New adhesives in Class V restorations under combined load and simulated dentinal fluid

KREJCI, Ivo, et al.

Abstract

This study compared the efficacy of three dentinal adhesives using the "all etch" technique (All-Bond 2, Bisco; Scotchbond MP, 3M Dental Products Co.; OptiBond, Kerr) with a dentinal adhesive which still uses phosphoric acid to condition enamel and a self-etching primer for dentin (A.R.T.-Bond, Coltene/Whaledent).

Reference


PMID: 7498595
DOI: 10.1016/0109-5641(94)90042-6
New adhesives in Class V restorations under combined load and simulated dentinal fluid

Ivo Krejci, Tobias Häusler, David Sägesser, Felix Lutz

Department of Preventive Dentistry, Periodontology and Cariology,
Dental Institute, Zurich University, Zurich, SWITZERLAND

ABSTRACT

Objectives. This study compared the efficacy of three dentinal adhesives using the “all etch” technique (All-Bond 2, Bisco; Scotchbond MP, 3M Dental Products Co.; OptiBond, Kerr) with a dentinal adhesive which still uses phosphoric acid to condition enamel and a self-etching primer for dentin (A.R.T.-Bond, Coltene/Whaledent).

Methods. Eight V-shaped mixed Class V restorations were placed per group in extracted human premolars. The restorations were subjected to 1,200,000 mechanical occlusal cycles (max. force 49 N; frequency 1.7 Hz) and 3,000 simultaneous thermal cycles (5-50-5°C). Dentinal fluid was simulated using 1:3 diluted horse serum and fed into the pulp chamber both during restoration and loading. Percentages of “continuous margin” were assessed on SEM replicas of enamel and dentinal margins at 200x magnification immediately before and after stressing, respectively.

Results. No significant differences were observed between stresses of the materials either in enamel or in dentin. After stress, however, OptiBond and A.R.T.-Bond performed significantly better in dentin than the two other adhesives (Kruskal-Wallis, Mann-Whitney; p < 0.05). Although high initial values were observed, All-Bond 2 and Scotchbond MP were not stress-resistant under simulated physiological conditions.

Significance. The predicted clinical potential of All-Bond 2 and Scotchbond MP is inferior to that of OptiBond and A.R.T.-Bond.

INTRODUCTION

The higher life expectancy of the population and improved dental prophylaxis in industrialized countries have led to greater numbers of elderly patients retaining more of their natural dentition (Imfeld, 1992). Due to involutive processes of the periodontal tissues and destructive mechanical oral hygiene habits (Bergström and Eliasson, 1988), eventually combined with occlusal stress (Lee and Eakle, 1984; Braem et al., 1992), an increased number of denuded cervical cementum with V-shaped defects are found in this group of patients. In addition, 35-55% of multi-surfed restorations in posterior teeth have cervical margins located in dentin or in unstructured enamel (Mayer, 1991). The adhesive restoration of such non-retentive defects can only be successfully managed by using highly efficient adhesives which can seal enamel and dentinal margins.

Earlier studies have shown that most of the former dentinal adhesives did not optimize the marginal quality of mixed Class V restorations in dentin (Airoldi et al., 1992). Unfortunately, some of these formulations even compromised enamel adhesion (Airoldi et al., 1992). Consequently, marginal discoloration, hypersensitivity, secondary caries and loss of restorations occurred in clinical cases. In addition, the application of most of these commercially available products was complex. Different substances were used to condition enamel and dentin and their application was often restricted to enamel or to dentin without contacting the other hard tissue (Van Meerbeck et al., 1992a). As a further handicap, defined layer thickness was recommended for some formulations (Ericsson, 1992).

All-Bond 2, Scotchbond Multipurpose and OptiBond have recently become available to the profession with universal conditioners for both enamel and dentin, which are claimed to simplify handling and shorten the application time. The aim of this study was to evaluate the efficacy of these three adhesives in mixed Class V restorations under stress and simulated dentinal fluid. The results were compared to the new adhesive A.R.T.-Bond which still uses phosphoric acid to selectively condition enamel.

MATERIALS AND METHODS

Sixteen intact, caries-free upper premolars with completed root formation, stored in 0.1 % thymol solution, were cleaned and randomly assigned to four groups with four teeth each. After sealing the apices with two coats of nail varnish, the roots were fixed in the center of custom-made specimen holders using a cold-polymerizing resin (Paladur, Kulzer & Co., Wehrheim, Germany). The pulpal tissue was not removed. A
cylindrical hole was made into the pulpal chamber approximately at the middle third of the root. A metal tube (1.4 mm diameter) was inserted into the hole and luted in place using a dentin adhesive (Syntac, Vivadent, Schaen, Liechtenstein). This metal tube was connected by a flexible silicone hose to a serum infusion bottle placed vertically 34 cm above the sample. The infusion bottle was filled with 1:3 diluted horse serum (Pashley et al., 1981; Maita et al., 1991) to simulate the dentinal fluid under the normal hydrostatic pressure of about 25 mm Hg (Mitchem et al., 1988; Tao and Pashley, 1989). With the aid of a three-way valve, the whole system was evacuated with a vacuum pump and finally filled bubble-free with the diluted horse serum.

