Time-varying risk premium in large cross-sectional equity datasets

GAGLIARDINI, Patrick, OSSOLA, Elisa, SCAILLET, Olivier

DOI : 10.2139/ssrn.1786472

Available at: http://archive-ouverte.unige.ch/unige:41853

Disclaimer: layout of this document may differ from the published version.
TIME-VARYING RISK PREMIUM IN LARGE CROSS-SECTIONAL EQUITY DATASETS

Patrick Gagliardinia, Elisa Ossolab and Olivier Scailletc*

First draft: December 2010. This version: September 2013.

Abstract

We develop an econometric methodology to infer the path of risk premia from a large unbalanced panel of individual stock returns. We estimate the time-varying risk premia implied by conditional linear asset pricing models where the conditioning includes both instruments common to all assets and asset specific instruments. The estimator uses simple weighted two-pass cross-sectional regressions, and we show its consistency and asymptotic normality under increasing cross-sectional and time series dimensions. We address consistent estimation of the asymptotic variance by hard thresholding, and testing for asset pricing restrictions induced by the no-arbitrage assumption. We derive the restrictions given by a continuum of assets in a multi-period economy under an approximate factor structure robust to asset repackaging. The empirical analysis on returns for about ten thousands US stocks from July 1964 to December 2009 shows that risk premia are large and volatile in crisis periods. They exhibit large positive and negative strays from time-invariant estimates, follow the macroeconomic cycles, and do not match risk premia estimates on standard sets of portfolios. The asset pricing restrictions are rejected for a conditional four-factor model capturing market, size, value and momentum effects.

\textit{JEL Classification:} C12, C13, C23, C51, C52, G12.

\textit{Keywords:} large panel, factor model, risk premium, asset pricing, sparsity, thresholding.

aUniversity of Lugano and Swiss Finance Institute, bUniversity of Lugano, cUniversity of Geneva and Swiss Finance Institute.

*Acknowledgements: We would like to thank the co-editor Lars Hansen, and the two referees for constructive criticism and numerous suggestions which have lead to substantial improvements over the previous versions. We gratefully acknowledge the financial support of the Swiss National Science Foundation (Prodoc project PDFM11-114533 and NCCR FINRISK). We thank N. Al-Najjar, Y. Amihud, L. Barras, S. Bonhomite, A. Buraschi, V. Chernozhukov, G. Dhaene, R. Engle, J. Fan, E. Ghysels, C. Gourieroux, S. Heston, E. Renault, E. Ronchetti, E. Sentana, F. Trojani, participants at the Cass conference 2010, CIRRIEE conference 2011, ECARI conference 2011, CORE conference 2011, Montreal panel data conference 2011, ESEM 2011, SFI PhD workshop (2011), SoFiE annual conference 2012, and participants at seminars at Columbia, NYU, Georgetown, Maryland, McGill, GWU, ULB, Humboldt, Orleans, Imperial College, CREST, Athens, CORE, Bernheim center, Brown, Princeton, Duke, Northwestern, HEC Montreal, CEPS/IF, Leuven, Rotterdam, Bern, Zurich, Lausanne, Cergy-Pontoise, Luxembourg, Bogazici, Fondacion Getulio Vargas for helpful comments.
1 Introduction

The workhorse to estimate equity risk premia in a linear multi-factor setting is the two-pass cross-sectional regression method developed by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973). A series of papers address its large and finite sample properties for linear factor models with time-invariant coefficients, see e.g. Shanken (1985, 1992), Jagannathan and Wang (1998), Shanken and Zhou (2007), Kan, Robotti, and Shanken (forthcoming, 2012), and the review paper of Jagannathan, Skoulakis, and Wang (2009). The literature has not yet formally addressed statistical inference for equity risk premia in conditional linear factor models despite its empirical relevance.

In this paper, we study how we can infer the time-varying behaviour of equity risk premia from large stock returns databases under conditional linear factor models. Our approach is inspired by the recent trend in macro-econometrics and forecasting methods trying to extract cross-sectional and time-series information simultaneously from large panels (see e.g. Stock and Watson (2002a,b), Bai (2003, 2009), Bai and Ng (2002, 2006), Forni et al. (2000, 2004, 2005), Pesaran (2006)). Ludvigson and Ng (2007, 2009) exemplify this promising route when studying bond risk premia. Connor, Hagmann, and Linton (2012) show that large cross-sections exploit data more efficiently in a semiparametric characteristic-based factor model of stock returns. The theoretical framework underlying the Arbitrage Pricing Theory (APT) also inspires our approach relying on individual stocks returns. In this setting, approximate factor structures with non-diagonal error covariance matrices (Chamberlain and Rothschild (1983, CR)) answer the potential empirical mismatch of exact factor structures with diagonal error covariance matrices underlying the original APT of Ross (1976). Under weak cross-sectional dependence among idiosyncratic error terms, such approximate factor models generate no-arbitrage restrictions in large economies where the number of assets grows to
infinity. Our paper develops an econometric methodology tailored to the APT framework. Indeed, we let the number of assets grow to infinity mimicking the large economies of financial theory.

The potential loss of information and bias induced by grouping stocks to build portfolios in asset pricing tests further motivate our approach (e.g. Litzenberger and Ramaswamy (1979), Lo and MacKinlay (1990), Berk (2000), Conrad, Cooper, and Kaul (2003), Phalippou (2007)). Avramov and Chordia (2006) have already shown that empirical findings given by conditional factor models about anomalies differ a lot when considering single securities instead of portfolios. Ang, Liu, and Schwarz (2008) argue that we loose a lot of efficiency when only considering portfolios as base assets, instead of individual stocks, to estimate equity risk premia in models with time-invariant coefficients. In our approach, the large cross-section of stock returns helps to get accurate estimation of the equity risk premia even if we get noisy time-series estimates of the factor loadings (the betas). Besides, when running asset-pricing tests, Lewellen, Nagel, and Shanken (2010) advocate working with a large number of assets instead of working with a small number of portfolios exhibiting a tight factor structure. The former gives us a higher hurdle to meet in judging model explanation based on cross-sectional R^2.

