systematic review and meta-analysis

SRINIVASAN, Murali, et al.

Abstract
This systematic review was conducted to evaluate the outcome of dental implant therapy in elderly patients (≥65 years).

Reference

PMID: 27273468
DOI: 10.1111/clr.12898
Dental implants in the elderly population: a systematic review and meta-analysis

Key words: aged 65 years and over, dental implants, edentulous jaws, elderly patients, implant survival, meta-analysis, survival rate, systematic review

Abstract

Objective: This systematic review was conducted to evaluate the outcome of dental implant therapy in elderly patients (≥65 years).

Material and Methods: Online database and hand searches were systematically performed to identify studies reporting on dental implants placed in the partially/completely edentulous jaws of elderly patients. Only prospective studies reporting on regular-diameter (≥3 mm), micro-rough surface implants were included in this review. Two investigators performed the search and data extraction. An inter-investigator reliability was verified using kappa statistics (κ). A meta-analysis was performed on implant survival rates, while the mean peri-implant marginal bone level changes (PI-MBL), technical/mechanical complications, and biological complications were reported descriptively.

Results: The systematic search yielded 2221 publications, of which 11 studies were included for statistical analyses. The calculated κ for the various parameters extracted was κ = 0.818–1.000. A meta-analysis was performed on the post-loading implant survival rates at 1, 3, 5, and 10 years. The random-effects model revealed an overall 1-year implant survival of 97.7% (95% CI: 95.8, 98.8; I² = 0.00%, P = 0.968; n = 11 studies). The model further revealed an overall implant survival of 96.3% (95% CI: 92.8, 98.1; I² = 0.00%, P = 0.618; n = 6 studies), 96.2% (95% CI: 93.0, 97.9; I² = 0.00%, P = 0.850; n = 7 studies), and 91.2% (95% CI: 83.4, 95.6; I² = 0.00%, P = 0.381; n = 3 studies) for 3, 5, and 10 years, respectively. The reported 1-year average PI-MBL ranged between 0.1 and 0.3 mm, while the reported 5- and 10-year PI-MBL were 0.7 and 1.5 mm, respectively. Information obtained pertaining to the technical and biological complications in the included studies was inadequate for statistical analysis. The frequent technical/mechanical complications reported were abutment screw loosening, fracture of the overdenture prostheses, activation of retentive clips, ceramic chipping, and fractures. The common biological complication reported included peri-implant mucositis, mucosal enlargement, bone loss, pain, and implant loss.

Conclusions: This review provides robust evidence favoring dental implant therapy in elderly patients as a predictable long-term treatment option, in terms of implant survival, clinically acceptable PI-MBL changes, and minimal complications. Therefore, age alone should not be a limiting factor for dental implant therapy.
rehabilitation of completely edentulous patients (Feine et al. 2002; Thomason et al. 2009). Implant-supported prostheses have proven to improve mastication (van Kampen et al. 2004) and the associated oral health-related quality of life (OHRQoL) (Emami et al. 2009). In the very old dependent edentulous patients, implant overdentures (IODs) have shown to increase the maximum voluntary bite force and the masster muscle thickness, thus signifying a benefit of IODs even in later life (Müller et al. 2013). In the past, implant therapy has been mostly used in a younger adult segment, but current demographic trends suggest that the candidates for implant therapy, at the present and in the future, would primarily be in the older strata. This older segment would inevitably be the patient pool for routine and complex implant rehabilitation procedures. Yet, in the literature, scientific evidence is lacking pertaining to implant therapy in the elderly population. Few studies existing in the literature were purposefully designed for the geriatric age group undergoing dental implant therapy (Müller et al. 2013; Becker et al. 2015; Hoeksema et al. 2015). However, most published studies including elderly participants do also comprise of younger adults within the same study groups, hence deeming it impossible to ascertain a true treatment effect exclusive to the elderly patient segment. Little is known on the long-term influence of age on dental implant therapy, in the old and the very old patients. Information related to the effects like implant survival, complications (technical/mechanical or biological), and prostodontic maintenance needs and patient satisfaction (subjective and objective) in the elderly population is scarce or nonexistent.