Two V-shaped Class V cavities were then prepared on the buccal and lingual surfaces in all teeth using 80 μm diamond burs (Amalgam Prep Set, Intesiv SA, Lugano, Switzerland) under continuous water cooling. The cavities prepared at the cemento-enamel junction extended 50% into enamel and 50% into dentin. The dimensions were as follows: diameter 3.0 mm, depth 1.5 mm (Fig. 1). The enamel margin was beveled to a crescent shape with a maximal breadth of 1.2 mm, and the entire cavity was finished using 25 μm diamonds (Universal Prep Set, Intesiv SA, Lugano, Switzerland). The preparations were checked for imperfections under a stereo microscope (M5, Wild AG, Heerbrugg, Switzerland) at 12x magnification.

Four teeth with a total of eight cavities were randomly assigned to one of the four tested adhesive systems (Table 1). The bonding to enamel and dentin was done meticulously following the manufacturer's recommendations for each product, except that the light curing of the adhesive was extended to 60 s for all products. The cavities were then filled with composite in a two-step technique. The first layer, about 1.3 - 1.5 mm thick, was placed into the cervical half of the cavity. Each layer was cured for 60 s with visible light (Optilux 400, Demetron Research Corporation, Danbury, CT, USA). Immediately after curing the restorations were finished and polished using flexible discs (Sof-Lex, 3M Dental Products Co., St. Paul, MN, USA). The polishing was checked with a stereo microscope at 12x magnification and perfected where necessary. An impression was made of each restoration with a vinyl polysiloxane impression material (President light body, Coltene AG, Altstätten, Switzerland) immediately after polishing and prepared for the subsequent quantitative margin analysis in a scanning electron microscope (Amray 1810 T, Amray Inc., Bedford, MA, USA).

After storage in the dark in a 0.9% saline solution at 37°C for 1 wk, the restored teeth were simultaneously loaded with repeated thermal and mechanical stresses in a chewing machine (Krejci et al., 1990a; 1990c; 1993) (Fig. 2). Thermal cycling was carried out in flushing water with the water temperatures changing 3,000x from 5° to 50°C and a dwell time of 2 min each. The mechanical stress consisted of 1,200,000 load cycles in the center of the occlusal surface with a frequency of 1.7 Hz and a maximal load of 49 N applied by using the natural lingual premolar cusp prepared from another extracted human tooth.

The dentinal fluid simulation under stress was achieved by a modification of the stress apparatus test chambers. A correspondingly higher position of the serum infusion bottle compensated for the slight pressure generated by the circulating water in the test chambers. After the stress tests, replicas were again taken of the restorations. Together with the replicas made initially, they were subjected to quantitative marginal analysis under 200x magnification (Krejci et al., 1993). Percentages of "continuous margin" were reported separately for the enamel and dentin margins. Differences in the percentages of "continuous margin" were tested.
<table>
<thead>
<tr>
<th>TABLE 1: DESCRIPTION OF THE EXPERIMENTAL GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
</tr>
<tr>
<td>Cavity</td>
</tr>
<tr>
<td>Adhesive System</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bonding Technique</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Composite</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Composite Insertion</td>
</tr>
<tr>
<td>Composite Light Curing</td>
</tr>
</tbody>
</table>

"Drying" means water removal without desiccating dentin.

statistically using specific statistical software (Stat View II, Brain Power Inc., Calabasas, CA, USA) on a personal computer (Macintosh IIx, Apple Computer Inc., Cupertino, CA, USA) using non-parametric tests (Kruskal-Wallis, Mann-Whitney U-test and Wilcoxon signed rank-test).

RESULTS

Less than 2% of the specimens exhibited overfilled margins, underfilled margins, marginal tooth fractures or marginal restoration fractures either before or after loading. These marginal qualities are therefore not reported in detail. Bucally and palatally the values for "continuous margin" before and after stress were not significantly different in all groups. The enamel margins showed good initial marginal adaptation in all groups, ranging from 89% to 100% of "continuous margin". In Group 4, the percentage of "continuous margin" in enamel remained stable after stress. Group 3 showed an insignificant decrease. Groups 1 and 2 a significant decrease of the "continuous margin" scores in enamel after stress (Fig. 3). Before loading, no significant difference was found between the enamel and the dentin scores of "continuous margin" within each group. There were also no significant differences among the four test groups in dentin before loading. After loading, however, Groups 1 and 2 performed significantly worse than Groups 3 and 4 (Fig. 4), and their marginal adaptation in dentin was significantly adversely influenced by loading. No significant difference was found after stress between Groups 3 and 4.

