Long-term clinical, technical, and esthetic outcomes of all-ceramic vs. titanium abutments on implant supporting single-tooth reconstructions after at least 5 years

FENNER, Nadine, et al.

Abstract

The aim of this prospective cohort study was to evaluate clinical, radiographic, technical, esthetic, and patient-centered outcomes of implants using two different restoration materials after 5-9 years.

Reference

FENNER, Nadine, et al. Long-term clinical, technical, and esthetic outcomes of all-ceramic vs. titanium abutments on implant supporting single-tooth reconstructions after at least 5 years. [Submitted to:] Clinical Oral Implants Research 2015, 8

DOI: 10.1111/clr.12654
PMID: 26086947

Available at:
http://archive-ouverte.unige.ch/unige:79020

Disclaimer: layout of this document may differ from the published version.
Long-term clinical, technical, and esthetic outcomes of all-ceramic vs. titanium abutments on implant supporting single-tooth reconstructions after at least 5 years

Authors' affiliations:
Nadine Fenner, Ronald E. Jung, Christoph H. F. Hämmerle, Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
Irena Sailer, Division of Fixed Prosthodontics and Occlusion, University of Geneva, Geneva, Switzerland

Corresponding author:
Prof. Dr. Ronald E. Jung
Plattenstrasse 11
8032 Zürich
Switzerland
Tel.: +41 44 634 32 51
Fax: +41 44 634 43 05
e-mail: ronald.jung@zzm.uzh.ch

Key words: all-ceramic restoration, ceramic abutment, ceramic crown, implant, porcelain-fused-to-metal crown, single-tooth reconstructions, titanium abutment

Abstract
Aim: The aim of this prospective cohort study was to evaluate clinical, radiographic, technical, esthetic, and patient-centered outcomes of implants using two different restoration materials after 5–9 years.

Materials and Methods: The study included 28 patients (test group: 13 patients with all-ceramic crowns on aluminum oxide-based abutments; control group: 15 patients with metal abutments on porcelain-fused-to-metal crowns). Evaluation of patient satisfaction, clinical (periodontal probing depth, bleeding on probing, plaque index, mucosal recession, and width of keratinized mucosa), esthetic (papilla index, clinical crown length), technical (loss of retention, marginal adaptation, chipping of ceramic, anatomical shape, occlusal wear, color match), and radiological parameters were assessed. The statistical analyses included comparison of all-ceramic vs. metal abutments and between the groups using Mann-Whitney U-tests. For esthetic parameters, changes over time were assessed using Friedman test and post hoc Wilcoxon test of all complete cases.

Results: The survival rate of the restoration was 100% in both groups. Patient’s satisfaction revealed 9.7 on the visual analog scale. A low satisfaction correlated with low ratings in color or anatomical shape. The mucosal recession in the test group was less than that in the control group. An increase in distal papilla height in the year 0 to 1, and a decrease from year 1 to 8, was detected. Sites, which received a soft tissue graft, revealed stable papillae over the observation period. Clinical crown length showed higher values in the control group.

Conclusions: Within the limitations of the study, it can be concluded that all-ceramic restorations reveal a high survival rate of 100% and show no difference to metal after a mean observation period of 7.2 years.
supported by metal abutments. However, it has to be emphasized that only a very low number of ceramic abutments (n = 166) have been compared to a large number of metal abutments (n = 5683).

One major drawback of titanium abutments is that their color can cause a grayish discoloration of the peri-implant mucosa impairing the esthetic result of implant reconstructions (Sailer et al. 2009).

Another study showed that the color of the peri-implant soft tissue matched that of the reference tooth in no more than just over one-third of cases, and showed major discrepancies in 20%. Hence, it might be speculated that tooth-colored ceramic abutments could play an important role in terms of color match (Furhauser et al. 2005). A variety of studies have been initiated to evaluate the effect of the restorative material and the influence of the soft tissue thickness on the color of the peri-implant mucosa. (Ishikawa-Nagai et al. 2007; Jung et al. 2007; Park et al. 2007). It has been documented that a discoloration of the gingiva caused through a titanium abutment is not present with a minimum gingival width of at least 2 mm (Jung et al. 2008). In that clinical trial, the increased soft tissue thickness was achieved by soft tissue grafting.