Hence, the dedicated aim of this systematic review was to evaluate the outcome of dental implant therapy in the elderly population aged 65 years or over. The null hypothesis set for this review was that in the elderly population undergoing dental implant therapy, there is no difference in the post-loading implant survival rates between the partially and completely edentulous jaws. The population intervention/exposure comparison outcome (PICO) focus question set for this systematic review was: “In the elderly geriatric patients, what are the survival, technical complication, and biological complication rates when comparing dental implant therapy between the partially and completely edentulous jaws?”

Material and methods

Protocol and registration

This systematic review was performed and reported as prescribed by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines (Moher et al. 2010). The protocol followed in this systematic review is similar to the design used in previously published systematic reviews (Schimmel et al. 2014; Srinivasan et al. 2016).

Eligibility criteria

The predefined set of inclusion and exclusion criteria for this systematic review are enumerated in Table 1.

Information sources

All prospectively designed human studies reporting on dental implant therapy in the elderly population (≥65 years) were searched in online electronic databases [PubMed, Embase, CENTRAL, and Web of Science]. Relevant publications which were not accessible online were hand-searched. Other sources such as online search engines [Google, Yahoo, etc.], online research community websites (https://www.researchgate.net/), reference cross-checks, and personal contacts with authors were all accessed for generating a maximum pool of relevant studies. No further search was performed after the last executed update, which was on January 14, 2016.

Search strategy

The search strategy was designed and set up by experts in database searches [FM and AM] for generating a maximum pool of relevant studies. No further search was performed after the last executed update, which was on January 14, 2016.

Study selection

No restrictions were applied relating to the type of studies included, which included all studies with a prospective design [randomized controlled trials [RCTs], prospective cohort studies, prospective case-control studies, and prospective case series]. The investigators [MS and SM] initially swept through the search results by a thorough title and abstract screening. After the initial sweep, the shortlisted studies were included for a full-text analysis only after a mutual agreement between the two investigators. Disagreements, if present, were resolved by a consensus meeting with the senior authors [AM and FM]. The final list was mutually agreed upon by the two investigators before data extraction. If multiple publications reporting on the same cohort from the same author existed, then only the most recent publication was included in the review.

Data collection process

Data extraction was performed independently and was reciprocally blinded. Both investigators [MS and SM] used Microsoft Excel spreadsheets [Microsoft Excel 2016 for Macintosh/Windows, version 16.0, Microsoft Corporation, Redmond, WA, USA] for tabulating the extracted information. In cases of doubt, concerning the extracted data, the corresponding authors were contacted by email for confirmation.

Data items

The following parameters were extracted from the included studies: authors’ names, year of publication, study design, loading protocol, implant system, observation period, number of participants included in the study, mean age, number of implants placed, survived, and failed, number of patient and implant dropouts, dental state of the jaw rehabilitated [partially or completely edentulous], the type of prosthetic rehabilitation [fixed or removable prostheses], mean peri-implant marginal bone level changes [PI-MBL], biological complications, technical/mechanical complications, and the reported implant survival rates.

Missing data

Missing relevant information from the included studies was procured by a direct email contact with the corresponding author. Email reminders were sent to the authors in case of a nonresponse. Further emails were sent if the received information required further clarity. A nonresponse from the author would ultimately lead to the exclusion of the study, when necessary information was lacking.

Risk of bias and quality assessment of the included studies

Risk of bias was assessed in the included RCTs using the Cochrane Collaboration’s tool (Higgins et al. 2011), while the Newcastle-Ottawa Scales [NOS] were used for prospective cohort and case-control studies (Wells et al. 2014).
Table 1. Inclusion criteria, information sources, search terms, and search strategy

<table>
<thead>
<tr>
<th>Focus question</th>
<th>In elderly geriatric patients, what are the survival-, technical complication-, and biological complication- rates when comparing dental implant therapy between the partially and completely edentulous jaws?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria</td>
<td>Inclusion criteria</td>
</tr>
</tbody>
</table>
| | • Dental implants placed in the completely and partially edentulous human patients
• Implant-supported fixed and removable prostheses
• Must specify the study design, number of patients, number of implants placed and failed, time of loading, and number of dropouts
• Implants type: two-piece, micro-rough surface, solid screws, pure Ti and Ti-alloyed implants
• Patients must have been clinically examined during recall |
| | **Exclusion criteria** |
| | • Age < 65 years
• Post-loading follow-up < 12 months
• Implants placed in irradiated patients or in augmented bone
• Implants with HA-coated surfaces
• Patients diagnosed with medication-related osteonecrosis of the jaw (MRONJ)
• Implant diameter less than 3 mm
• Sample size of less than 10 cases
• Retrospective studies |