One restoration was lost in Group 2 during stressing. It was not included in the mean values after loading because no evaluation of the marginal adaptation was possible. However, because the restoration was lost, the percentage of "continuous margin" after loading was obviously 0%. If this value was included in the mean, this group rated 66.8 ± 30.2% in enamel and 54.8 ± 29.7% in dentin after loading.

DISCUSSION

The high values of "continuous margin" observed in all four test groups indicated that adhesive systems are currently available which bond to tooth structure under the effects of physiological dentinal fluid flow. Because no significant differences were found, it was irrelevant whether enamel or dentin was the bonding substrate, at least when the adhesives were light-cured for 60 s before composite insertion. These results would confirm the high bond strengths generated on flat dentinal surfaces by other researchers (Perdigao et al., 1993; Swift et al., 1993). However, in this investigation, the situation completely changed after loading. In particular, the percentage of "continuous margin" of All-Bond 2 in dentin was extremely low with a wide range. While less pronounced, similar behavior was observed with Scotchbond MP. In contrast, Optibond and A.R.T.-Bond showed only a moderate decrease in marginal adaptation in dentin. Besides the influence of dentinal fluid, the discrepancy between shear bond strengths and marginal adaptation in Class V cavities may be attributed to several factors (Davidson et al., 1993). While V-shaped cavities have a rather low C-factor — which is the ratio of the restoration's bonded to unbounded surface (Feilzer et al., 1987) — some residual stresses due to polymerization shrinkage were anticipated. They may have stressed the marginal adaptation under load. The three-dimensional cavity configuration may additionally have contributed to a pronounced
adhesive is tested with composites from different manufacturers (Krejci et al., 1990b), composite material from the identical manufacturer was used. In addition, composites with similar coefficient of thermal expansion and modulus of elasticity were chosen for all groups to eliminate the undesirable influence of the extremely different physical properties of the composite brands (Braem, 1985; Gordon et al., 1986).

It was obvious in this study that universal conditioning using weak acids such as 10% phosphoric acid or 10% maleic acid for 15 s negatively influenced marginal adaptation under load in enamel. Although there are other formulations that may successfully condition enamel (Krejci et al., 1993), 37% phosphoric acid may be the most reliable enamel conditioner to date. Therefore, if a so-called total etch is required, 37% phosphoric acid may be preferred because of enamel margins, which are present in most clinical cases. While controversy still exists on phosphoric acid etching of dentin, the topic currently needs a more refined approach. If dentin is etched with phosphoric acid and a good marginal adaptation of the subsequent restoration can be established, the situation is biologically uncritical (Pashley et al., 1992). However, the crucial point is the establishment of sufficient stress-resistant adhesion. This in turn is not only a function of the conditioner. It also involves the wetting properties and the penetration ability of the adhesive into the conditioned surface, both depending among others on the polarity and solubility parameters of the formulation (Asmussen and Uno, 1993).

Furthermore, its curing ability in the "hybrid layer" (Nakabayashi et al., 1982; Zidan et al., 1991; Erickson, 1992), the time needed for adhesion establishment (Komatsu and Finger, 1986) and its chemical stability (Bassiony et al., 1989; Reeves et al., 1990; Crim, 1991) are of importance. All these factors are influenced by the chemistry of the appropriate product. In addition, the physical properties of the restorative system such as flow capacity, elasticity, water sorption or coefficient of thermal expansion determine the stability of the bond under load (Van Meerbeek et al., 1992b).

Summarizing the results of this and a previous study, where additional adhesives were tested under similar conditions (Krejci et al., 1993) and including unpublished data on Clearfil Liner Bond, OptiBond seems to be the only commercial adhesive system with a universal conditioner where these factors have been most thoroughly addressed. As the only representative of this group of products, it was able to seal dentinal and enamel margins successfully. However, because the application of phosphoric acid, primer and dual-cured paste is time consuming, there is no relevant time-saving effect compared to A.R.T.-Bond, which provides similar performance with fewer application steps (Table 1). Therefore, at least under the conditions of this study, there seems to be currently no reason for preferring the "total etch technique" with phosphoric acid to the selective etching of enamel.

Received January 26, 1994 / Accepted April 23, 1994

Address correspondence and reprint requests to:
Ivo Krejci, DDS, PhD
Department of Preventive Dentistry, Periodontology and Cariology
Dental Institute, Zurich University
Plattenstrasse 11
CH-8024, Zurich, SWITZERLAND
REFERENCES