Today, we still have limited evidence on the long-term outcome and the esthetic performance of all-ceramic reconstructions compared to titanium abutments with porcelain-fused-to-metal (PFM) reconstructions on implant-supported reconstructions.

Therefore, the aim of the present study was to evaluate the clinical, technical, and esthetic outcomes of all-ceramic vs. titanium abutments on implant supporting single-tooth reconstructions after an observation period of at least 5 years.

Materials and methods

Study design and original population
The present prospective cohort study included 28 of 36 patients that were part of a former study identifying the effect of all-ceramic and PFM restorations on marginal peri-implant soft tissue color (Jung et al. 2008).

The treatment took place between 2002 and 2006 at the Department of Fixed and Removable Prosthodontics and Dental Material Science at the University of Zurich, Switzerland. For the present follow-up investigation, all patients were invited by an information letter to attend an appointment for a regular clinical and radiographic assessment. Only if patients did not answer, they were contacted by phone to set an appointment.

Treatment protocol/surgical procedure
Implant surgery followed standard surgical principles. The procedure was described in details in the previous investigation (Jung et al. 2008). In brief, after elevating a full-thickness flap, the implant bed was prepared according to the standard protocols and an implant (Straumann Dental Implant System; Straumann AG, Basel, Switzerland) was placed in the correct prosthetic position. Guided bone regeneration was performed when needed, using deproteinized bovine bone mineral and a collagen membrane (Bio-Oss®, Bio-Gide®, Geistlich AG, Wolhusen, Switzerland). Periosteal releasing incisions were then made to allow tension-free adaptation of the flap.

For postoperative care, the patients received penicillin antibiotics (amoxicillin 750 mg 1-1-1) for 6 days, painkiller if needed and rinsed with a 0.2% chlorhexidine digluconate solution. Suture removal has been taken place 7–10 days after implant surgery. Subsequently, the soft tissue thickness was evaluated using an endodontic needle. If the mucosal thickness was <2 mm, a connective tissue graft was performed with the attempt to have similar mucosal thickness within all cases. In 14 of 36 patients, a soft tissue grafting procedure was performed.

After a healing period of 3 months, the prosthetic phase has started and the patients were randomly assigned to either the test group [17 patients] or the control group [19 patients]. The test group [all-ceramic group] received individualized \(\text{Al}_2\text{O}_3 \) abutments [synOcta In-Ceram blank; Straumann] and an all-ceramic restoration [alumina, Procera; Nobel Biocare, Göteborg, Sweden]. The all-ceramic restorations were either screw retained by directly veneering the all-ceramic abutment or cemented with resin cement (Panavia, Kuraray). In the control group [PFM group], each implant received a titanium [synOcta cementable abutment; Straumann] and a PFM restoration. The PFM restoration was either cemented with glass ionomer cement [Ketac Cem, 3M Espe, Seefeld, Germany] or screw retained.

Follow-up examination
The last follow-up examination was performed at the Clinic for Fixed and Removable Prosthodontics and Dental Material Science, University of Zurich, Switzerland, between the end of 2011 and 2012. Prior to the clinical and radiographic examination, information such as medical conditions, medications, smoking habits, self-reported biological and technical complications, and enrollment in a maintenance care program was collected. All implant restorations were photographed and a periapical radiograph was taken.

Evaluation of patient satisfaction
A visual analog scale (VAS) was used to evaluate patient’s overall satisfaction concerning the treatment, esthetics, and function of the implants and the implant restorations. Before meeting the dentist, the VAS was handed to the patient in order to rate the satisfaction on a scale from 0 to 10, where 10 indicated the highest level of satisfaction.

Clinical evaluation
The following clinical parameters were assessed at the implant site and at the adjacent mesial and distal tooth:

Biological evaluation included periodontal charting with probing pocket depth (PPD), bleeding on probing (BOP), the presence of plaque (PI), mucosal/gingival recession (REC), and the width of the keratinized mucosa (KM) at the buccal aspect. In addition, the implant survival was recorded.

Technical evaluation
Loss of retention due to abutment fracture, screw fracture or loosening, and fracture of cement seal was recorded. The abutments and reconstructions were classified according to the modified 7 Public Health Service (USPHS) criteria. The parameters evaluated were the marginal adaptation, chipping of the veneering ceramic, the anatomical shape, occlusal wear, and the color match.