Our theoretical contributions are threefold. First, we derive no-arbitrage restrictions in a multi-period economy (Hansen and Richard (1987)) under an approximate factor structure (Chamberlain and Rothschild (1983)) with a continuum of assets. We explicitly show the relationship between the ruling out of asymptotic arbitrage opportunities and an empirically testable restriction for large economies in a conditional setting. We also formalize the sampling scheme so that observed assets are random draws from an underlying population (Andrews (2005)). Such a construction is close to the setting advocated by Al-Najjar (1995, 1998, 1999a) in a static framework with an exact factor structure. He discusses several key advantages of using a continuum economy in arbitrage pricing and risk decomposition. A key advantage is robustness of factor structures to asset repackaging (Al-Najjar (1999b)). Second, we derive a new weighted two-pass cross-sectional estimator of the path over time of the risk premia from large unbalanced panels of excess returns. We study its large sample properties in conditional linear factor models where the conditioning includes instruments common to all assets and asset specific instruments. The factor modeling permits conditional heteroskedasticity and cross-sectional dependence in the error terms (see Petersen (2008) for stressing the importance of residual dependence when computing standard errors in finance panel data). We derive con-
sistency and asymptotic normality of our estimators by letting the time dimension T and the cross-section
dimension n grow to infinity simultaneously, and not sequentially. We relate the results to bias-corrected es-
timation (Hahn and Kuersteiner (2002), Hahn and Newey (2004)) accounting for the well-known incidental
parameter problem in the panel literature (Neyman and Scott (1948)). We derive all properties for unbal-
anced panels to avoid the survivorship bias inherent to studies restricted to balanced subsets of available
stock return databases (Brown, Goetzmann, and Ross (1995)). The two-pass regression approach is simple
and particularly easy to implement in an unbalanced setting. This explains our choice over more efficient,
but numerically intractable, one-pass ML/GMM estimators or generalized least-squares estimators. When n
is of the order of a couple of thousands assets, numerical optimization on a large parameter set or numerical
inversion of a large weighting matrix is too challenging and unstable to benefit in practice from the theoretical
efficiency gains, unless imposing strong ad hoc structural restrictions. Third, we provide a test of the
 asset pricing restrictions for the conditional factor model underlying the estimation. The test exploits the
asymptotic distribution of a weighted sum of squared residuals of the second-pass cross-sectional regression
(see Lewellen, Nagel, and Shanken (2010), Kan, Robotti, and Shanken (forthcoming, 2012) for a related
approach in models with time-invariant coefficients and asymptotics with fixed n). The test statistic relies
on consistent estimation of large-dimensional sparse covariance matrices by hard thresholding (Bickel and
Levina (2008), El Karoui (2008), Fan, Liao, and Mincheva (2011)). As a by-product, our approach permits
inference for the cost of equity on individual stocks, in a time-varying setting (Fama and French (1997)).
We know from standard textbooks in corporate finance that cost of equity = risk free rate + factor loadings
\times factor risk premia. It is part of the cost of capital and is a central piece for evaluating investment projects
by company managers.

For our empirical contributions, we consider the Center for Research in Security Prices (CRSP) database
and take the Compustat database to match firm characteristics. The merged dataset comprises about ten thou-
sands stocks with monthly returns from July 1964 to December 2009. We look at factor models popular in
the empirical finance literature to explain monthly equity returns. They differ by the choice of the factors.
The first model is the CAPM (Sharpe (1964), Lintner (1965)) using the excess market return as the single
factor. Then, we consider the three-factor model of Fama and French (1993) based on two additional factors
capturing the book-to-market and size effects, and a four-factor extension including a momentum factor
(Jegadeesh and Titman (1993), Carhart (1997)). We study time-invariant and time-varying versions of the factor models (Ferson and Schadt (1996), Ferson and Harvey (1999)). For the latter, we use both macrovariables and firm characteristics as instruments. The estimated paths show that the risk premia are large and volatile in crisis periods, e.g., the oil crisis in 1973-1974, the market crash in October 1987, and the recent financial crisis. Furthermore, the time-varying risk premia estimates exhibit large positive and negative strays from time-invariant estimates, follow the macroeconomic cycles, and do not match risk premia estimates on standard sets of portfolios. The asset pricing restrictions are rejected for a conditional four-factor model capturing market, size, value and momentum effects.

The outline of the paper is as follows. In Section 2, we consider a general framework of conditional factor model for asset returns and derive the no-arbitrage pricing restrictions. We also show robustness of factor structures to asset repackaging and describe the sampling scheme. In Section 3, we introduce parametric functional specifications for the time-varying model coefficients, where the instruments generating conditional information can be either common to all stocks or stock-specific. We also present our estimation and testing approaches. Section 4 contains the empirical results. In the Appendices, we gather the technical assumptions and some proofs. We use high-level assumptions to get our results and show in Appendix 3 that we meet all of them under a block cross-sectional dependence structure on the error terms in a time-invariant and serially i.i.d. framework. We place all omitted proofs and the Monte Carlo simulation results in the online supplementary materials. There, we also include some empirical results on the cost of equity and robustness checks.

2 Conditional factor model of asset returns

In this section, we consider a conditional linear factor model with time-varying coefficients in order to model possibly time-varying risk premia (see Connor and Korajczyk (1989) for an intertemporal competitive equilibrium version of the APT yielding time-varying risk premia and Ludvigson (2011) for a discussion within scaled consumption-based models). The setting includes models with time-invariant coefficients as a particular case. This covers the CAPM where the excess market return is the single factor.
2.1 Excess return generation and asset pricing restrictions

We start by describing the generating process for the excess returns before examining the implications of the absence of arbitrage opportunities in terms of model restrictions. We combine the constructions of Hansen and Richard (1987) and Andrews (2005) to define a multi-period economy with a continuum of assets having strictly stationary and ergodic return processes. We use such a formal construction to guarantee that (i) the economy is invariant to time shifts, so that we can establish all properties by working at \(t = 1 \), (ii) time series averages converge almost surely to population expectations, (iii) under a suitable sampling mechanism (see Subsection 2.3), cross-sectional limits exist and are invariant to reordering of the assets, (iv) the derived no-arbitrage restriction is empirically testable. This construction allows reconciling finance and econometric analysis in a coherent framework.