<table>
<thead>
<tr>
<th>Information sources</th>
<th>Electronic databases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PubMed, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), and the Web of Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Journals</th>
<th>Peer-reviewed dental journals available in PubMed, Embase, CENTRAL, and Web of Science databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others</td>
<td>Online search engines (Google, Yahoo, etc.), online research community websites</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search Terms</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Implant survival [MeSH]) OR (dental implant survival rate [MeSH]) OR (periimplantitis [MeSH]) OR (implant assisted Overdentures [all fields]) OR (edentulous ridge [all fields])</td>
</tr>
<tr>
<td>Intervention or exposure</td>
<td>#2 – ((dental implantation, endosseous [MeSH]) OR (dental implants [MeSH]) OR (implant survival rates [all fields]) OR (dental implant [all fields]) OR (implants [all fields]))</td>
</tr>
<tr>
<td>Comparison</td>
<td>#3 – ((Partially edentulous [MeSH]) OR (Fully edentulous [MeSH]) OR (Completely edentulous [MeSH]) OR (Partially edentulous maxilla [MeSH]) OR (Fully edentulous maxilla [MeSH]) OR (Completely edentulous maxilla [MeSH]) OR (Partially edentulous mandible [MeSH]) OR (Fully edentulous mandible [MeSH]) OR (Completely edentulous mandible [MeSH])</td>
</tr>
<tr>
<td>Outcome</td>
<td>#4 – ((Survival [MeSH]) OR (survival rate [MeSH]) OR (survival analysis [MeSH]) OR (implant survival [MeSH]) OR (dental implant survival rate [MeSH]) OR (periimplantitis [MeSH]) OR (periimplant mucositis [MeSH]) OR (peri-implant mucositis [MeSH]) OR (treatment failure [MeSH]) OR (prevalence [MeSH]) OR (mandibular implants failure rate [MeSH]) OR (maxillary implants failure rate [MeSH]) OR (success rate [MeSH]) OR (failure rate [MeSH]) OR (crestal bone loss [MeSH]) OR (peri-implant bone loss [MeSH]) OR (bone loss [MeSH]) OR (periodontal conditions [MeSH]) OR (peri-implant conditions [MeSH]) OR (implant success rates [MeSH]) OR (implant failure rates [MeSH]) OR (dental implant success rate [all fields]) OR (dental implant failure rates [all fields]) OR (biological complications [all fields])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filters</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(English [lang]) OR (French [lang]) OR (German [lang])</td>
</tr>
</tbody>
</table>

Species	Human
Ages	Minimum age 65 years (at the time of implant placement)
Journal categories	Dental journals

<table>
<thead>
<tr>
<th>Search Builder</th>
<th>Search combination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#1 AND #2 AND #3 AND #4 AND #5</td>
</tr>
<tr>
<td>Search dates</td>
<td>January 1980 to January 14, 2016</td>
</tr>
</tbody>
</table>

Last search date was January 14, 2016. No further search was performed after the mentioned date.

Summary measures
The primary outcome measure set for this review was the implant survival rate, as set in previously published reviews (Schimmel et al. 2014; Srinivasan et al. 2014, 2016). This review adopted the criteria for defining implant survival/success proposed by Buser and coworkers (Buser et al. 1990). The loading protocols defined in this review are as described in a previous review (Esposito et al. 2007). Secondary outcome measures included the mean PI-MBL, biological, and technical/mechanical complications.

Synthesis of results
An inter-investigator reliability was assessed using kappa (κ) statistics. The meta-analysis was performed for the included studies on the post-loading implant survival rates at 1, 3, 5, and 10 years. Confidence intervals were set to 95% [95% CI], and implant survival rates (SR %) were calculated for each study using the comprehensive meta-analysis software, version 3.0 (Biostat, Englewood, NJ, USA). A random-effects model was used to calculate the weighted means across the studies [DerSimonian & Laird 1986]. I-squared statistics (I²-statistics) was used to assess the heterogeneity across the included studies.

