An improved trap design for decoupling multinuclear RF coils

MEYERSPEER, Martin, et al.

Abstract

PURPOSE: Multinuclear magnetic resonance spectroscopy and imaging require a radiofrequency probe capable of transmitting and receiving at the proton and non-proton frequencies. To minimize coupling between probe elements tuned to different frequencies, LC (inductor-capacitor) traps blocking current at the 1 H frequency can be inserted in non-proton elements. This work compares LC traps with LCC traps, a modified design incorporating an additional capacitor, enabling control of the trap reactance at the low frequency while maintaining 1 H blocking. METHODS: Losses introduced by both types of trap were analysed using circuit models. Radiofrequency coils incorporating a series of LC and LCC traps were then built and evaluated at the bench. LCC trap performance was then confirmed using 1 H and 13 C measurements in a 7T human scanner. RESULTS: LC and LCC traps both effectively block interaction between non-proton and proton coils at the proton frequency. LCC traps were found to introduce a sensitivity reduction of 5+/-2%, which was less than half of that caused by LC traps. CONCLUSION: Sensitivity of non-proton coils is [...]
An Improved Trap Design for Decoupling Multinuclear RF Coils

Martin Meyerspeer,1,2,3* Eulalia Serés Roig,1,4 Rolf Gruetter,1,4,5 and Arthur W. Magill1,4

INTRODUCTION

Multinuclear magnetic resonance imaging and spectroscopy using, for example, carbon-13 (1–3), phosphorus-31 (4–6), or sodium-23 (7–9) nuclei can provide biomedi-
cally relevant information beyond the possibilities of 1H nuclei. However, current RF systems are not capable of effectively including a proton channel for B0 shimming and acquisition of scout images. Additionally, polarization of the X (low-gamma) nuclei may be enhanced via the Nuclear Overhauser Effect or polarization transfer (10), both requiring simultaneous transmission at the proton and X frequencies. The received signal may be enhanced using proton decoupling, for which the system must transmit radiofrequency energy on the proton channel while receiving on the X channel.

It is well known that probe elements tuned to the same frequency couple when brought into close proximity (11). Similarly, elements tuned to different frequencies also interact (12). The higher frequency element has little influence on the resonance of the lower frequency element. However, at the higher frequency, significant current is induced in the lower frequency element. Therefore, in a multinuclear probe it is important to suppress interactions between the X and 3H channels at the 3H frequency.

One approach to prevent coupling at the higher frequency is to insert traps into the X resonant elements tuned to the proton frequency while allowing the coil to resonate at the lower X frequency. Adding extra components to the low frequency coils slightly degrades the coils’ sensitivity. However, in contrast to geometric decoupling (16–18), trapped coils impose no constraints on the relative positions of the proton and X resonant elements.

This work compares LC traps, consisting of a parallel inductor and capacitor, with LCC traps, introduced by Webb et al. (19), which include a second capacitor in the trap circuit. Both traps block current at the proton frequency while allowing the coil to resonate at the lower X frequency. Adding extra components to the low frequency coils slightly degrades the coils’ sensitivity. However, in contrast to geometric decoupling (16–18), trapped coils impose no constraints on the relative positions of the proton and X resonant elements.

This work compares LC traps, consisting of a parallel inductor and capacitor, with LCC traps, introduced by Webb et al. (19), which include a second capacitor in the trap circuit. Both traps block current at the proton frequency while allowing the coil to resonate at the lower X frequency. Adding extra components to the low frequency coils slightly degrades the coils’ sensitivity. However, in contrast to geometric decoupling (16–18), trapped coils impose no constraints on the relative positions of the proton and X resonant elements.

This work compares LC traps, consisting of a parallel inductor and capacitor, with LCC traps, introduced by Webb et al. (19), which include a second capacitor in the trap circuit. Both traps block current at the proton frequency while allowing the coil to resonate at the lower X frequency. Adding extra components to the low frequency coils slightly degrades the coils’ sensitivity. However, in contrast to geometric decoupling (16–18), trapped coils impose no constraints on the relative positions of the proton and X resonant elements.