Esthetic evaluation
The height of the papillae was assessed at the mesial and distal sites of the implant reconstruction and the neighboring teeth by means of a published index [Jemt 1997]. This index describes five different levels indicating the amount of papilla present in reference to the line through the highest gingival curvature of the restoration on the buccal side and the adjacent tooth and the contact point.

Clinical crown length
The crown length was measured from the incisal edge to the highest gingival curvature of the implant crown. Changes over time have been assessed from the first year to baseline (1-0), from 8 years to baseline (8-0),
and from 8 years to the first-year follow-up after crown insertion [Fig. 1].

Radiographic analysis
For the evaluation of the distal and mesial marginal bone level, intraoral radiographs were taken. The X-rays were then digitalized with a scanner (Epson Perfection V750 Pro) and a resolution of 600 dpi for analyzing the marginal bone level (MBL). The marginal bone level is considered to be the distance between the top of the implant shoulder and the first visible bone-to-implant contact. It was measured at the mesial and distal sites using an image analysis program Image J64 (developed by the National Institutes of Health, USA). For calibrating the magnification and the distortion of the radiographs, the measured distance between three implant threads was used [Rodoni et al. 2005]. All measurements were taken by two examiners and in case of disagreement discussed until an agreement was found.

Statistical analysis
The statistical analyses included comparison of the measurements taken between all-ceramic vs. metal abutments and between the groups with and without graft using Mann–Whitney U-tests. In addition, Mann–Whitney U-tests were applied to compare the marginal bone level between the implant types [Standard Plus versus Tapered Effect]. For esthetic parameters, changes over time (baseline compared to 1 year and 8 years) were assessed using Friedman test and post hoc Wilcoxon test of all complete cases. A P-value < 0.05 was considered significant.

Results
A total of 28 patients could be reassessed in the present study after a median observation period of 7.2 years [range 5.3–9.3 years], which represents 77.7% of the original study population consisting of 36 patients. Thirteen patients were women and 15 men. The median age at the time of reexamination was 48 years [range 27–82 years]. Seven patients could not be examined. One patient died and six patients could not be reached for re-examination because of geographic reasons or severe illness. The same examiner examined all 28 patients. One additional patient could be reached for another study, which allowed all 28 patients. One additional patient could be reached for another study, which allowed assessing the USPHS criteria, but refused the radiological examination. Therefore, data of 29 patients of the USPHS criteria could be analyzed. Thirteen patients were part of the test group and 15 of the control group. In the test group, seven individuals needed a soft tissue grafting procedure, whereas in six patients the amount of soft tissue thickness was sufficient, measuring 2 mm or more. In the control group, six patients needed a soft tissue grafting procedure; in nine cases, the amount of soft tissue was sufficient.

Health questionnaire
In relation to the health questionnaire, two patients had mental disorders, one patient osteoporosis, one patient a pituitary tumor, two patients high blood pressure, and one patient neurodermatitis. Patient’s history revealed that six individuals smoked.

Evaluation of patient satisfaction
The evaluation of the patient’s overall satisfaction with the implant and the restoration revealed a mean value of 9.7 on the VAS scale from 0 to 10. Twenty-one of 28 patients that have rated the maximum score of 10 represented this high value. The ones that were not totally satisfied rated in between 8.2 and 9.0.

Clinical examination
The clinical measurements are listed in Table 1.

Probing pocket depth (PPD)
The mean probing depth of the test group was 3.87 mm [SD 0.76], whereas in the control group, it was 4.16 mm [SD 1.19]. Implants with a grafting procedure had probing depths of 4.09 mm [SD 0.96], and the group without graft had depths of 3.97 mm [SD 1.07]. There was no statistically significant difference between the groups.

Bleeding on probing
In the test group, a BOP of 45% [SD 25] was found, in the control group, it was mounted up to 56% [SD 31]. When a soft tissue grafting procedure was performed, the BOP was 56% [SD 32] and in the group without graft 46% [SD 32] were found. There was no statistically significant difference between the groups.