Risk of publication bias and additional analyses
A risk of publication bias was assessed across the studies using a funnel plot (Sterne & Egger 2001). A sensitivity analysis was carried out wherein the implant survival rate was recalculated considering the dropout implants as failures [Srinivasan et al. 2016]. Additional descriptive analysis was performed to report the PI-MBL and biological and technical/mechanical complications.
Results

Study selection

The details of the search and selection processes are described in the PRISMA flow diagram (Moher et al. 2010; Fig. 1). The systematic database search yielded a total of 2221 eligible studies (PubMed = 1115; Embase = 394; CENTRAL = 58; Web of Science = 654). From this total, 1850 studies were eliminated after an initial title and abstract screening, thus identifying a total of 371 studies for full-text analysis; 157 studies were shortlisted for inclusion in the review. However, most studies did not have a true elderly cohort and the intervention groups in the studies also consisted of patients who were below 65 years. Hence, 157 emails were sent to the corresponding authors, requesting them for details pertaining only to the elderly population (65 years and above). After receiving the responses from the authors, reference cross-checks and hand searches were performed; 18 studies were shortlisted for a final evaluation. To carefully avoid publication bias, many studies were excluded because they reported on the same cohort from different time points. The various reasons for exclusion of the studies during the various stages of the systematic search process are shown in Fig. 1. A reapplication of the inclusion and exclusion criteria was performed to this final list resulting in a further elimination of seven studies, because six of these publications had a sample size of less than 10 elderly patients and one was a double publication (Glauser et al. 2005, 2007; Crespi et al. 2008, 2014; Schropp & Isidor 2008; Degidi et al. 2010; Grandi et al. 2014).

Finally, a total of 11 methodologically sound publications were included in this review for statistical analyses (Ormianer & Palti 2006; Strietzel & Reichart 2007; Laviv et al. 2010; Cakarer et al. 2011; Covani et al. 2012; de Carvalho et al. 2013; Müller et al. 2013; Dessan & Lops 2014; Becker et al. 2015; Hocksema et al. 2015; Rossi et al. 2015).

Study characteristics

The included list of publications for analyses comprised of two RCTs (Müller et al. 2013; Rossi et al. 2015), one prospective cohort study (Covani et al. 2012), one prospective case–control study (Laviv et al. 2010), one prospective comparative study (Hocksema et al. 2015), and six prospective case series (Ormianer & Palti 2006; Strietzel & Reichart 2007; Cakarer et al. 2011; de Carvalho et al. 2013; Bressan & Lops 2014; Becker et al. 2015). All of the 11 included studies could be analyzed for a 1-year post-loading implant survival, while six of them could be analyzed for a 3-year post-loading implant survival (Ormianer & Palti 2006; Strietzel & Reichart 2007; Laviv et al. 2010; Covani et al. 2012; de Carvalho et al. 2013; Rossi et al. 2015). Seven studies provided data enabling a 7-year post-loading implant survival (Ormianer & Palti 2006; Strietzel & Reichart 2007; Laviv et al. 2010; Covani et al. 2012; de Carvalho et al. 2013; Hocksema et al. 2015) analysis. From the list of 11 studies, only three studies could be analyzed for a 10-year observation period (Covani et al. 2012; de Carvalho et al. 2013; Hocksema et al. 2015).

Four studies reported on the rehabilitation of the completely edentulous jaw with implant-supported fixed [ISFP] or implant-supported removable prostheses [ISRP] (Cakarer et al. 2011; Müller et al. 2013; Bressan & Lops 2014; Hocksema et al. 2015), four reported on partially edentulous jaws with ISFP (Laviv et al. 2010; Covani et al. 2012; de Carvalho et al. 2013; Rossi et al. 2015), two reported on rehabilitations in both the partially and completely edentulous jaws (Ormianer & Palti 2006; Strietzel & Reichart 2007), and in one study, neither the jaw type nor the type of rehabilitation was specified (Becker et al. 2015).

Information pertaining to the PI-MBL was available in only two of the included studies (Becker et al. 2015; Hocksema et al. 2015); biological and technical/mechanical complications were reported in nine studies (Ormianer & Palti 2006; Strietzel & Reichart 2007; Laviv et al. 2010; Cakarer et al. 2011; Covani et al. 2012; de Carvalho et al. 2013; Bressan & Lops 2014; Hocksema et al. 2015; Rossi et al. 2015). All the information extracted from the published articles and from email correspondences is presented in Tables 2 and 3.

Risk of bias/quality assessment of the included studies

The RCTs, cohort studies, and case–control studies included in this review could only be considered as prospective case series. Therefore, neither the Cochrane tool nor the NOS could be applied to assess the risk of bias and quality of the studies.