METHODS

LC traps may be designed to block current at the proton frequency while reproducing the reactance of a chosen coil.
by Dabirzadeh et al. (15) the relative signal-to-noise ratio
the trap was modeled. In analogy to the model described

where \(\omega_0 \) and \(\omega_{11} \) indicate the Larmor frequencies of the
X and \(^1H \) nuclei, respectively. Solving the analytical
expression of the LCC trap’s (Fig. 1c) reactance \(X_{tr} \) for
the trap capacitors \(C_s \) and \(C_p \) under the conditions given
in Eq. 1 yields a pair of solutions:

\[
C_s = \frac{(\omega_0^2 + \omega_{11}^2)}{(\omega_0 \omega_{11})^2 L_{tr}^2 + \frac{(\omega_0^2 - \omega_{11}^2)}{C_{coil}}} \left(\frac{1}{2} + \frac{1}{4} \frac{(\omega_0 \omega_{11})^2 L_{tr}^2 + \frac{(\omega_0^2 - \omega_{11}^2)}{C_{coil}}}{L_{tr}^2 (\omega_0^2 + \omega_{11}^2)^2} \right)
\]

\[
C_p = \left(\frac{\omega_0^2 L_{tr} - \frac{1}{C_{coil}}} L_{tr} \right)^{-1} \tag{2}
\]

Valid solutions for \(C_s \) and \(C_p \) imply that the radicand
in Eq. 2 is positive, hence a minimum trap inductance

\[
\min (L_{tr}) = \frac{1}{C_{coil} \omega_0^2 - \omega_{11}^2} \tag{3}
\]

exists for given resonance frequencies and coil capacitor
to be replaced by the LCC trap.

Modeling Sensitivity

To estimate the effect of an LCC trap on the X coil efficiency,
additional resistance introduced into the coil by the trap was modeled.
In analogy to the model described by Dabirzadeh et al. (15) the relative signal-to-noise ratio
(SNR) of a trapped versus an untrapped coil is

\[
\frac{SNR_{trapped}}{SNR_{untrapped}} = \sqrt{\frac{R_{coil}}{R_{coil} + R_{tr}}} \tag{4}
\]

where \(R_{coil} = \omega_0 L_{coil} / Q_{coil} \). We assume a loaded quality factor \(Q_{coil} = 65 \), which is realistic for in vivo conditions.
The traps’ equivalent series resistance \(R_{tr} \) was modeled
as the loss due to resistance of the trap inductor
\(R_{tr} = \omega_0 L_{tr} / Q_{tr} \). For an LC trap the analytical expression
for \(R_{tr} \) expands to

\[
R_{tr} \approx R_{Ls} / (1 - \omega_0^2 / \omega_{11}^2)^2, \tag{5}
\]

which shows that the resistance of an LC trap is always
larger than the resistance of its inductor, for example,
\(R_{tr} \approx 1.14 R_{Ls} \) for a trap blocking \(^1H \) in a \(^1H \) coil.

For LCC traps, the ratio of \(R_{tr} \) to \(R_{Ls} \) depends on how
close the resonant frequency of the series branch \(\omega_s =
1/\sqrt{L_{tr} C_{coil}} \) is to the trap blocking frequency

\[
R_{tr} \approx R_{Ls} \left(\frac{\omega_0^2 - \omega_s^2}{\omega_{11}^2 - \omega_s^2} \right)^2, \tag{6}
\]

which is always smaller than \(R_{Ls} \) for \(\omega_s < \omega_{11} \)
e.g., \(R_{tr} \approx 0.82 R_{Ls} \) for \(L_{tr} = 40 \) nH.

The trap resistances \(R_{tr}(L_{tr}) \) were also simulated numerically for both types of traps, including the resistive losses of solder joints \(\{r_s = 25 \text{ m}\Omega} \) [20] connecting the trap components in the model. Numeric solutions were identical to the analytic results when the solder joint resistance was set to zero.

An inductor’s equivalent series resistance \(R_{Ls} \) generally
depends on \(L_{tr} \) and frequency. To estimate \(R_{Ls}(L_{tr}) \)
at \(\omega_0 \), the frequency at which the trap passes current, the
quality factor \(Q_s \) of the traps in isolation was measured
using a pair of sniffer loops overlapped for mutual flux
cancellation [21], connected to a network analyzer
(E5071C Agilent Technologies, Santa Clara, CA, USA).
Trap capacitors were exchanged to resonate the trap at
\(\omega_s \) rather than \(\omega_0 \), while preserving the traps’ geometric
arrangement. Resistances \(R_{Ls} \) were then calculated from
measured \(Q_s \) values, assuming the choke and solder
joints being the only lossy elements. \(R_{tr}(L_{tr}) \) was parameterized using linear regression (the coefficient of determination was \(R^2 = 0.99 \) for both types of traps), to
express trapped coil SNR as functions of \(L_{tr} \).

