GNB5 Mutations Cause an Autosomal-Recessive Multisystem Syndrome with Sinus Bradycardia and Cognitive Disability

Abstract

GNB5 encodes the G protein β subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision.

Reference

PMID : 27523599
DOI : 10.1016/j.ajhg.2016.06.025
GNB5 variants cause a novel multisystem syndrome associated with sinus bradycardia and intellectual disability

Elisabeth M Lodder1*, Pasquela De Nittis2,3*, Charlotte D. Koopman4,5*, Wojciech Wiszniewski6, Carolina Fishinger Moura de Souza7, Najim Lahrouchi1, Nicolas Guex2,8, Valerio Napolioni9, Federico Tessadori5, Teun de Boer4, Leander Beekman1, Eline A. Nannenberg10, Lamiae Boualla11, Nico A. Blom12, Wim de Graaff13, Maarten Kamermans13,14, Dario Cocciadiferro3,15, Natascia Malerba3,15, Barbara Mandriani3,16, Zeynep Hande Coban Akdemir6, Richard J. Fish17, Mohammad K. Eldomery6, Ilham Ratbi11, Arthur A. M. Wilde1, Teun P. de Boer4, William F. Simonds18, Marguerite Neerman-Arbez17, V. Reid Sutton6,19, Fernando Kok20, James R. Lupski6,19,21, Alexandre Reymond2#, Connie R. Bezzina1#, Jeroen Bakkers4,5#, Giuseppe Merla3#

1Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
2Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
3Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, viale Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
4Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
5Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
6Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
7Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil.
8 SIB-Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
9Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
10Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
Correspondence should be addressed to:
Connie R. Bezzina, c.r.bezzina@amc.uva.nl
Jeroen Bakkers, j.bakkers@hubrecht.eu
Giuseppe Merla, g.merla@operapadrepi.it

Running title: GNB5 variants cause HEIGHTS syndrome

Keywords: whole exome sequencing, heart rate, intellectual disability, hypotonia, G-protein signaling, parasympathetic system
Abstract

We report a new genetic multi-system disorder caused by mutations affecting inhibitory G-protein signaling. Whole exome sequencing of 9 individuals from 6 unrelated families, from 4 different continents, with overlapping clinical manifestations identified bi-allelic loss-of-function and missense variants in *GNB5* that encodes the G-protein β subunit 5. This autosomal recessive disease combines the very unique finding of early-onset Heart rate disturbance, as well as Eye disease, Intellectual disability, Gastric problems, HypoTonia and Seizures; thus we propose the acronym HEIGHTS. A striking association between the nature of the variants and clinical severity of the syndrome was observed: individuals with loss-of-function alleles had more severe symptoms, including significant developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease and sinus node dysfunction, whereas carriers of a homozygous missense variant presented with a clinically milder phenotype. Zebrafish knocked out for *gnb5* faithfully recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological and ophthalmological abnormalities, thus providing further experimental evidence for a direct role of *GNB5* in the control of heart rate, hypotonia, and vision.
Main text

Heterotrimeric G proteins trigger a signal transduction cascade composed of α, β, and γ subunits. They are associated with G protein-coupled receptors (GPCRs) in modulating an array of cellular functions, including release of a multitude of hormones and growth factors, regulation of cell contraction and migration, as well as cell growth and differentiation during development. G-protein coupled signaling plays a crucial role in neuronal communication, including regulation of the antagonistic effects of the parasympathetic and sympathetic branches of the autonomic nervous system throughout the body. We report a new genetic disorder caused by mutations affecting GNB5 (MIM: 604447), encoding guanine nucleotide binding protein, subunit beta 5, with disease manifestation in multiple systems.

