Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes

MARTINEZ FONT, Jacobo, TRUFFAULT, Vincent, HOTHORN, Michael

Abstract

Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and E. coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase, and with previously reported structures of mRNA capping enzymes, adenylate cyclases and polyphosphate polymerases, suggest that directionality of substrate binding defines TTM [...]
Catalytic mechanism of triphosphate tunnel metalloenzymes

Structural determinants for substrate binding and catalysis in triphosphate tunnel metalloenzymes

Jacobo Martinez¹, Vincent Truffault², Michael Hothorn¹

¹From the Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
²Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany

*Running title: Catalytic mechanism of triphosphate tunnel metalloenzymes

To whom correspondence should be addressed: Michael Hothorn, Structural Plant Biology Laboratory, Department of Botany and Plant Biology, Sciences III, 30 Quai E. Ansermet, University of Geneva, 1211 Geneva, Switzerland, Tel: +41 22 379 3013; E-mail: michael.hothorn@unige.ch

Keywords: Inorganic polyphosphatase; thiamine triphosphatase; adenylate cyclase; enzyme mechanism; manganese co-factor; protein crystallography; NMR spectroscopy

Background: Triphosphate tunnel metalloenzymes carry out diverse enzymatic reactions.

Results: Two metal co-factors are identified, involved in substrate binding and in catalysis.

Conclusion: A unified catalytic mechanism is proposed and biochemically investigated.

Significance: The functional diversity of TTM enzymes is rationalized by a common mechanism that allows very different substrates to be bound and processed.

ABSTRACT

Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and E. coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase, and with previously reported structures of mRNA capping enzymes, adenylate cyclases and polyphosphate polymerases, suggest that directionality of substrate binding defines TTM catalytic activity. Our work provides insight into the evolution and functional diversification of an ancient enzyme family.

Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate units joined by phosphoanhydride bonds. It occurs ubiquitously and abundantly in all life forms (1). In bacteria, polyP kinases generate polyP from ATP but it is presently unknown how the cellular polyP stores of higher organisms are being synthesized (2, 3). We have previously reported a fungal polyP polymerase that is distinct from bacterial polyP kinases (4, 5). The yeast enzyme resides in the vacuolar transporter chaperone (VTC) membrane protein complex, which generates polyP from ATP in the cytosol and translocates the growing chain into the vacuole (4, 6). The catalytic core of VTC maps to a cytoplasmic 8-stranded β-tunnel domain in Vtc4p, which harbors binding sites for the nucleotide substrate, for a manganese metal co-factor and for an orthophosphate priming the polymerase reaction (4).

The Vtc4p β-tunnel domain is not unique to eukaryotic polyP polymerases, but is a structural hallmark of triphosphate tunnel metalloenzymes
(TTMs), whose characteristic features are the presence of a topologically closed hydrophilic β-barrel, the preference for triphosphate-containing substrates and for a divalent metal co-factor (PFAM (7) families: CYTH (8), VTC) (9, 10). Founding members of the TTM family were fungal (11, 12), protozoal (9) and viral RNA triphosphatases (13–16). Subsequently, other enzymes with very similar tunnel topologies were discovered, including the bacterial class IV adenylate cyclase cyaB (17, 18), mammalian thiamine triphosphatases (ThTPases) (19–21) and long- (22) and short-chain (23–26) inorganic polyphosphatases. Finally, the tunnel domain fold is also found in the mediator head complex subunits Med18 and Med20, but these proteins appear to have lost catalytic activity (27).

A staggering number of different catalytic activities and substrate preferences has been reported within the TTM family (10). However, the lack of substrate- and product-bound structures has made it difficult to define the sequence-fingerprints responsible for a specific enzyme activity in individual family members.

**EXPERIMENTAL PROCEDURES**

**Protein expression and purification** - AtTTM3 (Uniprot ID Q9SIY3) was cloned into vector pMH-HT providing an N-terminal 6xHis tag and a tobacco etch virus protease (TEV) cleavage site. Protein expression in *E. coli* BL21 (DE3) RIL to OD600nm = 0.6 was induced with 0.25 mM isopropyl β-D-galactoside in terrific broth at 16 °C for 16 h. Cells were collected by centrifugation at 4,500 xg for 30 min, washed in PBS buffer, centrifuged again at 4,500 xg for 15 min and snap-frozen in liquid nitrogen. For protein purification cells were resuspended in lysis buffer (50 mM Tris-Cl [pH 8.0], 500 mM NaCl, 5 mM β-ME, 2-mercaptoethanol [β-ME]), homogenized (Emulsiflex C-3, Avestin) and centrifuged at 7,000 xg for 60 min. The supernatant was loaded onto a Ni2+ affinity column (HisTrap HP 5ml, GE Healthcare), washed with 50 mM Tris (pH 8), 1 M NaCl, 5 mM β-ME, and eluted in lysis buffer supplemented with 200 mM imidazole (pH 8.0). The 6xHis tag was cleaved with TEV for 16 h at 4 °C during dialysis against lysis buffer. AtTTM3 was further purified by a second Ni2+ affinity step and by gel filtration on a Superdex 75 HR26/60 column (GE Healthcare), equilibrated in 25 mM Tris (pH 7.2), 250 mM NaCl, 5 mM β-ME. Monomeric peak fractions were dialyzed against 20 mM Hepes (pH 7.4), 50 mM NaCl, 0.5 mM tris(2-carboxyethyl)phosphine and concentrated to 35 mg/mL for crystallization. Protein concentrations were estimated by protein absorption at 280 nm, using the calculated molecular extinction coefficient. Site specific mutations were introduced by PCR and mutant proteins were purified like wild type.

The coding sequence of ygiF was amplified from genomic DNA (*Escherichia coli* Mach 1 cells, Life technologies) by PCR and a synthetic gene coding for full-length mouse ThTPase (Uniprot ID Q8JZL3) and codon-optimized for expression in *E. coli* was obtained from Geneart (Life technologies). Coding sequences were cloned into plasmid pMH-HT, and expression and purification were performed as described for AtTTM3.