Coil Construction and Bench Measurements

A pair of coplanar concentric loop coils was built from
copper wire (3 mm diameter), non-magnetic ceramic
chip capacitors (100E, American Technical Ceramics
Corp., NY, USA) and variable capacitors for matching
and tuning (Sprague-Goodman, NY, USA). The outer
loop (11 cm diameter, four loop capacitors and no trap)

FIG. 1. Circuit schematics for (a) an untrapped loop, (b) a loop coil
including an LC trap, and (c) the modified circuit bringing the series
capacitance into the trap, forming an LCC trap.
was tuned to 297 MHz for 1H at 7 T. The inner loop (6 cm diameter, 120 nH inductance, two capacitors on the loop) was tuned to 74.7 MHz for 13C.

Three versions of the inner loop were built: (a) untrapped, $C_{\text{coil}} = 78 \text{ pF}$; (b) with $C_{\text{coil}} = 78 \text{ pF}$ and an L trap; and (c) replacing C_{coil} with an LCC trap (Fig. 1). For the trapped coils, traps were built using inductors in the range 16–95 nH. Chokes were wound from copper wire ($d = 1 \text{ mm}$) using four turns at different diameters, to maintain comparable geometry. Each trap was assembled and its resonance frequency and Q-factor were measured in isolation, using a pair of overlapped sniffer loops connected to a network analyzer.

Bench measurements were performed with the 1H coil alone, with the untrapped 13C coil (Fig. 1a), and with the different LC and LCC traps (Fig. 1b,c). Where values are given under loaded conditions, in vivo loading was mimicked using a saline bottle placed below the coils. To measure sensitivity, transmission between the coil and a single sniffer loop was determined along the axis of the concentric coils. Reported amplitudes represent the average ± standard deviation over four measurements acquired at the coil centres.

NMR measurements

An untrapped coil and an otherwise identical LCC trapped coil ($L_\text{tr} = 40 \text{ nH}$, $C_\text{s} = 47 \text{ pF}$, $C_\text{p} = 8.2 \text{ pF}$) were compared while positioned concentrically inside a 1H coil, in a 7 T human scanner (Magnetom, Siemens Healthcare Sector, Erlangen, Germany).

To show the effect of the trap on 1H performance, gradient echo images ($T_E = 1.4 \text{ ms}$, $T_R = 10 \text{ ms}$, matrix size: 192×150, field of view: $198 \times 154 \text{ mm}^2$, 52 slices, 3.8 mm slice thickness) were acquired with the 1H coil alone and in the presence of an untrapped and a trapped 13C coil. The phantom was a 4 L bottle, filled with saline solution approximately matching the load of a human head.

To test the effect of the LCC trap on 13C sensitivity, spectra were acquired from an 8 mm sphere filled with formic acid (3.5% concentrations, 100% 13C enrichment, Gd doped), which was centered in the 6 cm coil. To compare the transmit efficiencies of the two coils, the formic acid resonance was excited using a 0.5 ms block pulse and fully relaxed free induction decay spectra were acquired without averaging (2048 spectral points, 8 kHz spectral width). The transmit voltage U_{TX} was increased from 10 to 230 V in 10 V steps, and a sine
function of U_{TX} was fitted to the resulting signal. The 13C SNR was compared between the untrapped and the trapped coil using eight fully relaxed free induction decay spectra, acquired following excitation with an adiabatic half passage pulse (smoothed chirp pulse, duration = 1 ms, $U_{\text{TX}} = 70$ V).

To verify that 1H decoupling of 13C spectra was possible while using a trapped coil, spectra were measured using a two-compartment phantom (a 120 mL compartment filled with glycogen, 800 mmol/L, inside a 2 L bottle containing 13C C1-labeled glucose, 8 mmol/L). Free induction decay (8 kHz spectral width, 2048 points, 512 averages) were acquired without and with heteronuclear continuous wave decoupling. The decoupling 1H pulse frequency was set to the resonance of the coupling partner of glycogen. Decoupling was applied at 90 V for the full acquisition time. Noise was quantified as standard deviation of the spectra (without apodization or zero filling) in four consecutive regions of 500 Hz width, starting 1 kHz upfield from the glycogen resonance.