Let \((\Omega, F, P)\) be a probability space. The random vector \(f \) admitting values in \(\mathbb{R}^K \), the collection of random variables \(\varepsilon(\gamma), \gamma \in [0, 1] \), and the collection of random vectors \(\beta(\gamma) = (a(\gamma), b(\gamma))' \), \(\gamma \in [0, 1] \), admitting values in \(\mathbb{R} \times \mathbb{R}^K \), are defined on this probability space. The dynamics is described by the measurable time-shift transformation \(S \) mapping \(\Omega \) into itself. If \(\omega \in \Omega \) is the state of the world at time 0, then \(S^t(\omega) \) is the state at time \(t \), where \(S^t \) denotes the transformation \(S \) applied \(t \) times successively. Transformation \(S \) is assumed to be measure-preserving and ergodic (i.e., any set in \(F \) invariant under \(S \) has measure either 1, or 0). In order to define the information sets, let \(F_0 \subset F \) be a sub sigma-field. Define \(F_t = \{ S^{-t}(A), A \in F_0 \}, t = 1, 2, ... \), through the inverse mapping \(S^{-t} \) and assume that \(F_t \) contains \(F_0 \).

Then, the filtration \(F_t, t = 1, 2, ... \), characterizes the flow of information available to investors. We assume that random vectors \(f \) and \(\beta(\gamma) \), for \(\gamma \in [0, 1] \), are measurable w.r.t. \(F_0 \).

Assumption APR.1 The excess returns \(R_t(\gamma) \) of asset \(\gamma \in [0, 1] \) at dates \(t = 1, 2, ... \) satisfy the conditional linear factor model:

\[
R_t(\gamma) = a_t(\gamma) + b_t(\gamma)' f_t + \varepsilon_t(\gamma),
\]

where the random variables \(\varepsilon_t(\gamma), f_t, \ a_t(\gamma) \) and \(b_t(\gamma) \) are defined as \(\varepsilon_t(\gamma, \omega) = \varepsilon[\gamma, S^t(\omega)] \), \(f_t(\omega) = f[S^t(\omega)] \), \(a_t(\gamma, \omega) = a[\gamma, S^{t-1}(\omega)] \) and \(b_t(\gamma, \omega) = b[\gamma, S^{t-1}(\omega)] \), for any \(\omega \in \Omega \) and \(\gamma \in [0, 1] \).

Assumption APR.1 defines the excess return processes for an economy with a continuum of assets. The index set is the interval \([0, 1]\) without loss of generality. Vector \(f_t \) gathers the values of the \(K \) observable
factors at date t. The intercept $a_t(\gamma)$ and factor sensitivities $b_t(\gamma)$ of asset $\gamma \in [0, 1]$ are \mathcal{F}_{t-1}-measurable. Since transformation S is measure-preserving and ergodic, all processes are strictly stationary and ergodic (Doob (1953)). Let further define $x_t = (1, f_t)'$ and $\beta_t(\gamma) = (a_t(\gamma), b_t(\gamma))'$, which yields the compact formulation:

$$R_t(\gamma) = \beta_t(\gamma)'x_t + \varepsilon_t(\gamma).$$

(2)

Let us now introduce supplementary assumptions on factors, factor loadings, and error terms.

Assumption APR.2 (i) The function $\beta(\gamma, \omega)\beta(\gamma, \omega)'$ is Lebesgue integrable w.r.t. $\gamma \in [0, 1]$, for almost every (a.e.) $\omega \in \Omega$. (ii) The mapping $(\gamma_1, \gamma_2) \mapsto E[\beta(\gamma_1)\beta(\gamma_2)']$ is Lebesgue measurable. (iii) The matrix $\int b(\gamma)b(\gamma)'d\gamma$ is positive definite, P-a.s..

Assumptions APR.2 (i) and (ii) are used to apply the L^2-convergence result in Al-Najjar (1995, 1999a). Since transformation S is measure-preserving, Assumption APR.2 (iii) implies that the matrix $\int b_t(\gamma)b_t(\gamma)'d\gamma$ is positive definite, P-a.s., for any date $t = 1, 2, ..., i.e.,$ the non-degeneracy in the factor loadings across assets.

Assumption APR.3 For any $\gamma \in [0, 1]$, $E[\varepsilon_t(\gamma)|\mathcal{F}_{t-1}] = 0$ and $Cov[\varepsilon_t(\gamma), f_t|\mathcal{F}_{t-1}] = 0$.

Hence, the error terms have mean zero and are uncorrelated with the factors conditionally on information \mathcal{F}_{t-1}. In Assumption APR.4 (ii) below, we impose an approximate factor structure for the conditional distribution of the error terms given \mathcal{F}_{t-1} in almost any countable collection of assets. More precisely, for any sequence (γ_i) in $[0, 1]$, let $\Sigma_{\varepsilon,t,n}$ denote the $n \times n$ conditional variance-covariance matrix of the error vector $[\varepsilon_t(\gamma_1), ..., \varepsilon_t(\gamma_n)]'$ given \mathcal{F}_{t-1}, for $n \in \mathbb{N}$. Let μ_Γ be the probability measure on the set $\Gamma = [0, 1]^\infty$ of sequences (γ_i) in $[0, 1]$ induced by i.i.d. random sampling from a continuous distribution G with support $[0, 1]$.

Assumption APR.4 (i) The conditional covariance function $E[\varepsilon_t(\gamma_1)\varepsilon_t(\gamma_2)|\mathcal{F}_{t-1}]$ is jointly measurable w.r.t. $\gamma_1, \gamma_2 \in [0, 1]$ and $\omega \in \Omega$. (ii) For any sequence (γ_i) in set \mathcal{J}: $n^{-1}eig_{\text{max}}(\Sigma_{\varepsilon,t,n}) \xrightarrow{L^2} 0$, as $n \to \infty$, where $\mathcal{J} \subset \Gamma$ is such that $\mu_\Gamma(\mathcal{J}) = 1$, and $eig_{\text{max}}(\Sigma_{\varepsilon,t,n})$ denotes the largest eigenvalue of matrix $\Sigma_{\varepsilon,t,n}$.

7
Assumption APR.4 (i) corresponds to condition (i’) in Al-Najjar (1999a) in the conditional setting. In the supplementary material, we show that the set \(\{ (\gamma_i) \in \Gamma : n^{-1} \text{eig}_{\max} (\Sigma_{\epsilon,t,n}) \xrightarrow{L^2} 0 \} \) is \(\mu_{\Gamma} \)-measurable under Assumption APR.4 (i). Its measure is 1 under Assumption APR.4 (ii). CR (p. 1294) use a sequence of variance-covariance matrices of the error terms that have uniformly bounded eigenvalues. Assumption APR.4 (ii) is weaker than boundedness of the largest eigenvalue almost surely, i.e., \(\sup_{n \geq 1} \text{eig}_{\max} (\Sigma_{\epsilon,t,n}) \leq M \), \(P \)-a.s., for a.e. \((\gamma_i) \) and a constant \(M > 0 \). This is useful for the checks of Appendix 3 under a block cross-sectional dependence structure.