We identified nine affected individuals (six females and three males) from six unrelated families presenting with a clinical overlap of neurological and cardiac conduction defects. Shared phenotypic features representing the cardinal characteristics of this syndrome include global developmental delay, seizures, generalized hypotonia, retinal disease and the uncommon feature of early-onset sinus node dysfunction (Table 1). Additional clinical investigations and diagnostic studies did not show any evidence of structural central nervous system, ocular and cardiac anomalies. Affected individuals from four of the six families (families A-D) demonstrated the severe end of the disease spectrum with significant cognitive deficits, delayed motor development, severe hypotonia, retinal disease, pathological gastro-esophageal reflux, and sinus node dysfunction. Families E and F presented with a milder phenotype including mild intellectual impairment, language delay and bradycardia (Figure 1, Table 1, Supplemental text). We suggest describing this syndrome, and aggregate of rare endophenotypes, associated with pathogenic variation in the same gene, with the acronym “HEIGHTS” (Heart and Eye disease, Intellectual disability, Gastric problems, HypoTonia and Seizures).

As no potentially pathogenic genomic structural abnormalities were identified by array-CGH and karyotyping of the affected subjects, we applied whole
exome sequencing (WES) to all the affected individuals and their healthy parents. Families were recruited in Italy (family A), Brazil (B and F), the United States of America (C and D) and the Netherlands (E). The institutional review boards of the IRCCS Casa Sollievo Della Sofferenza Hospital, the “Hospital das Clínicas da Universidade de São Paulo”, the Baylor College of Medicine, the Amsterdam Academic Medical Center and the University of Lausanne approved this study. Participants were enrolled after written informed consent was obtained from parents or legal guardians. The clinical evaluation included medical history interviews, a physical examination and review of medical records. To uncover genetic variants associated with the complex phenotype shown by the nine affected subjects we sequenced their exomes and that of their parents. DNA libraries were prepared from blood-derived genomic DNAs by standard procedures. Exomes were captured and sequenced using different platforms to reach 50-120-fold coverage on average (Supplemental text). Variants were called as previously described\(^5\) to \(^7\). Variants were filtered based on inheritance patterns including autosomal recessive, X-linked and de novo/autosomal dominant. Variants with MAF<0.05% in control cohorts (dbSNP, the 1000 genome project, NHLBI GO Exome Sequencing Project, the Exome Aggregation Consortium database and our in-house databases) and predicted to be deleterious by SIFT\(^8\), PolyPhen-2\(^9\) and/or UMD predictor\(^10\) were prioritized.

As some families reported a potential history of consanguinity (family B, C and F, Figure 1; Table 1) we filtered variants using Mendelian expectations for the assumption of a rare autosomal recessive trait. We found only the \(GNB5\) gene compliant with Mendelian expectations and bearing bi-allelic putative deleterious variants in all affected individuals (Figure 1, Table S1). Sanger sequencing in each family confirmed the anticipated segregation of the \(GNB5\) variants. Strikingly, the variants found in the severely affected individuals (families A-D) were predicted to be loss-of-function (LoF) alleles, whereas the more mildly affected individuals from families E and F were homozygous for the same missense variant, c.242C>T (NM_006578.3); p.(S81L) (Figure 1, S1a). In families B, C and D the affected individuals were homozygous for splice variants (c.249+1G>T; p.(D84Lfs31X)) and (c.249G+3A>G;
p.(D84Vfs31X)) and a nonsense variant (c.906C>G; p.(Y302X)), respectively (Figure 1, S1a; Table S1). In family A, the affected siblings were compound heterozygous for a maternally inherited nonsense variant (c.994C>T; p.(R332X)) and a paternally inherited splice-site change (c.249G>A; p.Q83Q), that are predicted by conceptual translation to likely trigger nonsense-mediated decay of the corresponding transcripts; a hypothesis that was confirmed experimentally (Figure 1, S1a, S2; Supplemental text).