Synthesis of results

Inter-investigator agreement

The overall \(k \) scores calculated for the various parameters extracted by the two investigators ranged between 0.818 and 1.000, hence indicating an excellent degree of inter-investigator agreement.
Table 2: Included prospective studies and RCTs reporting on dental implant therapy in elderly patients (65 years and above)

<table>
<thead>
<tr>
<th>Study (First author)</th>
<th>Year (loading protocol)</th>
<th>Implant system</th>
<th>Number of implants placed</th>
<th>Observation period in months</th>
<th>Number of patients</th>
<th>Number of implant survivors (failed)</th>
<th>Survival rate (SR%)</th>
<th>Prosthesis type</th>
<th>Number of implants</th>
<th>Edentulous state of the jaw rehabilitated</th>
<th>Calculated Number of implants placed</th>
<th>Calculated Number of implants survived*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Becker‡</td>
<td>2015</td>
<td>Not specified Nobel Biocare‡</td>
<td>120§</td>
<td>Up to 60</td>
<td>20</td>
<td>16</td>
<td>75.56</td>
<td>96.7</td>
<td>Not specified</td>
<td>Not specified</td>
<td>57 (0)</td>
<td>100</td>
</tr>
<tr>
<td>Bresan 2014</td>
<td>Immediate</td>
<td>Ankylos</td>
<td>24§</td>
<td>60</td>
<td>16</td>
<td>75.6</td>
<td>96.6</td>
<td>Not specified</td>
<td>Not specified</td>
<td>76 (0)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cakarer 2011</td>
<td>Conventional</td>
<td>Astra Tech, Straumann, Nobel, Frialit, Swiss Plus, Nobel Biocare, BiohORIZONs, BioLoK</td>
<td>120 20 31</td>
<td>25</td>
<td>(3)</td>
<td>76</td>
<td>96.0</td>
<td>Partially</td>
<td>25 (4)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Carvalho 2013</td>
<td>Immediate</td>
<td>Nobel Biocare, LifeCore, Nobel Biocare, I-Moc, Zimmer, Biomet 3i, Globtek</td>
<td>120 30 60</td>
<td>10</td>
<td>30</td>
<td>75</td>
<td>96.3</td>
<td>Completely</td>
<td>25 (4)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoeksema 2015</td>
<td>Conventional</td>
<td>Straumann</td>
<td>12 16</td>
<td>85</td>
<td>10</td>
<td>10</td>
<td>75</td>
<td>96.3</td>
<td>Completely</td>
<td>25 (4)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Muller 2006</td>
<td>Conventional</td>
<td>Zimmer</td>
<td>12 60</td>
<td>85</td>
<td>10</td>
<td>10</td>
<td>75</td>
<td>96.3</td>
<td>Completely</td>
<td>25 (4)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Rossi 2007</td>
<td>Early</td>
<td>Straumann</td>
<td>12 60</td>
<td>85</td>
<td>10</td>
<td>10</td>
<td>75</td>
<td>96.3</td>
<td>Completely</td>
<td>25 (4)</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

*Includes implant dropouts.
†Calculated as per the raw data supplied by the authors and not considering implant dropouts as failures.
‡Data extracted and reported for 1-year only and excluding machined surface implants.
§Mean age of cohort was confirmed by the authors as 65 years and above.
© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

Meta-analysis of the included studies
A meta-analysis was performed on the post-loading implant survival rates at various time points (1, 3, 5, and 10 years). The random-effects model revealed an overall 1-year post-loading implant survival of 97.7% [95% CI: 96.0, 98.4; \(I^2 = 0.00\%, P = 0.968; n = 11\) studies; Fig. 2]. Six studies provided data for a 3-year analysis, and the model revealed an overall post-loading implant survival of 96.3% [95% CI: 92.8, 98.1; \(I^2 = 0.00\%, P = 0.618; n = 6\) studies], and is shown in Fig. 3. Five-year post-loading implant survival was found to be 96.2% [95% CI: 93.0, 97.9; \(I^2 = 0.00\%, P = 0.850; n = 7\) studies; Fig. 4], while the 10-year survival was found to be 91.2% [95% CI: 83.4, 95.6; \(I^2 = 0.00\%, P = 0.381; n = 3\) studies] as revealed in the forest plot (Fig. 5).