**Crystallization and data collection** - Tetragonal AtTTM3 crystals (form A) developed at room temperature from hanging drops composed of 1.5 µL of protein solution and 1.5 µL of crystallization buffer (2.6 M NaCl, 0.1 M citric acid/NaOH [pH 5.0]) suspended over 1.0 mL of the latter as reservoir solution. Crystals were transferred in reservoir solution supplemented with 20 % (v/v) ethylene glycol and 0.5 M KI for 20 s and snap-frozen in liquid nitrogen. Single-wavelength anomalous diffraction (SAD) data were collected on a Rigaku MicroMax rotating anode equipped with a copper filament, osmic mirrors and an R-AXIS IV++ detector. Subsequently, an isomorphous native dataset was collected on a crystal originating from the same crystallization drop (Table 1). A monoclinic crystal form (form B) developed in 20 % (w/v) PEG 3,350, 0.2 M NaCl, 0.1 M Bis Tris (pH 7.0) and diffracted up to 1.3 Å resolution. Data processing and scaling was done with XDS (version November, 2014) (28). Hexagonal crystals for full-length ygiF grew at room temperature in hanging drops (1.5 µL+1.5 µL) containing 0.2 M NaCl, 20 (w/v) PEG 3,350. Crystals were transferred into crystallization buffer supplemented with 20 % (v/v) ethylene glycol and snap-frozen in liquid nitrogen. For phasing 0.1 M NaI was added to the cryo solution and crystals were soaked for 5 minutes. Single-wavelength anomalous diffraction (SAD) data were collected at a wavelength of 1.9 Å (Table 2). Tetragonal mouse ThTPase crystals (form A) developed at room temperature from hanging drops
Catalytic mechanism of triphosphate tunnel metalloenzymes

composed of 1.5 μL of protein solution and 1.5 μL of crystallization buffer (27 % (w/v) PEG 3350, 0.1 M Tris pH 9.0, 0.2 M MgCl$_2$) suspended over 1.0 mL of the latter as reservoir solution. Crystals were transferred into a reservoir solution supplemented with 20 % (v/v) ethylene glycol and snap-frozen in liquid nitrogen. Monoclinic crystals (form B) developed in 1.6 M sodium/potassium phosphate buffer pH 6.8 (1:1 ratio) and were cryo protected by stepwise transfer into a solution containing 1.6 M sodium/potassium phosphate buffer pH 6.8 and 20 % (v/v) ethylene glycol.

Co-crystallization and soaking experiments - AtTTM3-PPP-Mg$^{2+}$/Mn$^{2+}$: Form A crystals were transferred into the soaking solution (2.6 M NaCl, 0.1 M Bis Tris pH 5, 10 mM sodium tripolyphosphate (SIGMA), 10 mM MgCl$_2$ (or MnCl$_2$), 20 % (v/v) ethylene glycol) by serial transfer to replace the citrate otherwise bound to the tunnel center.

AtTTM3-PPP-Mg$^{2+}$/Mn$^{2+}$: Form B crystals were soaked for 20-30 min in 20% (w/v) PEG 3350, 0.2 M NaCl, 0.1 M Bis Tris pH 7.0, 20 % (v/v) ethylene glycol, 10 mM sodium tripolyphosphate, 5 mM MnCl$_2$ using the same procedure as outlined above (substrate-bound structure).

AtTTM3-P$_1$-Mn$^{2+}$: AtTTM3 was co-crystallized with 5 mM sodium tripolyphosphate and 10 mM MnCl$_2$ (product-bound structure).

ygiF-PPP-Mg$^{2+}$/Mn$^{2+}$: The substrate-bound complex was obtained by soaking (20-30 min) ygiFapo crystals in their crystallization buffer supplemented with 20 % (v/v) glycerol, 10 mM sodium tripolyphosphate and 5 mM MgCl$_2$ or MnCl$_2$.

ThTPase-ThTP-Mg$^{2+}$: Form B crystals were soaked in crystallization buffer containing 20 % (v/v) glycerol, 10 mM thiamine triphosphate and 10 mM MgCl$_2$.

ThTPase-ThDP-Mg$^{2+}$: The product-bound structure was obtained by soaking form A crystals in a solution containing 10 mM sodium tripolyphosphate and 10 mM MnCl$_2$ for 30 minutes. Two data sets were collected, one with $\lambda=1.0$ Å and one close to the Mn K edge ($\lambda=1.9$ Å). No anomalous signal was found in the latter data set, possibly due to the high MgCl$_2$ (0.2 M) concentration present in the crystallization buffer.

Structure solution and refinement - To solve the structure of AtTTM3, SAD and native data were scaled together with the program XPREP (Bruker AXS, Madison, WI) for SIRAS (single isomorphous replacement with anomalous scattering) phasing. The program SHELXD (29) was used to locate 37 iodine sites. Consistent sites were input in the program SHARP (30) for site refinement and phasing at 3.0 Å resolution. Density modification and phase extension to 2.6 Å was carried out with PHENIX.RESOLVE (31). The structure was built in alternating cycles of model correction in COOT (32) and restrained refinement in refmac5 (33) against a high resolution native data set (Table 1). The structure of crystal form B was determined by molecular replacement with the program PHASER (34).

The structure of ygiF was solved by scaling redundant SAD data using XPREP. SHELXD located 15 consistent iodine and sulfur sites, which were input into SHARP for SAD site refinement and phasing at 2.7 Å resolution. Density modification and phase extension to 2.15 Å was carried out with PHENIX.RESOLVE (Table 2). The structure of mouse ThTPase was solved using the molecular replacement methods as implemented in the program PHASER and using the structure of the human ThTPase (PDB ID 3BHD) as a search model. Analysis with MolProbity (35) indicated excellent stereochemistry for all refined models. Phasing and refinement statistics are summarized in Tables 1-3.

Synthesis of thiamine triphosphate - Thiamine triphosphate was synthesized as described (36) and purified by preparative high-performance liquid chromatography.