The five GNB5 LoF variants identified in families A-D are either not present or present with AF≤8.25 x 10^{-6} (allele frequency) in ExAC (Exome Aggregation Consortium, Cambridge, MA; Version 0.3.1) (Table S1). Correspondingly, LoF variants in GNB5 are underrepresented compared to expectation (8/19.1 respectively) in ExAC, suggesting selective pressure against such variants. The p.(S81L) missense variant identified in family E of Moroccan ancestry and family F of Brazilian ancestry has an AF<5 x 10^{-5} (6/121,000) in the human population and 4.3 x 10^{-4} in Latinos (5/11,574). A sample of individuals from Morocco identified a prevalence of 1 out of 1260 (7.94 x 10^{-4}) for this allele. Pathogenicity of this variant is further supported by three-dimensional representation of the encoded protein complexed with RGS9, a member of the R7-subfamily of Regulators of G-protein Signaling (RGS) proteins and common binding partner of GNB5. GNB5 is folded into essentially identical seven-bladed β-propellers (WD40 repeated domains) with equivalent N-terminal helical extensions.11 Replacement of the evolutionary conserved S81 (Figure S1b) by Leucine will induce localized structural changes in the immediate vicinity of this residue, which could impair both the central pore of the β-propeller and the binding kinetics of RGS proteins (Figure 2, S3, S4; Supplemental text).

In line with the clinical presentation of HEIGHTS syndrome, Gnb5 ablation in mice resulted in marked neurobehavioral abnormalities, including learning deficiencies, hyperactivity, impaired gross motor coordination, abnormal gait,12 defective visual adaptation13 and perturbed development and functioning of retinal bipolar cells.14 Correspondingly, mice lacking Rgs6, the GNB5-dependent RGS protein enriched in heart tissue, exhibit bradycardia...
and hypersensitivity to parasympathomimetics. To independently investigate the functional effects of HEIGHTS-associated variation of \(GNB5 \) in the full phenotypic spectrum of subjects reported herein, we engineered a zebrafish model knocked out for \(gnb5 \).

CRISPR/Cas9 genome editing was used to generate zebrafish with LoF mutations in \(gnb5a \) and \(gnb5b \), the two \(GNB5 \) paralogs present in the genome of this teleost (Figure S5). We identified stable lines with a +7bp insertion in \(gnb5a \) and a -8bp +15bp deletion/insertion in \(gnb5b \) causing a frameshift and premature truncation of the encoded proteins, respectively (Figure S6). It was anticipated that \(gnb5a \) and \(gnb5b \) might have redundant functions, which was confirmed by the absence of overt phenotypes in embryos homozygous for either LoF mutations. In-crosses of \(gnb5a/gnb5b \) double heterozygous carriers resulted in clutches of embryos containing the expected 6.25% of \(gnb5a^-/gnb5b^- \) double mutants (henceforth referred to as \(gnb5 \) mutants). Consistent with HEIGHTS syndrome manifestations, zebrafish mutants have no striking dysmorphologic features (Figure S6d), but the larvae generally die 7-14 days post fertilization (dpf).

To assess the putative involvement of \(GNB5 \) in autonomic nervous system functions, we investigated the GNB5/RGS/GIRK channel pathway. As GNB5 recruits RGS proteins to G-protein-coupled inward rectifier potassium (GIRK) channels involved in the hyperpolarization of cell membranes, we first investigated if LoF of \(GNB5 \) could delay GIRK channel deactivation kinetics, increase hyperpolarization time of cell membranes, and impair cell responsiveness to new stimuli. Carbachol is a parasympathomimetic compound that activates acetylcholine receptors of the heart (NCBI, PubChem) and the GNB5/RGS/GIRK channel pathway. Treatment of \(gnb5 \) mutant larvae with carbachol resulted in a strong decrease of the heart rate, whereas it had little effect on wild-type and sibling larvae (Figure 3), consistent with loss of negative regulation of the cardiac GIRK channel by GNB5/RGS. In contrast, treatment with the sympathetic agonist isoproterenol resulted in an increased heart rate that was similar in wild-type, sibling and \(gnb5 \) mutant larvae (Figure 3). These results indicate that \(GNB5 \) is crucial for...
the parasympathetic control of heart rate, but not for sympathetic control suggesting that lack of GNB5 is associated with extreme bradycardia at rest. Correspondingly, HEIGHTS individuals present severe bradycardia at rest (minimal observed heart rates of <25bpm (beats per minute)) combined with a normal chronotropic response (max heart rates >150 bpm).