Width of the keratinized mucosa
The mean width of the keratinized mucosa on the buccal aspect was 3.72 mm [SD 1.22] in the test group, whereas in the control group, it was 3.04 mm [SD 1.15]. For the implants with grafting procedure and without grafting procedure, the mean width of the keratinized mucosa was measured as 3.46 mm [SD 1.12] and 3.27 mm [SD 1.32] respectively.
Recession
In the test group, in average no recession of the mucosal margin was detected. In contrast, a slight increase in the soft tissue level could be seen with a mean of -0.31 mm (SD 0.47). In the control group, the mean recession of the buccal mucosal margin was 0.29 mm (SD 0.47). In implants with grafting procedure, the recession was reduced to -0.03 mm (SD 0.66), and in the group without grafting procedure, it was mounted to 0.06 mm (SD 0.47). In the all-ceramic abutment group, the recession of the mucosa was statistically less significant than in the titanium group. Comparing the implants with or without graft, no such difference could be found (Table 1).

Radiological examination
The radiographic outcome measurements are listed in Table 2.

The radiographic evaluation demonstrated that all implants were osseointegrated. This is indicated by a visible direct contact between bone and implant.

The marginal bone level was analyzed according to implant type (Standard Plus versus Tapered Effect), abutment material, and whether a soft tissue grafting procedure was performed. No statistically significant difference was found between the groups.

Technical evaluation
In none of the 28 cases, a loss of retention could be detected, indicating that no fracture of an abutment or a screw loosening occurred. Therefore, the survival rate of the abutments and the crowns was 100% in both groups.

USPHS criteria
USPHS criteria could be analyzed from 29 patients.

The marginal adaptation was in 19 patients rated as an A value, indicating a perfect adaptation of the crown. In nine cases, a crown margin that could be detected by the probe was rated a B value. Chipping of the veneering ceramic occurred in three of 29 patients. One major chipping occurred in the test group with a loss of the veneering ceramic to the framework. In addition, two minor chipings occurred in the control group and could be polished. The chipping in the test group occurred at the mesial border and was not visible or disturbing for the patient.

A correct anatomical shape was detected in 21 patients, whereas five cases were rated as a B, and three as a C, indicating an under- or over-contoured crown or a missing contact point. In 28 patients, the occlusal wear was rated an A or B, meaning no or slightly wear at the reconstruction or the antagonistic tooth, and only in one patient in the control group revealed a wear of more than 2 mm in diameter. The color match of 28 of the reconstructions was scored A or B, and only three crowns in the control group were considered as insufficient in color match and therefore rated as a C (Figs 2 and 3; Table 3).

Esthetic evaluation
For the esthetic evaluation the papilla height index [Jemt 1997] and the changes of the clinical crown length (CCL) have been assessed and depicted in Table 4.

Jemt index
Taking the complete cases of the entire study population into account, a statistical significant increase in distal papilla height in the year 0 to 1 ($P = 0.007$), and a statistical significant decrease from year 1 to 8 ($P = 0.005$), was detected. Therefore, the distal papilla height after the insertion of the crown was similar at baseline and after 8 years ($P = 0.47$). In contrast, the sites, which received a soft tissue graft before crown insertion, revealed stable papilla heights over the entire observation period without any statistical significant differences ($P > 0.05$), neither for the distal nor for mesial sites. This points out that the changes of papilla height were mainly true for the sites without soft tissue grafting, for mesial and distal, compared to the sites receiving a soft tissue graft. In the mesial papilla, no difference over time and comparing with and without soft

Table 2. radiographic outcome measurements

<table>
<thead>
<tr>
<th>Bone level</th>
<th>Abutment</th>
<th>Graft</th>
<th>Implant type</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (missing)</td>
<td>16 (1)</td>
<td>20 (2)</td>
<td>0.789</td>
</tr>
<tr>
<td>Mesial</td>
<td>2.2 (0.7)</td>
<td>2.1 (0.9)</td>
<td>0.464</td>
</tr>
<tr>
<td>Distal</td>
<td>2.8 (1.4)</td>
<td>2.4 (1.1)</td>
<td>0.656</td>
</tr>
<tr>
<td>Mean</td>
<td>2.5 (0.9)</td>
<td>2.2 (0.9)</td>
<td>0.464</td>
</tr>
</tbody>
</table>
tissue grafts could be found (all \(P > 0.05 \)). In addition, no difference over time could be detected between the two abutment material groups (all \(P > 0.05 \)) (Figs 4–6).

Clinical crown length

The change in the CCL, measuring the distance from the incisal edge to the zenith of the gingival curvature, showed a significant change over time. This change could already be detected after 1 year. For the different abutment materials in complete cases, significant differences could be found, with a longer crown length in the control group.