Absence of asymptotic arbitrage opportunities generates asset pricing restrictions in large economies (Ross (1976), CR). We define asymptotic arbitrage opportunities in terms of sequences of portfolios \(p_n \), \(n \in \mathbb{N} \). Portfolio \(p_n \) is defined by the share \(\alpha_{0,n} \) invested in the riskfree asset and the shares \(\alpha_{i,n} \) invested in the selected risky assets \(\gamma_i \), for \(i = 1, \ldots, n \). The shares are measurable w.r.t. \(F_0 \). Then, \(C(p_n) = \sum_{i=0}^{n} \alpha_{i,n} \) is the portfolio cost at \(t = 0 \), and \(p_n = C(p_n)R_0 + \sum_{i=1}^{n} \alpha_{i,n}R_1(\gamma_i) \) is the portfolio payoff at \(t = 1 \), where \(R_0 \) denotes the riskfree gross return measurable w.r.t. \(F_0 \). We can work with \(t = 1 \) because of stationarity.

Assumption APR.5 There are no asymptotic arbitrage opportunities in the economy, that is, there exists no portfolio sequence \((p_n) \) such that \(\lim_{n \to \infty} P [p_n \geq 0] = 1 \) and \(\lim_{n \to \infty} P [C(p_n) \leq 0, p_n > 0] > 0 \).

Assumption APR.5 excludes portfolios that approximate arbitrage opportunities when the number of included assets increases. Arbitrage opportunities are investments with non-negative payoff in each state of the world, and with non-positive cost and positive payoff in some states of the world as in Hansen and Richard (1987), Definition 2.4. Then, Proposition 1 gives the asset pricing restriction.

Proposition 1 Under Assumptions APR.1-APR.5, for any date \(t = 1, 2, \ldots \) there exists a unique random vector \(\nu_t \in \mathbb{R}^K \) such that \(\nu_t \) is \(F_{t-1} \)-measurable and:

\[
a_t(\gamma) = b_t(\gamma)'\nu_t, \tag{3}
\]

for almost all \(\gamma \in [0,1], P\)-a.s.

We can rewrite the asset pricing restriction as

\[
E [R_t(\gamma)|F_{t-1}] = b_t(\gamma)'\lambda_t, \tag{4}
\]
for almost all \(\gamma \in [0,1] \), where \(\lambda_t = \nu_t + E[f_t|\mathcal{F}_{t-1}] \) is the vector of the conditional risk premia. In an unconditional factor model, the sigma-field \(\mathcal{F}_0 \) is trivial, and the coefficient functions \(a \) and \(b \) as well as the vectors \(\nu \) and \(\lambda \) are time-invariant, with \(\lambda = \nu + E[f_t] \). In the CAPM, we have \(K = 1 \) and \(\nu = 0 \). When a factor \(f_{k,t} \) is a portfolio excess return, we also have \(\nu_{k,t} = 0 \), \(k = 1, \ldots, K \).

Equation (4) for a strict factor structure in an unconditional economy (static case with time-invariant coefficients) becomes \(E[R_t] = b(\gamma)'\lambda \). Such a restriction is derived by Al-Najjar (1998) in his Proposition 2 under the definition of arbitrage used in CR. Through Proposition 1, we extend the latter equality to (4) under an approximate factor structure in a conditional economy (dynamic case with time-varying coefficients) with the definition of arbitrage used in Hansen and Richard (1987). Proposition 1 differs from CR Theorem 3 in terms of the returns generating framework, the definition of asymptotic arbitrage opportunities, and the derived asset pricing restriction. Specifically, we consider a multi-period economy with conditional information and time-varying coefficients as opposed to the single period unconditional economy in CR. We prefer the definition underlying Assumption APR.5 since it corresponds to the definition of arbitrage that is standard in dynamic asset pricing theory (e.g., Duffie (2001)). As pointed out by Hansen and Richard (1987), Ross (1978) has already chosen that type of definition. It also eases the proof based on new arguments. However, in Appendix A.2.1, we derive the link between the no-arbitrage conditions in Assumptions A.1 i) and ii) of CR, written conditionally on the information \(\mathcal{F}_0 \) and for almost every countable collection of assets, and the asset pricing restriction (3) valid for the continuum of assets. Hence, we are able to characterize the functions \(\beta = (a,b)' \) defined on \([0,1] \times \Omega \) that are compatible with absence of asymptotic arbitrage opportunities under both definitions of arbitrage in the continuum economy. In a time-invariant setting, CR derive the pricing restriction \(\sum_{i=1}^{\infty} (a(\gamma_i) - b(\gamma_i)')\nu < \infty \), for some \(\nu \in \mathbb{R}^K \) and for a given sequence \((\gamma_i) \), while we derive the restriction (3), for almost all \(\gamma \in [0,1] \). In Appendix A.2.1, we show that the set of sequences \((\gamma_i) \) such that, for any date \(t = 1, 2, \ldots \), \(\inf_{\nu \in \mathbb{R}^K} \sum_{i=1}^{\infty} (a_t(\gamma_i) - b_t(\gamma_i)')^2 < \infty \), P-a.s., has measure 1 under \(\mu_\Gamma \), when the asset pricing restriction (3) holds, and measure 0, otherwise. In other words, validity of the summability condition in CR for a countable collection of assets without validity of the asset pricing restriction (3) is an impossible event. In a time-invariant setting, the zero-one property for the \(\mu_\Gamma \)-measure of the set \(\inf_{\nu \in \mathbb{R}^K} \sum_{i=1}^{\infty} (a(\gamma_i) - b(\gamma_i)')^2 < \infty \) in \(\Gamma \) is a consequence of the Kolmogorov zero-one law (see e.g. Billingsley (1995)). From the proofs in Appendix A.2.1, we also get a reverse implication compared
to Proposition 1: when the asset pricing restriction (3) does not hold, asymptotic arbitrage in the sense of Assumption APR.5, or of Assumptions A.1 i) and ii) of CR, exists for μ_Γ-almost any countable collection of assets. The restriction in Proposition 1 is testable with large equity datasets and large sample sizes (Section 3.5). Therefore, we are not affected by the Shanken (1982) critique, namely the problem that finiteness of the sum $\sum_{i=1}^{\infty} \left(a(\gamma_i) - b(\gamma_i) \nu \right)^2$ for a given countable economy as in CR cannot be tested empirically.