NMR time-course experiment - A series of 1D-$_3^1$P NMR experiments were acquired at 310 K with a 600 MHz Bruker Avance-III spectrometer using a QXI probe-head allowing direct detection of $^3_1$P and equipped with a z-spoil gradient coil. $^3_1$P spectra were recorded using a relaxation delay of 1s and an acquisition time of 42.6 ms (SW = 12019.23 Hz). 128 scans were collected, resulting in a measurement time of 140 s per spectrum. 512 spectra were collected over a total acquisition time of ~20 hours. The enzymatic reaction was performed using 50 nM AtTTM3 and 5 mM sodium tripolyphosphate in 20 mM bis-tris propane (pH 8.5), 250 mM NaCl, 5 mM MgCl$_2$ mixture. Deuterated water was added to a final concentration of 20% to the reaction mix before starting the experiment. Spectral parameters were calibrated and optimized on a 5 mM sodium tripolyphosphate sample to minimize time loss between the beginning of the reaction and the
beginning of its observation by NMR. Spectra were processed using Topspin (version 2.1.6) (Bruker).

Phosphohydrolase activities of AtTTM3 and ygiF mutant proteins - For the determination of the phosphohydrolase activity 2.5 nM of AtTTM3 were incubated with 0.5 µM of the different phosphate containing substrates in reaction buffer (150 mM NaCl, 20 mM bis-tris propane (pH 8.5), 5 mM MgCl₂) at 37 °C. The reaction was stopped after 10 min and the amount of free inorganic phosphate released was measured using the malachite green assay with minor modifications (37). 100 µl of reaction solution were mixed with 28 µl of dye mix (3 mM malachite green, 15 % (v/v) sulfuric acid, 1.5 % molybdate (w/v), 0.2 % (v/v) tween 20). After 5 min incubation with the dye, the absorption at 595 nm was measured using a synergy H4 plate reader (Biotek). For each substrate a blank reaction was prepared lacking the enzyme. Controls either contained EDTA to a final concentration of 5 mM, or the enzyme was heat-inactivated at 95 °C for 5 min. To compare wild-type and mutant versions of AtTTM3 and ygiF, enzyme concentrations were increased to 180 nM in order to detect residual activity for some of the mutant proteins. Experiments were performed in triplicate; average values are plotted ± standard deviation.

Thermal shift assays - were performed as previously described (38). Sypro Orange (SIGMA) was added to wild-type and mutant AtTTM3 proteins in 25 mM Tris pH 8.0, 250 mM NaCl, 5 mM β-ME mixed with Sypro Orange to a final protein concentration of 10 µM. The protein-dye mixtures were loaded into a 96-well RT-PCR plate (Thermo Scientific), and measurements were performed using a C1000 thermal cycler (Bio-Rad). The fluorescence of SYPRO Orange was monitored at 570 nm while a temperature gradient was applied (0.05 °C/s from 10 °C to 95 °C). Data were analyzed using the CFX Manager software (Bio-Rad). The maximum of the first derivative for each melting curve indicates the melting point of the protein. Experiments were performed in triplicate; average values are plotted ± standard deviation.

Polyphosphate detection by UREA PAGE - Reactions contained 50 µM of the respective enzyme (AtTTM3, ygiF, mouse ThTPase, Vtc4p) in 150 mM NaCl, 20 mM Bis Tris propane (pH 8.3), 1 mM MnCl₂, and 10 mM ATP as substrate. Reactions were incubated at room temperature overnight. The reaction was stopped by adding Proteinase K (SIGMA) and the resulting samples were mixed 1:1 with sample buffer (50 % (w/v) urea, 2x TBE, 20 mM EDTA (pH 8.0), 20 % (v/v) glycerol, 0.25 % (w/v) bromphenolblue). Samples were loaded onto a TBE - urea polyacrylamide gel (1x TBE, 7 M urea, 15 % (v/v) polyacrylamide (19:1 acrylamide/bis-acrylamide), 0.06 % (w/v) tetramethylthelyenediamine, 0.6 % (w/v) ammonium persulfate) and stained with 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI).

RESULTS AND DISCUSSION

Our initial aim was to identify a polyP polymerase in plants, using a combined structural and biochemical screen. We located three putative TTM proteins in Arabidopsis thaliana. AtTTM3 shares 12% sequence identity with Vtc4p (r.m.s.d. is 2.6 Å comparing 149 corresponding Cα atoms, and 1.1 Å comparing 77 Cα atoms in the tunnel center) and contains a conserved β-tunnel domain (26). We determined co-crystal structures of AtTTM3 with triphosphate and Mg²⁺ or Mn²⁺ metal co-factors in two independent crystal lattices (Fig. 1). Crystal form B corresponds to the previously reported structure of AtTTM3 (PDB-ID 3v85) in complex with a citric acid molecule (r.m.s.d is 0.3 Å comparing 203 corresponding Cα atoms) (26). Our structures reveal a conserved mode of substrate and metal co-factor binding in AtTTM3 and Vtc4p and an invariant arrangement of residues in the tunnel center (Fig. 2A) (4). We thus tested whether AtTTM3 can polymerize polyP from ATP or other nucleotide substrates, but could not detect such an activity (Fig. 2B). Instead, AtTTM3 has specific, Mg²⁺ or Mn²⁺ ion-dependent, short-chain polyphosphatase activity (Fig. 2C), as previously reported (26). We find that AtTTM3 hydrolyzes triphosphate (PPP₃) into pyro- (PP₁) and orthophosphate (P₀) with a turnover rate of ~10/s (Fig. 2D,E). The P₀ release from PPP₃ amounts to 27±6/s when assayed by malachite green (see experimental procedures). AtTTM3 is not able to hydrolyze PP₁, but appears to catalyze the asymmetric cleavage of inorganic polyPₙ (n=3-15), releasing P₀ (Fig. 2C, D).

Plant and bacterial triphosphatases contain two metal coordination sites - Comparison of AtTTM3 and Vtc4p revealed that four basic residues, which lead the growing polyP chain away from the active site in Vtc4p, are specifically replaced by four
glutamate residues (Glu2\textsuperscript{AtTTM3}, Glu4\textsuperscript{AtTTM3}, Glu90\textsuperscript{AtTTM3} and Glu171\textsuperscript{AtTTM3}) in AtTTM3 (Fig. 3A,E) (4). These residues, which form an acidic patch in the vicinity of the AtTTM3 triphosphate substrate are conserved among diverse TTM proteins with different catalytic activities (Figs. 3E, 4). The corresponding residues in the RNA triphosphatase (RTPase) Cet1p (Glu305\textsuperscript{Cet1p}, Glu307\textsuperscript{Cet1p} and Glu496\textsuperscript{Cet1p}) coordinate a Mn\textsuperscript{2+} ion (11) and mutation of these residues to alanine or aspartate impair catalysis in fungal (12, 39), viral (14, 15), and protozoan (9, 41) RTPases, in a broad-range polyphosphatase from Clostridium thermocellum (22) and in a TTM adenylate cyclase (18).