Descriptive analysis of the mean PI-MBL changes, biological and technical/mechanical complications
The reported 1-year mean PI-MBL ranged between 0.1 and 0.3 mm [Becker et al. 2015; Hoeksema et al. 2015], while the reported 5- and 10-year PI-MBL were 0.7 and 1.5 mm, respectively [Hoeksema et al. 2015].

Information obtained pertaining to the technical/mechanical and biological complications in the included studies was inadequate for statistical analysis and is reported descriptively in Table 3. The frequent technical/mechanical complications reported were abutment screw loosening (21), fracture of the overdenture prostheses (6), activation of retentive clips (2), ceramic chipping (3), and ceramic fractures (2). The common biological complication frequently encountered included peri-implant mucositis (2), mucosal enlargement (2), and bone loss (7), pain (1), and implant loss (2).

Additional analyses
Sensitivity analyses were performed for implant survival rates at 1, 3, 5, and 10 years while considering dropout implants as failures. The sensitivity analyses revealed a reduction in the 1-year implant survival rate dropping down to 95.6% [95% CI: 92.1, 97.5; \(I^2 = 29.49\%, P = 0.165; n = 11\) studies; Fig. 6], while the 3-year survival rate dropped down to 91.7% [95% CI: 87.6, 94.5; \(I^2 = 0.00\%, P = 0.465; n = 6\) studies; Fig. 7]. The 5-year implant survival reduced to 91.2% [95% CI: 87.4, 94.0; \(I^2 = 0.00\%, P = 0.656; n = 7\) studies; Fig. 8], and the 10-year implant survival was 80.5% [95% CI: 45.5, 95.3; \(I^2 = 88.11\%, P = 0.000; n = 9\) studies; Fig. 9].
Table 3. Marginal peri-implant bone level changes and technical and biological complications reported by the included prospective studies and randomized controlled trials (RCTs)

<table>
<thead>
<tr>
<th>Study (First author)</th>
<th>Year</th>
<th>Peri-implant marginal bone level (PI-MBL) changes in millimeters (mm)</th>
<th>Technical/mechanical complications (n, number of events)</th>
<th>Biological complications (n, number of events)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Becker</td>
<td>2015</td>
<td>0.1</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td>Bressan</td>
<td>2014</td>
<td>Not available</td>
<td>n = 2</td>
<td>Two cases of peri-implant mucositis (successfully treated with interceptive supportive therapy)</td>
</tr>
<tr>
<td>Cakarer</td>
<td>2011</td>
<td>Not available</td>
<td>n = 1; Not specified whether it was a technical/biological/mechanical complication</td>
<td>Mucosal enlargement in a patient with ball attachment</td>
</tr>
<tr>
<td>Covani</td>
<td>2012</td>
<td>Not available</td>
<td>n = 0</td>
<td>n = 7</td>
</tr>
<tr>
<td>de Carvalho</td>
<td>2013</td>
<td>Not available</td>
<td>n = 1; n = 0; Not specified whether it was a technical/biological/mechanical complication</td>
<td>Bone loss of 1 mm observed on three implants at 5 years</td>
</tr>
<tr>
<td>Laviv</td>
<td>2010</td>
<td>Not available</td>
<td>n = 0</td>
<td>Not specified in details, but reported as inflammation, redness, mobility, and pain</td>
</tr>
<tr>
<td>Hoeksema</td>
<td>2015</td>
<td>Baseline–1 year = 0.3</td>
<td>n = 0</td>
<td>Infection and implant had to be removed</td>
</tr>
<tr>
<td>Ormianer</td>
<td>2006</td>
<td>Not available</td>
<td>n = 4</td>
<td>Two porcelain fractures</td>
</tr>
<tr>
<td>Rossi</td>
<td>2015</td>
<td>Not available</td>
<td>n = 0</td>
<td>n = 6</td>
</tr>
<tr>
<td>Strietzel</td>
<td>2007</td>
<td>Not available</td>
<td>n = 0</td>
<td>Four patients with vertical bone loss exceeding 1/3 of implant length</td>
</tr>
<tr>
<td>Müller</td>
<td>2013</td>
<td>Not available</td>
<td>Not available</td>
<td>One implant loss</td>
</tr>
</tbody>
</table>

Fig. 2. Forest plot showing the 1-year post-loading implant survival rate. CI, confidence interval.