The severe muscle hypotonia reported in HEIGHTS individuals could result from GIRK-mediated hyperpolarization of neurons controlling skeletal muscle tone. gnb5 mutant embryos hatched normally from their chorion, a process that requires muscle contraction, but their swimming behavior appeared abnormal at 3 dpf. To investigate whether this abnormal behavior was linked to neurologic dysfunction and hypotonia, we examined the touch-evoked escape response. We anticipated that neurons would only become fully hyperpolarized after an initial stimulus and thus presented the embryos with three consecutive tactile stimuli. Whereas wild-type larvae rapidly swam away in response to repeated tactile stimuli, gnb5 mutants showed a significant decrease in swimming distance and swimming speed at stimulus two (P≤0.0001) and three (P≤0.01), but not after the first stimulus (Figure 4a-c). Accordingly, gnb5 mutant larvae were predominantly unresponsive to repeated tactile stimuli (Supplemental movies). To test whether this abnormal escape response is the consequence of neurologic dysfunction rather than reduced muscle function, we performed a tail movement assay. 5 dpf larvae were given a strong tactile stimulus while recording the movement of the tail (Figure 4d-e). No significant difference was detected in the maximum tail angle between wild-type and gnb5 mutant larvae (Figure 4e). These results indicate that the tail muscles of gnb5 mutants are fully functional and that the abnormal escape response is associated with neurological dysfunction and possibly muscle hypotonia.

Since HEIGHTS individuals have visual problems, including nystagmus, we investigated the visual system by measuring the optokinetic response (OKR) of gnb5 mutant larvae. When wild-type larvae were placed in a drum with rotating light stimulus (Figure S7a), the OKR consists of smooth pursuit eye movements followed by rapid rest saccades in the opposite direction (Figure
S7b, Supplemental movies). In contrast, OKR was completely absent in gnb5 mutant larvae although their eyes showed no morphological abnormalities and could make eye movements (Figure S7c, Supplemental movies). This indicates that the eye muscles are functional in gnb5 mutants but that proper eye-movement control depends on GNB5. Overall these data showed that gnb5 mutants faithfully recapitulate the phenotypic spectrum of HEIGTHS patients, including cardiac, neurologic and ophthalmologic abnormalities.

These results for the first time provide evidence for a direct role of GNB5 in the control of heart rate, motor capacity, and vision. Whereas the Gβ1-4 are highly homologous and widely expressed\(^{18}\), Gβ5 exhibits much less homology with the other isoforms and is preferentially expressed in the brain and nervous system\(^{19; 20}\).

Germline de novo GNB1 variants cause severe neurodevelopmental disability\(^{21}\), hypotonia and seizures. GNB3 bi-allelic LoF has been linked to stationary night blindness in human\(^ {22}\), retinal degeneration in chicken\(^ {23}\) and reduced cone sensitivity and mild bradycardia in mice\(^ {24; 25}\). A single nucleotide polymorphism (SNP) in GNB3 was associated with postural tachycardia syndrome\(^ {26}\), incidence of cardiovascular disease and stroke\(^ {27}\). Similarly, GNB2 and GNB4 map to loci governing heart rate on chromosome 7 and 3, respectively\(^ {28; 29}\). We hereby demonstrate that bi-allelic LoF and missense variants in GNB5 cause the multisystem HEIGTHS syndrome with features that include global developmental delay, sinus node dysfunction, seizures, eye abnormalities, gastric problems and generalized hypotonia. We highlight the importance of GNB5 for neuronal signaling, including the regulation of the antagonistic effects of the parasympathetic and sympathetic nervous system.

Supplemental Data

Supplemental Data include Supplemental Material and Methods, Supplemental Text, seven figures and one table.