2.2 Robustness of factor structures to asset repackaging

In this section, we prove the invariance of the approximate factor structure to asset repackaging. This concern about robustness is already put forward in Shanken (1982). We follow Al-Najjar (1999b), Section 3.1, and define a repackaging by means of sequences of measurable functions $w_k : [0, 1] \rightarrow [-1, 1]$ and $G_k : [0, 1] \rightarrow [0, 1]$ for $k = 1, 2, \ldots$. The idea is that any asset $\gamma \in [0, 1]$ is cut in (at most countably many) slices, and after reshuffling the kth slice with relative weight $w_k(\gamma)$ is assigned to the new asset $G_k(\gamma)$. Then, the excess returns in the repackaged economy are:

$$\tilde{R}_t(\gamma) = \sum_k w_k[G_k^{-1}(\gamma)]R_t[G_k^{-1}(\gamma)]. \quad (5)$$

The functions $w_k(\cdot)$ are such that $\sum_k w_k(\gamma) = 1$, for any $\gamma \in [0, 1]$, since they correspond to weights, and are bounded: $|w_k(\gamma)| \leq \bar{w}_k$, for any γ and k, with $\sum_k \bar{w}_k < \infty$. The functions $G_k(\cdot)$ are bijective and measure-preserving to guarantee that “no risk that is idiosyncratic to a negligible subset of assets in the original economy can be blown up to have aggregate effects in the new economy” (Al-Najjar (1999b)).

From (5), the excess returns in the repackaged economy satisfy the conditional linear factor model:

$$\tilde{R}_t(\gamma) = \tilde{\beta}_t(\gamma)'x_t + \tilde{\varepsilon}_t(\gamma), \quad (6)$$

where $\tilde{\beta}_t(\gamma) = \sum_k w_k[G_k^{-1}(\gamma)]\beta_t[G_k^{-1}(\gamma)]$ and $\tilde{\varepsilon}_t(\gamma) = \sum_k w_k[G_k^{-1}(\gamma)]\varepsilon_t[G_k^{-1}(\gamma)]$. Asset repackaging has no effect on the conditional variance of the factor. The following proposition shows that the conditions in Assumption APR.4 on the conditional variance-covariance matrix of the error terms also hold in the new economy if they hold before repackaging.
Proposition 2 Let \(E[\varepsilon_t(\gamma)^2|\mathcal{F}_{t-1}] \) be bounded uniformly in \(\gamma \in [0, 1] \) and \(\omega \in \Omega \). If the conditions APR.4 (i)-(ii) hold for the original economy (2), the conditions APR.4 (i)-(ii) with \(\tilde{\varepsilon} \) substituted for \(\varepsilon \) hold for the repackaged economy (6).

The next section describes how we get the data from sampling the continuum of assets.

2.3 Sampling scheme

We estimate the risk premia from a sample of observations on returns and factors for \(n \) assets and \(T \) dates. In available databases, we do not observe asset returns for all firms at all dates. We account for the unbalanced nature of the panel through a collection of indicator variables \(I(\gamma), \gamma \in [0,1] \), and define \(I_t(\gamma, \omega) = I[\gamma, S^t(\omega)] \). Then \(I_t(\gamma) = 1 \) if the return of asset \(\gamma \) is observable by the econometrician at date \(t \), and 0 otherwise (Connor and Korajczyk (1987)). To keep the factor structure linear, we assume a missing-at-random design (Rubin (1976)), that is, independence between unobservability and return generation.

Assumption SC.1 The random variables \(I_t(\gamma), \gamma \in [0, 1] \), are independent of \(\varepsilon_t(\gamma), \gamma \in [0, 1] \), and any variable in \(\mathcal{F}_t \).

Another design would require an explicit modeling of the link between the unobservability mechanism and the return process of the continuum of assets (Heckman (1979)); this would yield a nonlinear factor structure.

Assets are randomly drawn from the population according to a probability distribution \(G \) on \([0, 1] \). We use a single distribution \(G \) in order to avoid the notational burden when working with different distributions on different subintervals of \([0, 1] \).

Assumption SC.2 The random variables \(\gamma_i, i = 1, \ldots, n \), are i.i.d. indices, independent of \(\varepsilon_t(\gamma), \gamma \in [0, 1] \), and \(\mathcal{F}_t \), each with continuous distribution \(G \) with support \([0, 1] \).

For any \(n, T \in \mathbb{N} \), the excess returns are \(R_{i,t} = R_t(\gamma_i) \) and the observability indicators are \(I_{i,t} = I_t(\gamma_i) \), for \(i = 1, \ldots, n \), and \(t = 1, \ldots, T \). The excess return \(R_{i,t} \) is observed if and only if \(I_{i,t} = 1 \). Similarly, let \(\beta_{i,t} = \beta_t(\gamma_i) = (a_{i,t}, b_{i,t})' \) be the characteristics, \(\varepsilon_{i,t} = \varepsilon_t(\gamma_i) \) the error terms, and \(\sigma_{ij,t} = E[\varepsilon_{i,t}\varepsilon_{j,t}|\mathcal{F}_t, \gamma_i, \gamma_j] \) the conditional variances and covariances of the assets in the sample. By random sampling, we get a random coefficient panel model (e.g. Hsiao (2003), Chapter 6). The characteristic \(\beta_{i,t} \) of asset \(i \) at time \(t \) is random
even conditionally on \mathcal{F}_{t-1}. It is potentially correlated with the error terms $\varepsilon_{i,t}$, the observability indicators $I_{i,t}$, and the conditional variances $\sigma_{ii,t}$, conditionally on \mathcal{F}_{t-1}, through the random index γ_i. If the coefficients $a_{i,t}$s and $b_{i,t}$s were treated as given parameters in the cross-section of assets at time t, and not as realizations of random variables, invoking cross-sectional LLNs and CLTs as in some assumptions and parts of the proofs would have no sense. Moreover, cross-sectional limits would be dependent on the selected ordering of the assets. Instead, our assumptions and results do not rely on a specific ordering of assets. Random elements $(\beta'_{i,t}, \sigma_{ii,t}, \varepsilon_{i,t}, I_{i,t})'$, $i = 1, ..., n$, are exchangeable (Andrews (2005)). Hence, assets randomly drawn from the population have ex-ante the same features. However, given a specific realization of the indices in the sample, assets have ex-post heterogeneous features.