Fig. 3. Forest plot showing the 3-year post-loading implant survival rate. CI, confidence interval.
A funnel plot was used to rule out any publication bias (Fig. 10).

Discussion

The protocol followed in this systematic review was in accordance with the guidelines prescribed by PRISMA, and the review was conducted in a manner similar to previously published reviews (Schimmel et al. 2014; Srinivasan et al. 2016). Although the methodology executed can be considered robust, a few limitations may have existed. This study delivers a meta-analysis of prospectively designed studies that included two RCTs, one cohort study, one comparative study, and six prospective case series. However, the included RCTs and cohort studies could not be considered as such, because their tested interventions and study objectives did not conform to our focus question. Therefore, they were recruited as prospective case series, solely, for the purpose of this review. However, in terms of strength, the included studies were methodologically of superior quality conducted by well-known and senior researchers. Meta-analysis of RCTs is often graded the highest level of scientific evidence (Glenny et al. 2008). This review was unable to identify RCTs with similar objectives as our framed PICO question, because there were none. Hence, the conclusions drawn from the results of this meta-analysis, although credible, should be cautiously interpreted. Furthermore, our deliberate exclusion of retrospective studies could have influenced the number of studies included, but this was deemed necessary so that only studies with low bias and high methodological quality would be included in this review (Schimmel et al. 2014; Srinivasan et al. 2016).

During the search and identification process, we found that numerous studies reporting on dental implant therapy had an elderly cohort, but within the cohort group there also existed participants below the age of 65 years. The inclusion criteria for this review required a minimum age of 65 years.

### Study name	Survival rate and 95% CI	Total	Survival rate and 95% CI	Relative weight (%)
COVANI (2012) | 0.931 0.762 0.983 | 27/29 | 0.962 0.930 0.979 | 100.00
DE CARVALHO (2013) | 0.950 0.856 0.984 | 57/60 | 0.920 0.890 0.950 | 58.90
HOEKSEMA (2015) | 0.976 0.713 0.999 | 20/20 | 0.955 0.552 0.997 | 49.99
LAVIV (2010) | 0.963 0.864 0.991 | 52/54 | 0.986 0.908 0.998 | 10.25
ORMIANER (2006) | 0.986 0.908 0.998 | 71/72 | 0.955 0.552 0.997 | 49.99
ROSSI (2015) | 0.955 0.552 0.997 | 10/10 | 0.986 0.908 0.998 | 10.30
STRIETZEL (2007) | 0.981 0.878 0.997 | 52/53 | 0.986 0.908 0.998 | 10.30
Overall (Random) | 0.962 0.930 0.979 | 100.00 | 100.00 | 100.00

Fig. 4. Forest plot showing the 5-year post-loading implant survival rate. CI, confidence interval.

### Study name	Survival rate and 95% CI	Total	Survival rate and 95% CI	Relative weight (%)
COVANI (2012) | 0.862 0.685 0.947 | 25/29 | 0.912 0.834 0.956 | 100.00
DE CARVALHO (2013) | 0.950 0.856 0.984 | 57/60 | 0.912 0.834 0.956 | 100.00
HOEKSEMA (2015) | 0.917 0.587 0.988 | 11/12 | 0.912 0.834 0.956 | 100.00
Overall (Random) | 0.912 0.834 0.956 | 100.00 | 100.00 | 100.00

Fig. 5. Forest plot showing the 10-year post-loading implant survival rate. CI, confidence interval.

### Study name	Survival rate and 95% CI	Total	Survival rate and 95% CI	Relative weight (%)
BECKER (2015) | 0.966 0.874 0.992 | 57/59 | 0.956 0.921 0.975 | 100.00
BRESSAN (2014) | 0.994 0.905 1.000 | 76/76 | 0.956 0.921 0.975 | 100.00
CAKARER (2011) | 0.976 0.849 0.997 | 41/42 | 0.956 0.921 0.975 | 100.00
COVANI (2012) | 0.968 0.804 0.995 | 30/31 | 0.956 0.921 0.975 | 100.00
DE CARVALHO (2013) | 0.967 0.876 0.992 | 58/60 | 0.956 0.921 0.975 | 100.00
HOEKSEMA (2015) | 0.978 0.732 0.999 | 22/22 | 0.956 0.921 0.975 | 100.00
LAVIV (2010) | 0.991 0.871 0.999 | 54/54 | 0.956 0.921 0.975 | 100.00
MÜLLER (2013) | 0.875 0.711 0.952 | 28/32 | 0.956 0.921 0.975 | 100.00
ORMIANER (2006) | 0.900 0.813 0.949 | 72/80 | 0.956 0.921 0.975 | 100.00
ROSSI (2015) | 0.955 0.552 0.997 | 10/10 | 0.956 0.921 0.975 | 100.00
STRIETZEL (2007) | 0.991 0.877 0.999 | 57/57 | 0.956 0.921 0.975 | 100.00
Overall (Random) | 0.956 0.921 0.975 | 100.00 | 100.00 | 100.00