Competing interest
JRL has stock ownership in 23andMe, is a paid consultant for Regeneron Pharmaceuticals, has stock options in Lasergen, Inc., is a member of the Scientific Advisory Board of Baylor Miraca Genetics Laboratories, and is a co-inventor on multiple United States and European patents related to molecular diagnostics for inherited neuropathies, eye diseases and bacterial genomic fingerprinting. Baylor College of Medicine (BCM) and Miraca Holdings Inc. have formed a joint venture with shared ownership and governance of the Baylor Miraca Genetics Laboratories (BMGL), which performs clinical exome sequencing. The Department of Molecular and Human Genetics at Baylor College of Medicine derives revenue from the chromosomal microarray analysis (CMA) and clinical exome sequencing offered in the Baylor Miraca Genetics Laboratory (BMGL; http://www.bmgl.com/BMGL/Default.aspx website). The remaining authors declare that they have no competing interests.

Acknowledgments

We thank the patients and their families for their contribution to this study and R. Tadros and K.Y. van Spaendonck-Zwarts for helpful discussion. We thank the members of the Lausanne Genomic Technologies Facility for exome sequencing support. We dedicate this study to Dr. Leopoldo Zelante who headed for 40 years the Medical Genetics Unit, Casa Sollievo della Sofferenza, San Giovanni Rotondo and recently passed away. Leopoldo’s devotion to the families who nurture affected children and passion for medical genetics was, is and will remain exemplar for all of us. We are grateful to the Genomic Disorder Biobank and Telethon Network of Genetic Biobanks (Telethon Italy grant GTB12001G) for banking of biospecimens. This work was supported by grants from the Swiss National Science Foundation (31003A_160203) to AR; the US National Human Genome Research Institute (NHGRI)/National Heart Lung and Blood Institute (NHLBI) grant number HG006542 to the Baylor-Hopkins Center for Mendelian Genomics and the National Institute of Neurological Disorders and Stroke (NINDS) NS058529 to JRL; Career Development Award K23NS078056 from NINDS to WW; the Italian Ministry of Health (Ricerca Corrente) to GM; the Dutch Heart Foundation (CVON 2012-10 Predict project and CVON 2014-18 CONCOR-
genes project) to CRB, AAMW and JB and JB and CRB, respectively. The Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases also partly supported this research (WFS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Web Resources
1000 Genomes Project Browser, http://browser.1000genomes.org/index.html
Ensembl genome assembly GRCh37, http://grch37.ensembl.org/Homo_sapiens/Info/Index
ExomeDepth, https://cran.r-project.org/web/packages/ExomeDepth/index.html
GATK, https://www.broadinstitute.org/gatk/
GraphPad Prism, www.graphpad.com
PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/
SIFT, http://sift.jcvi.org/
Swiss-PdbViewer, http://spdbv.vital-it.ch/
UMD-Predictor, http://umd-predictor.eu/

Authors’ contribution
performed structural modeling of GNB5 variant. E.M.L. performed statistical analysis, E.M.L., E.A.N., A.A.M.W., and L.B. analyzed the data. C.D.K., F.T., TdB, W.d.G., M.K., J.B. designed and conducted the zebrafish experiments and analyzed the data. N.A.B. and I.R. contributed reagents/materials/analysis tools. W.F.S. provided unpublished gnb5 KO mouse model data. P.D.N., A.R., G.M., C.R.B., J.B. wrote the manuscript. All authors reviewed and approved the manuscript.

References

mortality in chickens. Investigative ophthalmology & visual science 47, 4714-4718.

Figure Legends

Figure 1. Pedigrees from the six families investigated in this study
Affected members of families A to D (upper red-lined panel) and E to F (lower blue-lined panel) show severe and mild manifestation of the core symptoms of the novel HEIGHTS syndrome defined in this study. Filled symbols represent individuals with severe Sinus Sick Syndrome (SSS; top left quarter), intellectual disability (ID; top right quarter), hypotonia (bottom left quarter) and seizures (bottom right quarter), whereas light grey top left quarter indicate the presence of mild ID. Genotypes are specified according to NM_006578.3.