Based on kinetic and mutational studies, one (23) and two-metal (40, 41) mechanisms have been proposed for TTMs, but only few substrate complexes in the presence of metal co-factors have been reported thus far (4, 18). As AtTTM3 efficiently hydrolyzes PPP in the presence of metal co-factors have been proposed for TTMs, but only few substrate complexes (23) and two-metal (40, 41) mechanisms have been observed.

We next solved structures of ygiF in complex with PPP, and in the presence of either MgCl\textsubscript{2} or MnCl\textsubscript{2} (Table 2). The ygiF triphosphate substrate is bound in the same conformation as observed in AtTTM3 and we could identify two metal co-factors. One Mg\textsuperscript{2+}/Mn\textsuperscript{2+} ion is again found coordinated by triphosphate and by Glu160\textsuperscript{ygiF}, which corresponds to Glu169 in AtTTM3 (position {1} in Fig. 3D). The second Mg\textsuperscript{2+}/Mn\textsuperscript{2+} ion is coordinated by three glutamate residues from the acidic patch in ygiF (Glu4\textsuperscript{ygiF}, Glu6\textsuperscript{ygiF}, Glu162\textsuperscript{ygiF}) and by a water molecule, which is positioned close to a terminal phosphate of the triphosphate substrate (position {2}, Fig. 3D, E). When we calculated phased anomalous difference maps from diffraction data collected near the Mn K edge, we found that the ygiF metal binding site {1} shows a higher occupancy compared to the second site (peak heights are 125 and 45 σ, respectively), while we cannot detect difference density at the third metal position found in AtTTM3 (Fig. 3D). Taken together, our experiments define two consistent Mg\textsuperscript{2+}/Mn\textsuperscript{2+} coordination centers in plant and bacterial TTM triphosphatases.

We compared our structures to other TTM enzymes, for which metal-ion bound complexes have...
been reported. In the RTPase Cet1p, a Mn$^{2+}$ ion is bound by the acidic patch and its position corresponds to site \{2\} in ygiF and AtTTM3 (Fig. 4C, 3E) (11). In a bacterial TTM protein with adenylate cyclase activity, both positions \{1\} and \{2\} are occupied by Mn$^{2+}$ ions (Fig. 4D, 3E) (18). The acidic patch in mouse thiamine triphosphatase (ThTPase), corresponding to site \{2\} in AtTTM3 and ygiF) again allows for Mg$^{2+}$ ion binding, as concluded from NMR titration experiments (20). These findings together indicate that many TTM proteins contain two metal ion binding sites, as previously proposed (40, 41). It is likely that site \{1\} is generated by a triphosphate ion binding sites, as previously proposed (40, 41). It is thus difficult to assess in crystal structures of mammalian thiamine triphosphatase reveal the location of the γ-phosphate - We investigated the contributions of the two metal ion centers to TTM substrate binding and catalysis. A conceptual problem with the analysis of our plant and bacterial triphosphatases is that they catalyze the asymmetric cleavage of a symmetric substrate (Fig. 2) (25, 26). It is thus difficult to assess in crystal structures, which terminal phosphate represents the γ-phosphate that is being hydrolyzed (Fig. 3A,B). We thus structurally characterized a mammalian TTM ThTPase, which was previously shown to specifically hydrolyze thiamine triphosphate (ThTP) into ThDP and P$_i$ (19, 43, 20, 21). We synthesized ThTP from ThDP and produced co-crystal structures of mouse ThTPase with its substrate at pH 6, where ThTPase catalytic activity is minimal (20). Consequently, we found an intact ThTP molecule bound in the tunnel center of ThTPase (Fig. 5A). The thiamine portion of the substrate binds to a pocket generated by the tunnel walls and the C-terminal plug helix, with the thiazole ring making a stacking interaction with Trp53 and with Met195 from the plug helix (Fig. 5A). The ThTP triphosphate moiety binds in the same conformation as outlined for the PPP, bound structures of AtTTM3 and ygiF above. Our substrate-bound mouse ThTPase structure supports an earlier docking model of human ThTPase (21). We next solved a crystal structure of mouse ThTPase in the presence of ThTP and Mg$^{2+}$ in a second crystal form grown at pH 9.0, where substrate hydrolysis can occur (20). Indeed, we found a product complex trapped in the active site of the enzyme, with a ThDP molecule and an orthophosphate located in the tunnel center (Fig. 5A). ThDP is coordinated by Arg55 and Arg57 in the substrate binding site, but no longer allows for the coordination of a Mg$^{2+}$/Mn$^{2+}$ ion in metal binding site \{1\}, possibly because the missing γ-phosphate would be required for Mg$^{2+}$/Mn$^{2+}$ coordination (Fig. 5A). The γ-phosphate in our structure apparently has been hydrolyzed, and the resulting P$_i$ has slightly moved away from tunnel center (Fig. 5A). It is now found coordinated by Arg125 and in direct contact with a Mn$^{2+}$ ion located in metal binding site \{2\}, reinforcing the notion that this metal ion may play a crucial role in catalysis (Fig. 5A).