Fig. 6. Sensitivity analysis showing the 1-year implant survival rate where implant dropouts were considered as failures. CI, confidence interval.
and over; hence, it was necessary to either eliminate those studies from the review or request the respective corresponding authors for raw data pertaining to participants aged 65 years and over. Therefore, email requests were sent to the corresponding authors requesting for unpublished raw data from their studies pertaining to the elderly cohort. This unusual approach requested additional sub-analyses from the authors, and at this point we would like to acknowledge the willingness of some authors to invest time and effort to help with this review. Still, after contact with the authors, many studies were further excluded because of either sample size of less than 10 elderly participants, or nonresponse, or implant surface, etc. Only two of our included studies were exclusively on the geriatric population and had participants aged over 65 years (Müller et al. 2013; Becker et al. 2015). For all the other included studies, authors had to be contacted for details. From the 11 finally retained studies, nine were based on these additional analyses, without which this review would not have been possible. The study published by Becker et al. (2015) provided 7-year outcomes of dental implant therapy in the elderly population (Becker et al. 2015). However, the implant pool in this study also consisted of machined implants. The exact time point of dropouts of these machined surface implants was not available; hence, the review only considered the 1-year outcomes from this study, as it was possible to precisely exclude the machined surface implant number for this period.

The results of the meta-analysis revealed a pooled overall 1-year post-loading implant survival of 97.7%, while the overall 3- and 5-year implant survival rates were calculated as 96.3% and 96.2%, respectively; and a 10-year implant survival rate of 91.2%. These implant survival rates in the elderly population are comparable to the survival rates published in the literature (Kowar et al. 2014). A recently published retrospective study reported for an elderly cohort (aged 65–89 years) an implant-based survival rate of 95.39% over an observation period of up to 17 years (Park et al. 2016). Becker et al. (2015) reported an implant survival rate of 94.6% in the elderly population (aged 66–93 years) in an observation period of 7 years (Becker et al. 2015).

In the 11 included studies, four studies reported on completely edentulous jaws (Cakarer et al. 2011; Müller et al. 2013; Bresan & Lops 2014; Hoeksema et al. 2015) and four reported on partially edentulous jaws.
impairment, they will increasingly depend on help from carers for the activities of daily living. Unfortunately, the nursing staff is often not well trained for the handling of implant dentures and the corresponding oral hygiene gestures. Hence, the success criteria for implants in dependent elders have to be revisited [Müller & Schimmel 2016]. Given the preceding aspects, a close monitoring of elderly implant patients is recommended to monitor their performance and reduce the degree of technical complexity along with functional decline and morbidity.

Conclusion

This systematic review provides robust evidence favoring dental implant therapy in elderly edentulous patients as a predictable long-term treatment option in terms of high implant survival rates, clinically acceptable PI-MBL changes, and minimal complications. Therefore, age alone need not be considered a factor in effectuating dental implant therapy, and implants should be a recommended treatment option in the rehabilitation of elderly edentulous patients in order to help improve their oral function and quality of life.

Acknowledgements: The authors wish to thank the following corresponding authors of the included publications for their timely responses and valuable cooperation for the successful completion of this systematic review: Antonio Barone, Breno Carnevalli Franco de Carvalho, Erieberto Bressan, Fabio Rossi, Frank Strietzel, Henny J. A. Meijer, Michal Levin, Sirmahan Cakarer, William Becker, and Zeev Ormianer. The authors wish to further thank Anja Zembic, Diego Nardi, Lars Schropp, Paolo Capparé, Roberto Crespi, and Tommaso Grandi, who provided additional information but whose studies could not be included.

Conflict of interests and source of funding

The authors wish to declare that they have no conflict of interests and received no external funding for completing this review.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. PRISMA 2009 Checklist.