Figure 2. 3D model of the GNB5-RGS complex
(a) Three-dimensional representation of the human GNB5 (orange) complexed with RGS9 (red). A loop of RGS9 (blue) blocks the access to the
central pore of GNB5, in which a glycerol molecule (green) can be found in the x-ray structure. The S81 residue is highlighted in cyan. (b) Top view of the GNB5 molecular surface. The S81 position (cyan) is emphasized with respect to the central pore. The glycerol molecule is shown in green (RGS9 and C111 have been removed for clarity). (c, d) Detailed views of the S81 aminoacidic context (c) and the energy minimized S81L variant (d).

Figure 3. Cardiac function in gnb5 mutant zebrafish
(a, d) Box-whisker plots demonstrate the heart rate response and the relative heart rate change of 5 dpf wild-type, sibling and gnb5 mutant larvae to (a,c) 400µM of the parasympathetic agonist Carbachol (CCh) (wild-type N=10, sibling N=39, gnb5 mutant N=14) and (b, d) 100 µM of the sympathetic agonist isoproterenol (ISO) (wild-type N=12, sibling N=22, mutant N=9). The relative heart rate change is the % change between the basal heart rate measured and the heart rate after addition of CCh or ISO. WT, wild-type; SIB, sibling; MT, gnb5 mutant; bpm, beats per minute.

Figure 4. Neurologic function in gnb5 mutant zebrafish
(a, c) Touch-evoked escape response assay in which three consecutive tactile stimuli were applied. (a) Representative responses of 3 dpf wild-type and gnb5 mutant embryos to a touch stimulus. Scalebar = 0.5cm. Box-whisker plots show quantification of the (b) swimming distance and (c) swimming speed in TL wild-types (N=19), siblings (N=46) and gnb5 mutants (N=27). (d, e) Analysis of maximum tail movement at 5dpf. (d) Representative minimum projection images of tail movement in wild-type and gnb5 mutant embryos, including tail angle analysis. The tail angle represents the angle between the head-tail midline axis in resting state and a line that was drawn from just caudal of the swimbladder to the tip of the tail at maximal tail movement (e) Tail angle quantification is displayed in box-whisker plots (wild-type N=10, gnb5 mutants N=10).
Figure 1

Severe phenotype

Family A
- I: 1
- II: 1
 - r.[249G>A;249-250ins25]/c.994C>T
 - (p.D84Vfs52X/R332X)

Family B
- I: 1
- II: 1
 - c.249+1G>T/c.249+1G>T
 - (p.D84Lfs31X)

Family C
- I: 1
- II: 1
 - c.249+3A>G/c.249+3A>G
 - (p.D84Vfs31X)

Family D
- I: 1
- II: 1
 - c.906C>G/c.906C>G
 - (p.Y302X)

Mild phenotype

Family E
- I: 1
- II: 1
 - c.242C>T/c.242C>T
 - (p.S81L)

Family F
- I: 1
- II: 1
 - c.242C>T/c.242C>T
 - (p.S81L)

Symbol Key:
- SSS
- Severe ID
- Mild ID
- Hypotonia
- Seizures
Figure 4

(a) Comparison of movement responses over time (0 ms to 400 ms) between wild-type and gbn5 mutant. Arrows indicate movement directions.

(b) Box plots showing distance responses over three responses (#) for wild-type, sibling, and gbn5 mutant. Statistical significance is indicated by n.s. and asterisks.

(c) Box plots showing speed responses over three responses (#) for wild-type, sibling, and gbn5 mutant. Statistical significance is indicated by n.s. and asterisks.

(d) Images of wild-type and gbn5 mutant showing tail angle measurements.