Magnetic resonance spectroscopy data for the B_1 transmit efficiency measurements were fitted in the time domain using the AMARES (22) routine from jMRUI (23). SNR was quantified as peak amplitude divided by

<table>
<thead>
<tr>
<th>13C MRS</th>
<th>γB_1 (Hz)</th>
<th>FA peak 1</th>
<th>FA peak 2</th>
<th>LW (Hz)</th>
<th>SNR - LW (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untrapped</td>
<td>1580 ± 3</td>
<td>133 ± 9</td>
<td>131 ± 9</td>
<td>20.9 ± 0.4</td>
<td>5130 ± 90</td>
</tr>
<tr>
<td>Trapped</td>
<td>1563 ± 3</td>
<td>129 ± 7</td>
<td>126 ± 6</td>
<td>20.2 ± 0.4</td>
<td>4870 ± 70</td>
</tr>
<tr>
<td>Difference</td>
<td>$-1.1 \pm 0.2%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the comparison, SNR was multiplied by line width (LW).
standard deviation of data points from an artefact-free flat baseline region of the spectra after zero filling and Lorentzian apodization (matched filter, line width \sim20 Hz). SNR quantification and all other data processing and simulations in this work were done using programs written in Python. All measurement results are given as mean ± standard deviation, except where indicated otherwise.

RESULTS

Bench Measurements

To evaluate the effect of LC and LCC traps on coil sensitivity, B_1 field and Q measurements were performed on the bench. Bringing the 1H coil close to the ^{13}C coils caused no frequency shift. The Q-factors of the ^{13}C coils reduced by 3±5% when unloaded, and 2±2% when loaded, averaged over all coils (untrapped, and LC and LCC trapped with $L_{tr} = 16–95$ nH). The average loaded to unloaded Q-factor ratio Q_U/Q_L was higher for coils with LCC traps (3.2 ± 0.4) than for coils with LC traps (2.2 ± 0.3), while for the untrapped coil it was 3.9. Unloaded and loaded Q-factors for exemplary traps with $L_{tr} = 40$ nH, the inductance used in NMR experiments, are given in Table 1.

Proton traps caused a decrease in ^{13}C coil sensitivity, which was more pronounced with increasing trap inductance L_{tr}. Measurements performed with the unloaded (Fig. 2a) and loaded (Fig. 2b) coils showed that LCC traps (circles) always outperform LC traps (squares) using the same inductance. In most cases, LCC traps also outperformed LC traps with smaller inductors. For both trap designs, using a larger inductor provided better blocking at the 1H frequency.

A pairwise comparison of LC and LCC traps, with $L_{tr} = 30$, 40, and 60 nH, showed that the sensitivity loss due to LCC traps was only 46±5% of the loss caused by LC traps with the coil unloaded, and 43±13% with the coil loaded. These findings were confirmed using circuit model simulations. Trap inductor resistances were measured by retuning traps to vL and measuring their Q-factors (Fig. 2c). These values were then inserted into the circuit model. Simulated sensitivities of ^{13}C coils with LC and LCC traps closely matched sensitivities measured experimentally using a sniffer loop (Fig. 2a,b). The sensitivity drop was more pronounced for unloaded (Fig. 2a) than for loaded coils (Fig. 2b), which is also evident in Fig. 2d, showing the simulated sensitivity as function of coil load (decreasing Q_{coil}) with experimentally established data points at two different coil loads.

Placing the untrapped ^{13}C coil concentrically inside the 1H coil caused its resonance frequency to shift from 297 to 305 MHz, strongly impairing its sensitivity and requiring retuning. In the coil plane, the B_1 amplitude was reduced by 67±1% when unloaded, and by 63±0.2% when loaded. When trapped ^{13}C coils were placed inside the 1H coil, no shift of the 1H coil’s resonant frequency was observed. Reductions in B_1 were 20±3% for unloaded coils dropping by 25% with LC traps and by 19% with LCC traps, while 1H coil sensitivity was fully restored to 107±5% in the loaded case (averaged over all traps with $L_{tr} = 30$, 40, and 60 nH).

A larger inductor L_{tr} provided better isolation between the coil elements at the 1H frequency, particularly for LC traps, which showed \sim45 to \sim55 dB isolation, depending on L_{tr}. LCC traps provided better than \sim60 dB of isolation in all cases, except for the trap with the smallest theoretically feasible inductor ($L_{tr} = 16$ nH), which provided \sim40 dB of isolation and incurred a sensitivity reduction of 54% when unloaded.