3 Two-pass approach for time-varying risk premium

In the setting of Section 2, we do not follow rolling short-window regression approaches to account for time-variation (Fama and French (1997), Lewellen and Nagel (2006)); see also Cosemans et al. (2011) for a recent proposal of a hybrid method to estimate a one-factor time-varying beta model based on Bayesian methodology and shrinkage. We favor a structural econometric framework taking into account the no-arbitrage restrictions to conduct formal frequentist inference for multi-factor models in large cross-sectional equity datasets. Besides, a five-year window of monthly data yields a very short time-series panel for which asymptotics with fixed T and large n are better suited, but keeping T fixed impedes consistent estimation of the risk premia (Shanken (1992)).

3.1 Functional specification of model coefficients

To have a workable version of Equations (1) and (3), we further specify the conditioning information and how the model coefficients depend on it via a functional specification. The conditioning information is such that instruments $Z \in \mathbb{R}^p$ and $Z(\gamma) \in \mathbb{R}^q$, for $\gamma \in [0, 1]$, are \mathcal{F}_0-measurable. Then, the information \mathcal{F}_{t-1} contains Z_{t-1} and $Z_{t-1}(\gamma)$, for $\gamma \in [0, 1]$, where we define $Z_t(\omega) = Z[S^t(\omega)]$ and $Z_t(\gamma, \omega) = Z[\gamma, S^t(\omega)]$, and denote $Z_t = \{Z_t, Z_{t-1}, \ldots\}$. The lagged instruments Z_{t-1} are common to all stocks. They may include the constant and past observations of the factors and some additional variables such as macroeconomic
variables. The lagged instruments $Z_{t-1}(\gamma)$ are specific to stock γ. They may include past observations of firm characteristics and stock returns. To end up with a linear regression model, we specify in Assumption FS.1 that the vector of factor loadings $b_t(\gamma)$ is a linear function of lagged instruments Z_{t-1} (Shanken (1990), Ferson and Harvey (1991)) and $Z_{t-1}(\gamma)$ (Avramov and Chordia (2006)).

Assumption FS.1 The factor loadings are such that $b_t(\gamma) = B(\gamma)Z_{t-1} + C(\gamma)Z_{t-1}(\gamma)$, where $B(\gamma) \in \mathbb{R}^{K \times p}$ and $C(\gamma) \in \mathbb{R}^{K \times q}$, for any $\gamma \in [0, 1]$ and $t = 1, 2, \ldots$.

We can account for nonlinearities by including powers of some explanatory variables among the lagged instruments.

Assumption FS.2 (i) The risk premia vector is such that $\lambda_t = \Lambda Z_{t-1}$, where $\Lambda \in \mathbb{R}^{K \times p}$, for any t. (ii) We have $E[f_t|\mathcal{F}_{t-1}] = FZ_{t-1}$, where $F \in \mathbb{R}^{K \times p}$, for any t.

In Assumption FS.2 (i), we specify that the vector of risk premia is a linear function of lagged instruments Z_{t-1} (Cochrane (1996), Jagannathan and Wang (1996)). Since f_t is a subvector of Z_t, Assumption FS.2 (ii) is satisfied if the conditional expectation of Z_t given the information \mathcal{F}_{t-1} depends on Z_{t-1} only and is linear, as, for instance, in an exogeneous Vector Autoregressive (VAR) model of order 1. Under the functional specifications in Assumptions FS.1 and FS.2, the asset pricing restriction (3) implies that the intercept $a_t(\gamma)$ is a quadratic form in lagged instruments Z_{t-1} and $Z_{t-1}(\gamma)$, namely:

$$a_t(\gamma) = Z_{t-1}'B(\gamma)'(\Lambda - F)Z_{t-1} + Z_{t-1}(\gamma)'C(\gamma)'(\Lambda - F)Z_{t-1}.$$

(7)

This shows that assuming a priori linearity of $a_t(\gamma)$ in the lagged instruments Z_{t-1} and $Z_{t-1}(\gamma)$ is in general not compatible with linearity of $b_t(\gamma)$ and $E[f_t|Z_{t-1}]$.

The sampling scheme is defined in Section 2.3, and we use the additional notation $B_i = B(\gamma_i)$, $C_i = C(\gamma_i)$ and $Z_{i,t-1} = Z_{t-1}(\gamma_i)$. In particular, we allow for potential correlation between parameters B_i, C_i and asset specific instruments $Z_{i,t-1}$ via the random index γ_i. Then, the conditional factor model (1) with asset pricing restriction (7) written for the sample observations becomes

$$R_{i,t} = Z_{t-1}'B_i'F Z_{t-1} + Z_{i,t-1}'C_i'(\Lambda - F)Z_{t-1} + Z_{t-1}'B_i'f_t + Z_{i,t-1}'C_i'f_t + \epsilon_{i,t},$$

(8)

which is nonlinear in the common parameters Λ, F and the asset-specific parameters B_i, C_i.

13
In order to implement the two-pass estimation methodology in our conditional context, we rewrite model (8) as a model that is linear in transformed parameters and new regressors. The regressors include \(x_{2,i,t} = \left(f'_t \otimes Z'_{t-1}, f'_t \otimes Z'_{t,t-1}\right)' \in \mathbb{R}^{d_2} \) with \(d_2 = K(p + q) \). The first components with common instruments take the interpretation of scaled factors (Cochrane (2005)), while the second components do not since they depend on \(i \). The regressors also include the predetermined variables \(x_{1,i,t} = \left(vech [X'_t], Z'_{t-1} \otimes Z'_{t,t-1}\right)' \in \mathbb{R}^{d_1} \) with \(d_1 = p(p + 1)/2 + pq \), where the symmetric matrix \(X_t = [X_{t,k,l}] \in \mathbb{R}^{p \times p} \) is such that \(X_{t,k,l} = Z^2_{t-1,k} \), if \(k = l \), and \(X_{t,k,l} = 2Z_{t-1,k}Z_{t-1,l}, \) otherwise, \(k,l = 1, \ldots, p \).