TTM proteins use a two-metal catalytic mechanism - The structural features surrounding metal binding site \{2\} in our structures allow proposing a unified catalytic mechanism for triphosphate tunnel metalloenzymes: In our PPP, bound ygiF structure we find a water molecule coordinated by the second Mn$^{2+}$ ion, which is in ideal position to serve as the activated nucleophile (Fig. 5B,C). Indeed, structural superposition with a bacterial adenylate cyclase (18) reveals that its cAMP O3' group, which acts as the nucleophile in the cyclization reaction, is located in the same position as the water molecule in our ygiF structure (Fig. 5B). Consistently, this position also is occupied by an oxygen atom of a product orthophosphate, which we located in our AtTTM3 post-catalysis structure (see above, Figs. 3B, 5B). Based on these findings, we propose that metal binding site \{1\} is required for proper substrate coordination in TTM proteins (23, 21), and metal ion \{2\} activates a water molecule to allow for an nucleophilic attack on the triphosphate substrate (Fig. 5C). This would rationalize why the glutamate residues from the acidic patch, which are involved in the coordination of the second metal ion, are well-conserved among TTM proteins (Figs. 4, 3E). The conserved basic residues in the tunnel center...
Catalytic mechanism of triphosphate tunnel metalloenzymes

appear to be mainly involved in substrate coordination (Figs. 2A, 3A), however the invariant Arg56\textsuperscript{ygiF} (Arg52\textsuperscript{AtTTM3}) possibly activates the substrate for the nucleophilic attack, by forming a hydrogen bond with the oxygen atom connecting the β- and γ-phosphate of the substrate (Fig. 5B,C). The suggested TTM reaction mechanism is reminiscent of the one found in mammalian type V adenylate cyclases (44) and in nucleic acid polymerases (45, 46), as previously speculated (8).

We next performed a mutational analysis of substrate- and metal co-factor-interacting residues in AtTTM3 and ygiF (Fig. 6). Mutation of Glu2\textsuperscript{AtTTM3}, Glu4\textsuperscript{AtTTM3} and Glu169\textsuperscript{ygiF} to Asp or Ala strongly reduces the PPP hydrolysis of the plant enzyme (Fig. 6A,B see Fig. 7 for mutant protein stability). Consistently, changing the corresponding Glu6\textsuperscript{ygiF} and Glu160\textsuperscript{ygiF} to Ala impairs the enzymatic activity of ygiF, suggesting that the proper arrangement of metal binding sites \{1\} and \{2\} in the tunnel center is essential for catalysis (Fig. 6A-C). Mutation of Arg52\textsuperscript{AtTTM3} or Arg56\textsuperscript{ygiF} but not of the neighboring Arg54\textsuperscript{AtTTM3} to Ala again strongly inhibits catalysis, highlighting its potential role as proton donor (Fig. 6A-C, see above). In addition, we find moderately reduced enzymatic activities upon mutation of Lys76\textsuperscript{AtTTM3} to Leu or Ala (Fig. 6A,B). This residue and the corresponding Lys69\textsuperscript{ygiF} appear to be involved in substrate binding and orient Glu2\textsuperscript{AtTTM3}/ Glu4\textsuperscript{ygiF} to coordinate metal ion \{2\} (Fig. 6A,B). Glu2\textsuperscript{AtTTM3} is also in contact with Glu90\textsuperscript{AtTTM3}, mutation of which to Ala again reduces the enzymatic activity of the Arabidopsis enzyme (Fig. 6A,B). Taken together, our and previous mutational analyses (24, 22, 26) consistently suggest, that the proper establishment of two metal centers appears to be critical for catalysis in TTM triplyphosphatases and other TTM proteins (40, 41). The basic residues, with the exception of the catalytic Arg52\textsuperscript{AtTTM3}, appear to be mainly involved in substrate coordination in the tunnel center (Fig. 6A-C). Further experimentation will be required to rationalize the specific effects of certain point-mutations on substrate/metal co-factor binding or catalysis itself.

Comparison with Vtc4p suggests that the 1\textsuperscript{st} but not the 2\textsuperscript{nd} metal binding site are present in the yeast polyphosphate polymerase (Figs. 2A,B, 4A) (4). Importantly, mutation of Lys200\textsuperscript{AtTTM3}, which corresponds to the catalytic Lys458\textsuperscript{Vtc4p}, to either Leu or Ala has little effect on triplyphosphatase activity of the plant enzyme (Fig. 6A,B) (4). This suggests that there are significant mechanistic differences between TTM polyphosphatases and polyphosphate polymerases, despite their strong structural homology (Figs 2A,B, 3A).

Directionality of substrate binding defines TTM catalytic activity - To better understand how acidic-patch containing TTMs are able to carry out very different enzyme reactions, we superimposed our substrate-bound structures of AtTTM3, ygiF and mouse ThTPase with an ATP-analog complex of a bacterial TTM adenylate cyclase (18) (Fig. 8). We found, that while the triphosphate parts of all ligands closely align in the tunnel center, their 'tail' moieties can enter the tunnel domain from opposite sites in different enzymes (Fig. 8). The unique modes of substrate binding in ThTPases and adenylate cyclases allow these enzymes to carry out rather different reactions and to produce different leaving groups (ortho- and pyrophosphate, respectively), while maintaining a unified cleavage site in close proximity of metal binding site \{2\}. Both the N- and C-terminal sides of the tunnel domain have evolved to recognize specific substrates, as exemplified by our ThTPase structure and by the class IV adenylate cyclase complexes (Figs. 5A,B, 8) (18). The observed substrate binding mode in mouse ThTPase reinforces the notion that in order to bind their substrates, TTMs require opening of their closed tunnel domains into a cup-shaped hand, as previously shown by NMR spectroscopy (20).

Members of the ancient triphosphate tunnel metalloenzyme family can be found in all kingdoms of life. Our comparative analysis defines that most of these enzymes share a common catalytic mechanism in their tunnel centers, yet they have evolved different substrate recognition modes on their tunnel entries. The observed substrate plasticity apparently allows TTMs to act on a wide array of enzyme substrates and to perform very different reactions, many of which likely remain to be discovered.

Acknowledgments: We thank T. Baiga for help with ThTP syntheses, members of the Hothorn laboratory for discussion and W. Saenger for suggestions and critical reading of the manuscript. The research leading to these results has received funding from the
Catalytic mechanism of triphosphate tunnel metalloenzymes

European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 310856, the Max Planck Society, and the European Molecular Biology Organisation (EMBO) Young Investigator Programme (to MH). Diffraction experiments were performed on the PXII and PXIII beam lines at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland and at beam line ID29 of the European Synchrotron Radiation Facility (ESRF), Grenoble, France.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions: JM and MH designed the study and wrote the paper. VT performed NMR titrations, JM all other experiments. All authors analyzed data and approved the final version of the manuscript.