NMR Measurements

The effect of untrapped and trapped ^{13}C coils on 1H coil performance was demonstrated using gradient-echo
images. Figure 3a was acquired with the 1H coil only. When the untrapped 13C coil was placed inside the 1H coil, strong signal cancellation was observed (Fig. 3b), decreasing the signal amplitude by 52±5% near the coil plane, measured over $10 \times 10 \times 5$ voxels. With the trapped 13C coil, the signal was recovered to 100±5% (Fig. 3c).

In 13C spectroscopy measurements with the untrapped and trapped 13C coils, maximum signal from the coil centre was reached at $U_{TX} = 32.5$ V using a 0.5 ms block pulse. The B_1 field at the coil centre was calculated by fitting a sine function to the peak signal amplitude in a series of measurements at a range of transmit voltages; it was found to differ only by -1.1 ± 0.2% for the two coils at a reference voltage of $U_{TX} = 100$ V (Table 2). Consistent with the small decrease of B_1 transmit performance, the SNR measured repeatedly in pulse-acquire spectra after adiabatic excitation was decreased by only 5.0±2.2% (mean±SE) using the trapped coil, compared to an untrapped 13C coil.

Continuous-wave 1H decoupling did not induce additional noise; that is, no significant difference of the noise level was found in the spectra, with 100±5 a.u. in the uncoupled spectra, versus 96±7 a.u. in decoupled spectra, which show the glycogen resonance to be fully decoupled (Fig. 4, with 5 Hz Lorentzian apodisation and zero filling to 16 k points, for display).

DISCUSSION AND CONCLUSIONS

This work compares LC traps, consisting of a parallel inductor and capacitor, with LCC traps that include an additional capacitor in series with the inductor. Traps were built into a 13C coil to suppress interaction between it and a 1H coil, while minimizing loss in the 13C coil. LCC traps allow control over the trap’s blocking frequency, and reactance at the X-nucleus resonance frequency. Bench measurements with a series of trap inductors demonstrated that the sensitivity decrease of non-proton coils caused by LCC traps was less than half that introduced by LC traps. This benefit can be substantial, particularly for weakly loaded coils, for example, 10% vs. 30% loss when $Q = 180$ (see Fig. 2).

The higher sensitivity of coils with LCC traps, compared to LC traps, can be explained by modeling the resistive losses in each trap circuit. The resistance of an LC trap is always larger than the series resistance of the trap inductor (Eq. 5) and, when the choke’s resistive losses dominate, depends only on the ratio of the Larmor frequencies of the nuclei. In contrast, an LCC trap’s resistance is always smaller than the resistance of the trap inductor (Eq. 6), and depends on the inductance value, explicitly and implicitly via C_0 and C_p. The resistance of the inductors used was measured via the quality factor of the isolated traps, returned to resonate at the X nucleus Larmor frequency, and included in the model of the trapped coils’ sensitivities.

For both types of trap, a higher trap inductance L_{tr} causes more efficient blocking at the 1H frequency but incurs higher losses at the X nucleus frequency. In contrast to LC traps, the inductor used for a LCC trap must be chosen above a minimum value that depends on C_{coil}, ω_{1H}, and ω_{1H}, as determined by Eq. 3. Nevertheless, even when using larger L_{tr}, the sensitivity of the 13C coil with LCC traps was superior compared to coils with LC traps. Traps tested on the bench used inductors ranging from the minimum feasible value of 16 nH, to 95 nH, in a 120 nH loop coil. The trap inductance chosen for MR measurements was $L_{tr} = 40$ nH, which resulted in excellent blocking and a very low sensitivity reduction.

We note that the circuit of a coil including a trap for proton blocking is identical to that of a dual-resonant coil (24). Dual-resonant coils built using LCC traps should, therefore, provide a similar sensitivity enhancement at the low frequency, in comparison to traditional designs using LC traps.

We conclude that LCC proton traps can effectively block current induced in an X nucleus coil at the 1H frequency, while incurring only a very small reduction of coil sensitivity (5±2%), which was found to be less than half that possible with comparable LC traps. We further conclude that LCC traps can be used in place of a capacitor in an existing coil design, allowing well-established designs to be applied to multnuclear coils.

REFERENCES