For the statistical analysis of differences in time points (years 1-0, 8-0), only complete cases were included (\(n = 20 \)) (Figs 7–11).

Discussion

The present prospective cohort clinical trial demonstrated that there is no difference between all-ceramic and titanium abutments in regard to clinical, radiographic, and technical outcomes after a mean observation period of 7.2 years.

For the re-examination, a high number of patients could be reached, so that the recall rate reached 77.7% of the original patient population.

Within the present study, a very high survival rate of the implants and the single-tooth reconstructions of 100% could be found after a mean observation period ranging from 5.3 to 9.3 years. This is in agreement or slightly higher compared to previously published systematic reviews revealing an implant survival rate of 97.2% (Jung et al. 2012). For ceramic abutments, an estimated 5-year survival rate of 99.1% could be found, for metal abutments, the rate was slightly lower with 97.4% (Sailer et al. 2009).

Nevertheless, in one study including alumina and titanium abutments for single-implant crowns, a 6.7% fracture rate of the alumina abutments was reported (Andersson et al. 2001).

The high survival rate of the present study can be explained by the fact that a small and well-controlled population was included. The implant sites represented standard clinical procedures with single-unit reconstructions. However, we have to be aware that it is still unknown whether the survival rate of all-ceramic abutments compared to titanium remains stable or whether we have to expect a clinically relevant degradation of the ceramic material over time. An *in vitro* study showed a 50% decrease of the fracture toughness of zirconia during a simulated 10-year aging process in a humid environment (Studart et al. 2007). There are no data available for the long-term aging process of alumina abutments used in the present study. In today’s clinical practice, alumina has mainly been replaced by zirconia because of higher material stability either for abutments and/or crowns. For zirconia abutments, there is a very recent clinical study reporting on long-term data (Zembic et al. 2014). After an observation period of 11 years, the cumulative survival rate reached 77.7% of the original patient population. Only complete cases could be reached, so that the recall rate reached 7.2 years.

Table 3. USPHS criteria for all cases and for control and test abutment

<table>
<thead>
<tr>
<th>Abutment</th>
<th>Total</th>
<th>Test</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>No:</td>
<td>29</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Marginal adaptation</td>
<td>A 19</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B 9</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chipping of the veneering ceramic</td>
<td>A 26</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>B 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomical shape</td>
<td>A 21</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>B 5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occlusal wear</td>
<td>A 18</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B 10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>A 10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B 16</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>C 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Clinical crown length divided in group abutments/grafs, differences in time points (years 1-0, 8-0), and statistical differences between groups

<table>
<thead>
<tr>
<th>Year</th>
<th>Abutment test Mean (SD), Median</th>
<th>Abutment control Mean (SD), Median</th>
<th>With graft Mean (SD), Median</th>
<th>Without graft Mean (SD), Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.44 (1.34), 11.0</td>
<td>9.16 (2.05), 9.0</td>
<td>10.54 (1.39), 11.0</td>
<td>9.27 (1.96), 9.0</td>
</tr>
<tr>
<td>1</td>
<td>11.0</td>
<td>9.0</td>
<td>11.0</td>
<td>9.0</td>
</tr>
<tr>
<td>8</td>
<td>10.67 (1.60), 11.0</td>
<td>9.37 (2.09), 9.0</td>
<td>10.67 (1.48), 11.0</td>
<td>9.58 (2.12), 9.0</td>
</tr>
<tr>
<td>11</td>
<td>10.67 (1.60), 11.0</td>
<td>9.37 (2.09), 9.0</td>
<td>10.67 (1.48), 11.0</td>
<td>9.58 (2.12), 9.0</td>
</tr>
</tbody>
</table>

Fig. 4. Jemt Index of complete cases (n = 19) over time of mesial and distal papillae.
success rate was 96.3% for abutments and 90.7% for crowns.

The present study demonstrated a mean overall satisfaction of 97% with a range from 82 to 100% after 7.2 years. This high overall patient's satisfaction is in accordance with a previous clinical study also assessing esthetic satisfaction of the patients using a VAS. They reported on a median VAS value of 96% (range 70–100%) even though the implant crown in comparison with the natural control tooth was longer, had a smaller bucco-lingual width, and had a lower height of the distal papilla (Chang et al. 1999).