REFERENCES
Catalytic mechanism of triphosphate tunnel metalloenzymes


**FOOTNOTES**

1To whom correspondence should be addressed: Michael Hothorn, Structural Plant Biology Laboratory, Department of Botany and Plant Biology, Sciences III, 30 Quai E. Ansermet, University of Geneva, 1211
Catalytic mechanism of triphosphate tunnel metalloenzymes

Geneva, Switzerland, Tel: +41 22 379 3013; E-mail: michael.hothorn@unige.ch

2 Abbreviations used are: AtTTM3, Arabidopsis thaliana triphosphate tunnel metalloenzyme; PPPi, tripolyphosphate; ThTP, thiamine triphosphate; ThDP, thiamine diphosphate; ThTPase, thiamine triphosphatase

3 Atomic coordinates and structure factors for AtTTM3-PPP-Mg2+ (form A) (PDB-ID 5a5y), AtTTM3/PPP/Mn2+ (form A) (5a66), AtTTM3/PPP/Mn2+ (form B) (5a67), AtTTM3/P/Mn2+ (form B) (5a68), ygiF/PPP/Mg2+ (5a60), ygiF/PPP/Mn2+ (5a61), mThTPase/ThDP/P/Mg2+ (form A) (5a64), mThTPase/ThTP/Mg2+ (form B) (5a65) have been deposited with the Protein Data Bank (PDB).

FIGURE LEGENDS

FIGURE 1. (A) Structural superposition of AtTTM3 crystals forms A (blue) and B (orange). The structures align with an r.m.s.d. of 0.5 Å comparing 202 corresponding Cα atoms. (B) Close-up of the tunnel domain centers in form A and B (with selected side-chains shown in bonds representation), both bound to PPPi (in bonds representation) and Mn2+ (magenta/gray spheres).

FIGURE 2. AtTTM3 is a short-chain inorganic polyphosphatase (A) Ribbon diagrams of the yeast inorganic polyphosphate polymerase Vtc4p (left panel) and Arabidopsis TTM3 (right panel). Tunnel domain β-strands are shown in yellow and α-helices in blue. The TTM domain is topologically closed on one side by a C-terminal plug helix. Conserved residues in the tunnel center are shown (in bonds representation, in yellow) alongside with the triphosphate substrates and Mn2+ ions (magenta spheres). (B) DAPI stained UREA page gel reveals that only Vtc4p can generate inorganic polyphosphate from ATP. (C) Substrate specificity of AtTTM3. P, release is measured for a range of different di- and triphosphate containing potential substrates. (D) A 1D-31P NMR time-course experiment reveals that AtTTM3 specifically generates PPi and P, from PPPi, t= 0 min (black line), 94 min (red line) and 141 min (blue line) (E) Decay of the PPPi substrate concentration during the NMR time-course experiment indicates a turnover number of ~10/s.

FIGURE 3. An acidic patch in TTM proteins allows for the coordination of two metal ions. (A) Structural superposition of AtTTM3 (in yellow) and Vtc4p (in gray) (r.m.s.d. is 1.1 Å comparing 77 corresponding Cα atoms in the tunnel center) identifies an acidic patch in AtTTM3 (in orange, in bonds representation), which is absent Vtc4p. The AtTTM3 triphosphate substrate and a Mn2+ ion (magenta sphere) are shown alongside. (B) Structure of a AtTTM3 post-catalysis complex reveals two orthophosphates and three Mn2+ ions bound to the tunnel center. (C) Ribbon diagram of full-length ygiF from E. coli. The tunnel domain (residues 1-200) is shown in yellow (β-strands) and blue (α-helices), the linker region (residues 201-220) is highlighted in cyan, and the four-helix bundles of the C-terminal CHAD domain are depicted in red (residues 221-324) and orange (residues 383-433), respectively. (D) Structural superposition (r.m.s.d. is 0.65 Å comparing 75 corresponding Cα atoms) of the ygiF tunnel core (in yellow, acidic patch in orange) bound to PPPi, and Mn2+ ions (magenta spheres) with the AtTTM3 product complex (in gray). A phased omit difference density map contoured at 25 σ is shown alongside (black mask). Note that two of the three AtTTM3 metal coordination sites are also found in ygiF. (E) Table comparison of acidic patch residues in different TTM proteins.

FIGURE 4. TTM proteins with different enzymatic activities harbor two metal ion centers. (A) Structural superposition of a AtTTM3-PPP-Mn2+ complex (in yellow, in bonds representation) with the Vtc4p-ANP-Mn2+ complex (PDB-ID 3G3R, in gray) (r.m.s.d. is 2.7 Å comparing 151 corresponding Cα atoms) reveals a similar mode of substrate and metal co-factor binding to site {1}. Glu4 from the acidic patch in AtTTM3 is however not found in Vtc4p. (B) Comparison of AtTTM3-PPP-Mn2+ (in yellow) with the product bound state (r.m.s.d. is 0.3 Å comparing 203 corresponding Cα atoms) reveals that the two orthophosphates in the product complex align with the terminal phosphates of the PPPi substrate. One of the three Mn2+ ions (bound to site {1}) is found consistently in both structures. (C) Structural superposition (r.m.s.d. is 2.2 Å comparing 138 corresponding Cα atoms) of ygiF bound to PPPi, and to two Mn2+ ions located in sites {1} and {2} with the RTPase Cet1p (PDB-ID 5a65).
Catalytic mechanism of triphosphate tunnel metalloenzymes

1D8H, in gray) reveals that the Cet1p manganese ion previously reported maps to metal binding site \{2\}. (D) Comparisons of the ygiF-PPP\(_i\)-Mn\(^{2+}\) complex with the product bound state of the adenylate cyclase cyaB (PDB-ID 3N10, in gray) again reveals two conserved metal binding sites. The Mn\(^{2+}\) ion bound to site \{2\} in the case of cyaB is coordinated by His122.