The vector-half operator \(vech [\cdot] \) stacks the elements of the lower triangular part of a \(p \times p \) matrix as a \(p(p + 1)/2 \times 1 \) vector (see Chapter 2 in Magnus and Neudecker (2007, MN) for properties of this matrix tool). Then, we can express model (8) through appropriate redefinitions of the regressors and loadings (see Appendix A.2.3):

\[
R_{i,t} = \beta'_1 x_{i,t} + \varepsilon_{i,t},
\]

where \(x_{i,t} = \left(x'_{1,i,t}, x'_{2,i,t}\right)' \) has dimension \(d = d_1 + d_2 \), and \(\beta_i = (\beta'_1, \beta'_2)' \) is such that

\[
\beta_{1,i} = \left((N_p (A - F)' \otimes I_p) vec [B'_i], ([(A - F)' \otimes I_q] vec [C'_i])\right)', \quad N_p = \frac{1}{2} D^+_p (W_p + I_p^2),
\]
\[
\beta_{2,i} = \left(vec [B'_i], vec [C'_i]\right)'.
\]

The vector operator \(vec [\cdot] \) stacks the elements of an \(m \times n \) matrix as a \(mn \times 1 \) vector. The matrix \(D^+_p \) is the \(p(p+1)/2 \times p^2 \) Moore-Penrose inverse of the duplication matrix \(D_p \), such that \(vech [A] = D^+_p vec [A] \) for any matrix \(A \in \mathbb{R}^{p \times p} \) (see Chapter 3 in MN). The commutation matrix \(W_{p,q} \) is such that \(vec[A'] = W_{p,q} vec[A] \), for any matrix \(A \in \mathbb{R}^{p \times q} \), and \(W_p := W_{p,p} \). When \(Z_t = 1 \) and \(Z_{i,t} = 0 \), we have \(p = 1 \) and \(q = 0 \), and the model in (9) reduces to a factor model with time-invariant coefficients and regressor \(x_t \) common across assets (scaled factors).

In Equations (10), the \(d_1 \times 1 \) vector \(\beta_{1,i} \) is a linear transformation of the \(d_2 \times 1 \) vector \(\beta_{2,i} \). This clarifies that the asset pricing restriction (7) implies a constraint on the distribution of the random vector \(\beta_i \) via its support. The coefficients of the linear transformation depend on matrix \(\Lambda - F \). For the purpose of estimating the loading coefficients of the risk premia in matrix \(\Lambda \), we rewrite the parameter restrictions as (see Appendix A.2.4):

\[
\beta_{1,i} = \beta_{3,i} \nu, \quad \nu = vec [\Lambda' - F'], \quad \beta_{3,i} = \left([N_p (B'_i \otimes I_p)]', [W_{p,q} (C'_i \otimes I_p)]\right)'.
\]

14
Furthermore, we can relate the $d_1 \times Kp$ matrix $\beta_{3,i}$ to the vector $\beta_{2,i}$ (see Appendix A.2.5):

$$vec [\beta_{3,i}] = J_a \beta_{2,i}, \quad (12)$$

where the $d_1 pK \times d_2$ block-diagonal matrix of constants J_a is given by $J_a = \begin{pmatrix} J_1 & 0 \\ 0 & J_2 \end{pmatrix}$ with diagonal blocks $J_1 = W_{p(p+1)/2,pK} (I_K \otimes [(I_p \otimes N_p) (W_p \otimes I_p) (I_p \otimes vec[I_p])])$ and $J_2 = W_{pq,pK} (I_K \otimes [(I_p \otimes W_{p,q}) (W_{p,q} \otimes I_p) (I_q \otimes vec[I_p])])$.

The link (12) is instrumental in deriving the asymptotic results. In the time-invariant setting, $\beta_{1,i} = a_i$, $\beta_{2,i} = \beta_{3,i} = b_i$, and the matrix J is equal to I_K. Hence, Equations (11) and (12) in the time-varying case are the counterparts of restriction $a_i = b'_i \nu$ in the time-invariant case.

3.2 Two-pass estimation of time-varying risk premium

We consider a two-pass approach (Fama and MacBeth (1973), Black, Jensen, and Scholes (1972)) building on Equations (9) and (11).

First Pass: The first pass consists in computing time-series OLS estimators $\hat{\beta}_i = (\hat{\beta}_{1,i}, \hat{\beta}_{2,i})' = \hat{Q}_{x,i}^{-1} \frac{1}{T_i} \sum_{t} I_{i,t} x_{i,t} R_{i,t}$, for $i = 1, \ldots, n$, where $\hat{Q}_{x,i} = \frac{1}{T_i} \sum_{t} I_{i,t} x_{i,t} x_{i,t}'$. In available panels, the random sample size T_i for asset i can be small, and the inversion of matrix $\hat{Q}_{x,i}$ can be numerically unstable. This can yield unreliable estimates of β_i. To address this, we introduce a trimming device: $1_i = 1 \left\{ CN \left(\hat{Q}_{x,i} \right) \leq \chi_1, T, \tau_i, T \leq \chi_2, T \right\}$, where $CN \left(\hat{Q}_{x,i} \right) = \sqrt{eig_{max} \left(\hat{Q}_{x,i} \right) / eig_{min} \left(\hat{Q}_{x,i} \right)}$ and $eig_{min} \left(\hat{Q}_{x,i} \right)$ denote the condition number and the smallest eigenvalue of matrix $\hat{Q}_{x,i}$, respectively, $\tau_i, T = T/T_i$, and the two sequences $\chi_1, T > 0$ and $\chi_2, T > 0$ diverge asymptotically. The first trimming condition $\{CN \left(\hat{Q}_{x,i} \right) \leq \chi_1, T \}$ keeps in the cross-section only assets for which the time series regression is not too badly conditioned. A too large value of $CN \left(\hat{Q}_{x,i} \right)$ indicates multicollinearity problems and ill-conditioning (Belsley, Kuh, and Welsch (2004), Greene (2008)). The second trimming condition $\{\tau_i, T \leq \chi_2, T \}$ keeps in the cross-section only assets for which the time series is not too short. We also use both trimming conditions in the proofs of the asymptotic results.

Second Pass: The second pass consists in computing a cross-sectional estimator of ν by regressing the $\hat{\beta}_{1,i}$ on the $\hat{\beta}_{3,i}$ keeping non-trimmed assets only. We use a multivariate WLS approach. The weights are estimates of $w_i = (\text{diag} \left[\nu_i \right])^{-1}$, where the matrices ν_i are the asymptotic variances of the standardized errors.