(e) Box plot showing tail angle measurements for wild-type (WT) and mutant (MT).
Table 1: Overlapping clinical features of individuals with GNB5-related syndrome

<table>
<thead>
<tr>
<th></th>
<th>Family A</th>
<th>Family B</th>
<th>Family C</th>
<th>Family D</th>
<th>Family E</th>
<th>Family F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II.1</td>
<td>II.2</td>
<td>II.1</td>
<td>II.2</td>
<td>II.3</td>
<td>II.2</td>
</tr>
<tr>
<td>Gender, Age</td>
<td>F, 22</td>
<td>F, 20</td>
<td>F, 6</td>
<td>F, 11</td>
<td>M, 9</td>
<td>F, 12</td>
</tr>
<tr>
<td>Birth weight</td>
<td>3580 g (50th percentile)</td>
<td>NA</td>
<td>3980 g (15th percentile)</td>
<td>2751 g (15th percentile)</td>
<td>NA</td>
<td>2845 g (15th percentile)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Italy</td>
<td>Italy</td>
<td>Jordan</td>
<td>Puerto Rico</td>
<td>Puerto Rico</td>
<td>India</td>
</tr>
<tr>
<td>Consanguinity</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Altered speech development</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>- Verbal understanding</td>
<td>nonverbal</td>
<td>unremarkable</td>
<td>unremarkable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Lexical production</td>
<td>nonverbal</td>
<td>delayed</td>
<td>delayed</td>
<td>Nonverbal</td>
<td>delayed</td>
<td>delayed</td>
</tr>
<tr>
<td>Intellectual disability (ID)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sinus Sick Syndrome (SSS)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>- Minimum heart rate</td>
<td>24</td>
<td>39</td>
<td>NA</td>
<td>paced</td>
<td>paced</td>
<td>NA</td>
</tr>
<tr>
<td>- Maximum heart rate</td>
<td>163</td>
<td>192</td>
<td>NA</td>
<td>paced (27% heartbeats on Holter)</td>
<td>paced (20% heartbeats on Holter)</td>
<td>NA</td>
</tr>
<tr>
<td>- Chronotropic response</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>+</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td>- Escape beats</td>
<td>+</td>
<td>+</td>
<td>NA</td>
<td>paced</td>
<td>paced</td>
<td>NA</td>
</tr>
<tr>
<td>- Pacemaker implantation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- Heart structural abnormalities</td>
<td>- PFO</td>
<td>-</td>
<td>NA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hypotonia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pathological gastric reflux</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Metabolic work-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Plasma amino acids chromatography</td>
<td>938 μm/l (restored)</td>
<td>+ (restored)</td>
<td>unremarkable</td>
<td>unremarkable</td>
<td>unremarkable</td>
<td>unremarkable</td>
</tr>
<tr>
<td>- Urine organic acids</td>
<td>unremarkable</td>
<td>unremarkable</td>
<td>increased excretion of 3-methyl-glutaconic acid</td>
<td>unremarkable</td>
<td>unremarkable</td>
<td>unremarkable</td>
</tr>
</tbody>
</table>

Patient numbers refer to those of the pedigree in Figure 1.

Abbreviations are as follows: M, male; F, female; NA, Not Available; +, present clinical trait; -, not present clinical trait; PFO, Patent Foramen Ovale; RV dilatation, Right Ventricular dilatation. Complete pedigree charts, consanguinity status, variants, and related homozygous and/or compound heterozygous alleles are reported in Figure 1 and Table S2.
Click here to access/download

Supplemental Text and Figures

AJHG_GNB5_Supplemental data.pdf
Click here to access/download
Supplemental Movies and Spreadsheets
OKR_movie1_wild-type_AJHG.mov
Click here to access/download
Supplemental Movies and Spreadsheets
OKR_movie2_gnb5mutant_AJHG.mov
Click here to access/download

Supplemental Movies and Spreadsheets

TouchEvokedResponse_Movie1_wild-type_AJHG.mov
Supplemental Movies

Click here to access/download

Supplemental Movies and Spreadsheets

TouchEvokedResponse_Movie2_gnb5mutant_AJHG.mov