**FIGURE 5.** TTM proteins use a two-metal catalytic mechanism (A) Close-up view of the mouse ThTPase tunnel center with either the ThTP substrate bound (transparent gray) or the ThDP/P\(_i\) products post-catalysis (in yellow, in bonds representation). The thiamine part of ThTP is buried in a pocket close to the C-terminal plug helix of the TTM domain formed by Tyr79 and Met195, the thiazole ring makes a stacking interaction with Trp53 (in yellow, in bonds representation). The product P\(_i\) is coordinated by a Mn\(^{2+}\) ion bound to site \{2\} and by Arg125. (B) Close-up of the ygiF active site (in yellow, in bonds representation) bound to PPP\(_i\) and two Mn\(^{2+}\) ions (magenta spheres) in sites \{1\} and \{2\}. The Mn\(^{2+}\) ion in site \{2\} coordinates a water molecule (red sphere), which is well positioned to act as nucleophile. Structural superposition with a product bound class IV adenylate cyclase (PDB-ID 3N10) reveals the O3’ of cAMP in the same position as the water molecule in ygiF. This position is also occupied by an oxygen atom of the product P\(_i\) located in the AtTTM3 post-catalysis complex. (C) Suggested mechanism for acidic-patch containing TTM proteins: The metal ion in site \{1\} coordinates the triphosphate moiety of the substrate to the tunnel center, by interacting with a conserved Glu residue. Three additional glutamates form metal binding site \{2\}, which coordinates and polarizes a water molecule to attack the \(\gamma\)-phosphate of the substrate. Conserved basic residues in the tunnel center are involved in substrate binding and potentially stabilize the pyrophosphate leaving group.

**FIGURE 6.** Reduced enzyme activities for several AtTTM3 and ygiF mutant proteins are consistent with the proposed catalytic mechanism. (A) PPPase activity of structure-based point AtTTM3 point mutants found in direct contact with the PPP\(_i\) substrate or the two metal co-factors as shown in (B) (C) PPPase activity of the corresponding residues in ygiF.

**FIGURE 7.** Structural integrity and purity of AtTTM3 and ygiF mutant proteins. (A) Melting temperatures for wild-type and mutant AtTTM3 recombinant proteins. SDS PAGE analysis of purified wild-type and mutant (B) AtTTM3 and (C) ygiF proteins. The calculated molecular weights for AtTTM3 and ygiF are 24.3 and 48.6 kDa, respectively.

**FIGURE 8.** Directionality of substrate binding defines TTM catalytic activity. Schematic representation of PPP\(_i\) (ygiF), ThTP (mThTPase, in gray) and ATP-analog (PDB-ID 3N0Y, in yellow) binding to the tunnel domain. Different substrates can bind to the tunnel from opposite sites. The respective triphosphate moieties are well aligned and the cleavage site is maintained (black scissors), leading to different reaction products.
## TABLE 1. Crystallographic data collection and refinement statistics for AtTTM3

<table>
<thead>
<tr>
<th>PDB-ID</th>
<th>Sa5y</th>
<th>Sa66</th>
<th>Sa67</th>
<th>Sa68</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data collection</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam line</td>
<td>in house SLS PXII</td>
<td>SLS PXII</td>
<td>SLS PXII</td>
<td>SLS PXII</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.54</td>
<td>1.0</td>
<td>1.0</td>
<td>1.82</td>
</tr>
<tr>
<td>Space group</td>
<td>I422</td>
<td>I422</td>
<td>I422</td>
<td>P21</td>
</tr>
<tr>
<td>Cell dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>136.03, 136.03, 145.64</td>
<td>136.33, 136.33, 145.48</td>
<td>136.32, 136.32, 145.99</td>
<td>44.37, 33.87, 72.22</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90, 90, 90</td>
<td>90, 90, 90</td>
<td>90, 90, 90</td>
<td>90, 90, 90</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>19.76 – 2.60</td>
<td>19.76 – 2.60</td>
<td>19.76 – 2.60</td>
<td>19.76 – 2.60</td>
</tr>
<tr>
<td>Rwork</td>
<td>0.145 (0.763)</td>
<td>0.076 (1.212)</td>
<td>0.088 (0.74)</td>
<td>0.046 (0.772)</td>
</tr>
<tr>
<td>Rfree</td>
<td>0.121 (1.96)</td>
<td>0.114 (2.18)</td>
<td>0.108 (2.17)</td>
<td>0.078 (2.20)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>98.8 (93.5)</td>
<td>98.5 (90.8)</td>
<td>98.0 (88.1)</td>
<td>98.3 (90.3)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>5.02 (3.75)</td>
<td>10.59 (8.35)</td>
<td>11.73 (8.47)</td>
<td>8.34 (6.52)</td>
</tr>
<tr>
<td><strong>Refinement</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>45.33 – 1.92</td>
<td>48.18 – 2.05</td>
<td>19.61 – 1.30</td>
<td>43.20 – 1.67</td>
</tr>
<tr>
<td>No. reflections</td>
<td>46,150</td>
<td>38,451</td>
<td>50,172</td>
<td>21,931</td>
</tr>
<tr>
<td>Rwork</td>
<td>0.153/0.198</td>
<td>0.182/0.220</td>
<td>0.130/0.174</td>
<td>0.182/0.222</td>
</tr>
<tr>
<td>Rfree</td>
<td>0.145/0.198</td>
<td>0.182/0.220</td>
<td>0.130/0.174</td>
<td>0.182/0.222</td>
</tr>
<tr>
<td>Protein</td>
<td>3,455</td>
<td>3,455</td>
<td>1,775</td>
<td>1,670</td>
</tr>
<tr>
<td>P/Pi,PPP</td>
<td>26</td>
<td>26</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Mg²⁺/Mn²⁺</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Water</td>
<td>239</td>
<td>227</td>
<td>248</td>
<td>135</td>
</tr>
<tr>
<td>R.m.s. deviations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.007</td>
<td>0.006</td>
<td>0.013</td>
<td>0.010</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>1.26</td>
<td>1.08</td>
<td>1.37</td>
<td>1.48</td>
</tr>
<tr>
<td>Ramachandran plot (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>favored</td>
<td>99.3</td>
<td>99.3</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>outliers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: Highest resolution shell is shown in parenthesis.
TABLE 2. Crystallographic data collection and refinement statistics for ygiF