Interestingly, a correlation between the patient's satisfaction and the evaluated anatomical shape as well as the color of the restoration could be found in the present study. A low patient's satisfaction correlated with an insufficient rating in color match [rating C] and an insufficient anatomical shape like an over- or under-contoured crown or a missing contact point. In cases where the shape and the color are rated A or B, the satisfaction of the patient was higher. In the all-ceramic group, the color match seems to be favorable, as there was no rating C, compared to the titanium group with 18.8% of C [3 of 16].

In regard to the mucosal margin, the present study revealed significantly less mucosal recession in the all-ceramic group of −0.31 mm (SD 0.47) compared to the titanium group (0.29 mm [SD 0.47]). In a very recent clinical study, zirconia abutments have been evaluated over an observation period of 11 years. It was reported that the all-ceramic abutments revealed an excellent biologic integration by only 0.2 mm (SD 1.1) of mucosal recession (Zembic et al. 2014). However, in another clinical trial, all-ceramic abutments made of alumina revealed slightly more recessions after an observation period of 2 years, without statistical significance difference compared to titanium abutments with PFM crowns (Gallucci et al. 2011).

Considering preclinical studies, it was demonstrated by different dog trials that there was no difference between all-ceramic and titanium abutments in regard to mucosal stability (Abrahamsson et al. 1998; Welander et al. 2008).

In respect to the esthetic outcome, the soft tissue stability has been considered an important factor for esthetic success [Belser et al. 2004]; especially, the papillae and the mucosal margin play an important role. A previous clinical study documented an increased papilla height after a mean follow-up period of 1.5 years after prosthetic loading (Jemt 1997). There is little data available on the changes of the papilla height over longer time periods. In a retrospective study, a photographic evaluation of implants after 1–9 years [mean 3.5 years] stated that papillae regenerated in 83.9% of implants, with a mean growth of 0.65 mm mesially and 0.62 mm distally (Priest 2003). In contrast, the present study revealed an increase in papilla height from baseline to the first year, and a decrease from the first-year to the 8-year follow-up. Therefore, the initial papilla height after insertion of the crown was similar in the beginning and after 8 years. The clinical impact of this finding shows that the prosthetic design and the emergence profile might already be defined at the time of crown insertion. This is based on the clinical results of the present study, indicating a decrease of the papilla between year one and year 8, coming back to the original level at.

![Fig. 5. Jemt Index of complete cases (n = 19) over time of mesial and distal papillae.](image)

Fig. 5. Jemt Index of complete cases (n = 19) over time of mesial and distal papillae.

Fig. 6. Patient no. 132 papilla height after 9.3 years.

Fig. 7. Patient no. 102 clinical crown length after 6.7 years.
crown insertion. In contrast, cases treated with connective tissue graft presented a more stable papilla height after an observation time of 8 years.

Within the limitation of this study, where only a small group of 36 patients were treated, the results have to be interpreted with caution. For the careful evaluation of material properties, more long-term studies with larger population have to be designed. The positive effect of the soft tissue grafting procedure on the papilla is present, but it has to be kept in mind that these results are based on a small number of eight patients, compared to 12 patients without soft tissue grafting procedures. Concerning the measurements of the recessions, it is difficult to reproduce exact values. In a tooth, the cement-enamel junction is clearly visible, and a recession can be measured in a standardized way. In implants supporting screw-retained crowns, this natural border is not present. Therefore, it is sometimes unclear from which point to measure the recessions. One reproducible way is to measure the CCL, measured from the incisal edge to the most apical part of the mucosa. This value is more reproducible, because the CCL depends on the margin of the soft tissue.

Conclusions

Within the limitations of the present study, it can be concluded that all-ceramic restorations made of alumina reveal a high survival rate of 100% and show no difference to metal abutments with PFM crowns after a mean observation period of 7.2 years.

In addition, the CCL remained stable with changes below 1 mm and the papilla height increases from crown insertion to the first year, but decreases to the 8-year follow-up to the level at crown insertion.

Acknowledgements and conflict of interest: The authors thank Caroline Lustenberger for her support with the statistical analysis.

This study was supported and funded by the Clinic for Fixed and Removable Prosthodontics and Dental Material Science, Center for Dental Medicine, University of Zürich, Switzerland.

References