<table>
<thead>
<tr>
<th>PDB-ID</th>
<th>ygiF (NaI soak)</th>
<th>ygiF/PPP/Mg(^{2+})</th>
<th>ygiF/PPP/Mn(^{2+})</th>
<th>ygiF/PPP/Mn(^{2+}) (Mn K edge)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5a60</td>
<td>5a61</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data collection</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam line</td>
<td>SLS PXII</td>
<td>SLS PXII</td>
<td>SLS PXII</td>
<td>SLS PXII</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Space group</td>
<td>P6</td>
<td>P6</td>
<td>P6</td>
<td>P6</td>
</tr>
<tr>
<td><strong>Cell dimensions</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>91.1, 125.56</td>
<td>89.92, 125.58</td>
<td>89.68, 125.33</td>
<td>89.95, 125.31</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90, 90, 120</td>
<td>90, 90, 120</td>
<td>90, 90, 120</td>
<td>90, 90, 120</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>49.127 – 2.70</td>
<td>48.88 – 1.82</td>
<td>48.77 – 1.50</td>
<td>48.74 – 1.86</td>
</tr>
<tr>
<td></td>
<td>(2.87 – 2.70)</td>
<td>(1.93 – 1.82)</td>
<td>(1.59 – 1.56)</td>
<td>(1.57 – 1.86)</td>
</tr>
<tr>
<td>R dwind</td>
<td>0.077 (0.186)</td>
<td>0.068 (0.964)</td>
<td>0.036 (1.20)</td>
<td>0.037 (0.333)</td>
</tr>
<tr>
<td>EDT</td>
<td>31.08 (31.28)</td>
<td>14.91 (2.14)</td>
<td>23.90 (1.93)</td>
<td>26.80 (3.91)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>95.8 (90.2)</td>
<td>98.8 (96.9)</td>
<td>99.7 (98.3)</td>
<td>97.9 (90.2)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>19.63 (18.47)</td>
<td>9.70 (9.06)</td>
<td>15.48 (14.18)</td>
<td>11.30 (3.55)</td>
</tr>
<tr>
<td><strong>Refinement</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>48.88 – 1.82</td>
<td>48.77 – 1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. reflections</td>
<td>47,520</td>
<td>86,573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R work, R free</td>
<td>0.150/0.189</td>
<td>0.151/0.171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. atoms</td>
<td>Protein 3,398</td>
<td>3,395</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P/PPP/PPP 13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mg(^{2+})/Mn(^{2+}) 2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water 289</td>
<td>295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-factors</td>
<td>Protein 55.83</td>
<td>52.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P/PPP/PPP 46.83</td>
<td>42.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mg(^{2+})/Mn(^{2+}) 46.65</td>
<td>42.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water 58.34</td>
<td>58.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.m.s deviations</td>
<td>Bond lengths (Å)</td>
<td>0.007</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bond angles (°)</td>
<td>1.149</td>
<td>1.186</td>
<td></td>
</tr>
<tr>
<td>Ramachandran plot (%)</td>
<td>favored</td>
<td>99.1</td>
<td>99.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>outliers</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Highest resolution shell is shown in parenthesis.
### TABLE 3. Crystallographic data collection and refinement statistics for mouse ThTPase

<table>
<thead>
<tr>
<th></th>
<th>mThTPase/ThTP/Mg&lt;sup&gt;2+&lt;/sup&gt;</th>
<th>mThTPase/ThDP/P&lt;sub&gt;i&lt;/sub&gt;/Mg&lt;sup&gt;2+&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PDB-ID</strong></td>
<td>5a64</td>
<td>5a65</td>
</tr>
<tr>
<td><strong>Data collection</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam line</td>
<td>ESRF ID29</td>
<td>SLS 5P/XIII</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.98</td>
<td>1.0</td>
</tr>
<tr>
<td>Space group</td>
<td>C2</td>
<td>P4&lt;sub&gt;2&lt;/sub&gt;2</td>
</tr>
<tr>
<td><strong>Cell dimensions</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>103.18, 93.58, 70.78</td>
<td>105.48, 105.48, 111.81</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90, 93.04, 90</td>
<td>90, 90, 90</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>70.68 – 2.10 (2.23 – 2.10)</td>
<td>49.40 – 1.98 (2.10-1.98)</td>
</tr>
<tr>
<td>R&lt;sub&gt;sym&lt;/sub&gt;</td>
<td>0.059 (0.581)</td>
<td>0.11 (2.03)</td>
</tr>
<tr>
<td>I/σI</td>
<td>19.34 (2.36)</td>
<td>19.66 (1.99)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>99.5 (98.3)</td>
<td>99.7 (98.6)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>4.58 (4.49)</td>
<td>25.60 (23.65)</td>
</tr>
<tr>
<td><strong>Refinement</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>70.68 – 2.10</td>
<td>49.40-1.98</td>
</tr>
<tr>
<td>No. reflections</td>
<td>37,148</td>
<td>42,091</td>
</tr>
<tr>
<td>R&lt;sub&gt;work&lt;/sub&gt;/R&lt;sub&gt;free&lt;/sub&gt;</td>
<td>0.212/0.232</td>
<td>0.208/0.258</td>
</tr>
<tr>
<td>No. atoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>3,102</td>
<td>3,117</td>
</tr>
<tr>
<td>ThTP/P&lt;sub&gt;i&lt;/sub&gt;</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>Mg&lt;sup&gt;2+&lt;/sup&gt;/Mn&lt;sup&gt;2+&lt;/sup&gt;</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Water</td>
<td>148</td>
<td>142</td>
</tr>
<tr>
<td><strong>B-factors</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>13.54</td>
<td>38.56</td>
</tr>
<tr>
<td>P&lt;sub&gt;i&lt;/sub&gt;/PP&lt;sub&gt;i&lt;/sub&gt;/PPP&lt;sub&gt;i&lt;/sub&gt;</td>
<td>50.08</td>
<td>60.08</td>
</tr>
<tr>
<td>Mg&lt;sup&gt;2+&lt;/sup&gt;/Mn&lt;sup&gt;2+&lt;/sup&gt;</td>
<td>44.18</td>
<td>43.38</td>
</tr>
<tr>
<td>Water</td>
<td>44.88</td>
<td>53.65</td>
</tr>
<tr>
<td><strong>R.m.s deviations</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.012</td>
<td>0.010</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>1.46</td>
<td>1.515</td>
</tr>
<tr>
<td>Ramachandran plot (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>favored</td>
<td>98.0</td>
<td>99.0</td>
</tr>
<tr>
<td>outliers</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Highest resolution shell is shown in parenthesis.
FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.