15
\[
\sqrt{T} \left(\hat{\beta}_{1,i} - \hat{\beta}_{3,i} \right) \]

in the cross-sectional regression for large \(T \). We have \(v_i = \tau_i C_c' Q_{x,i}^{-1} S_{ii} Q_{x,i}^{-1} C_c \), where \(Q_{x,i} = \mathbb{E} \left[x_{i,t} x_{i,t}' | \gamma_i \right] \), \(S_{ii} = \lim_{T \to \infty} \frac{1}{T} \sum_{t} \sigma_{ii,i} x_{i,t} x_{i,t}' = \mathbb{E} \left[\varepsilon_{i,t}^2 x_{i,t} x_{i,t}' | \gamma_i \right] \), \(C_c = \left(E_1 - \left(I_{d_1} \otimes \nu \right) J_n E_2 \right)' \), with \(E_1 = \left(I_{d_1} : 0_{d_1 \times d_2} \right)' \), \(E_2 = \left(0_{d_2 \times d_1} : I_{d_2} \right)' \). We use the estimates \(\hat{\nu} = \tau_i T C_{\hat{\nu},i} Q_{x,i}^{-1} \hat{S}_{ii} Q_{x,i}^{-1} C_{\hat{\nu},i} \), where \(\hat{S}_{ii} = \frac{1}{T} \sum \hat{I}_{i,t} \hat{\varepsilon}_{i,t}^2 \hat{x}_{i,t} \hat{x}_{i,t}' \), and \(C_{\hat{\nu},i} = \left(E_1' - \left(I_{d_1} \otimes \hat{\nu} \right) J_n E_2 \right)' \). To estimate \(\nu \), we use the multivariate OLS estimator \(\hat{\nu} = \hat{\beta}_3^{-1} \frac{1}{n} \sum_i \hat{\beta}_{3,i} \hat{\hat{w}}_i \hat{\hat{\beta}}_{1,i} \), i.e., a first-step estimator with unit weights. The WLS estimator is:

\[
\hat{\nu} = \hat{Q}_{\beta_3}^{-1} \frac{1}{n} \sum_i \hat{\beta}_{3,i} \hat{w}_i \hat{\beta}_{1,i},
\]

where \(\hat{Q}_{\beta_3} = \frac{1}{n} \sum_i \hat{\beta}_{3,i} \hat{w}_i \hat{\beta}_{3,i} \) and \(\hat{w}_i = 1_i^\chi \left(\text{diag} \left[\hat{\nu} \right] \right)^{-1} \). Weighting accounts for the statistical precision of the first-pass estimates and includes trimming. The final estimator of the risk premia is \(\hat{\lambda} = \hat{\Lambda} Z_{t-1} \), where we deduce \(\hat{\Lambda} \) from the relationship \(\text{vec} \left[\hat{\Lambda}' \right] = \hat{\nu} + \text{vec} \left[\hat{F}' \right] \) with the estimator \(\hat{F} \) obtained by a SUR regression of factors \(f_t \) on lagged instruments \(Z_{t-1} \): \(\hat{F} = \sum_t f_t Z_{t-1} \left(\sum_t Z_{t-1} Z_{t-1}' \right)^{-1} \).

In the time-invariant case, the estimator of the risk premia vector simplifies to

\[
\hat{\lambda} = \hat{\nu} + \frac{1}{T} \sum_t f_t, \quad \hat{\nu} = \hat{Q}_{\beta_3}^{-1} \frac{1}{n} \sum_i \hat{w}_i \hat{b}_i \hat{a}_i,
\]

where \(\hat{Q}_b = \frac{1}{n} \sum_i \hat{w}_i \hat{b}_i \hat{b}_i' \) and \(\left(\hat{a}_i, \hat{b}_i \right)' = \hat{Q}_{x,i}^{-1} \frac{1}{T_i} \sum_{i,t} \hat{I}_{i,t} \hat{x}_{i,t} \hat{R}_{i,t} \). Hence, the model coefficients \(\hat{a}_i \) and \(\hat{b}_i \) are estimated by time series OLS regression, and the estimate of the risk premium vector is obtained by cross-sectional WLS regression of the \(\hat{a}_i \) on the \(\hat{b}_i \)s augmented by the factor mean. Moreover, under conditional homoskedasticity \(\sigma_{ii,t} = \sigma_{ii} \) and a balanced panel \(\tau_i,T = 1 \), we have \(v_i = c_{\nu}' Q_{x}^{-1} c_{\nu} \sigma_{ii} \), where \(c_{\nu} = (1, -\nu)' \) and \(Q_{x} = \mathbb{E} \left[x_{it} x_{it}' \right] \). Then, \(v_i \) is directly proportional to \(\sigma_{ii} \), and we can simply pick the weights as \(\hat{w}_i = \hat{\sigma}_{ii}^{-1} \), where \(\hat{\sigma}_{ii} = \frac{1}{T} \sum_{i,t} \hat{\varepsilon}_{i,t}^2 \) (Shanken (1992)). In the time-invariant case, we can avoid the trimming on the condition number if we substitute \(\hat{Q}_x = \frac{1}{T} \sum_t x_t x_t' \) for \(\hat{Q}_{x,i} \) in the first-pass estimator definition. However, this increases the asymptotic variance of the bias corrected estimator of \(\nu \), and does not extend to the time-varying case. Starting from the asset pricing restriction \(\mathbb{E} \left[R_{i,t} \right] = b_i' \lambda \) in the time-invariant case, another estimator of \(\lambda \) is \(\hat{\lambda} = \hat{Q}_b^{-1} \frac{1}{n} \sum_i \hat{w}_i \hat{b}_i \hat{R}_i \), where \(\hat{R}_i = \frac{1}{T_i} \sum_{i,t} \hat{I}_{i,t} \hat{R}_{i,t} \). This estimator
is numerically equivalent to $\hat{\lambda}$ in the balanced case, where $I_{i,t} = 1$ for all i and t. In the unbalanced case, it is equal to $\lambda = \hat{\nu} + \hat{Q_b}^{-1} \frac{1}{n} \sum I_i \hat{b}_i \hat{f}_i$, where $\hat{f}_i = \frac{1}{T_i} \sum_t I_{i,t} f_t$. Estimator $\hat{\lambda}$ is often studied by the literature (see, e.g., Shanken (1992), Kandel and Stambaugh (1995), Jagannathan and Wang (1998)), and is also consistent. Estimating $E[f_t]$ with a simple average of the observed factor instead of a weighted average based on estimated betas simplifies the form of the asymptotic distribution in the unbalanced case. This explains our preference for $\hat{\lambda}$ over $\bar{\lambda}$.

3.3 Asymptotic properties of risk premium estimation

We derive the asymptotic properties under assumptions on the conditional distribution of the error terms.

Assumption A.1 There exists a positive constant M such that for all n, T:

- $E\left[\varepsilon_i | \{\varepsilon_j : j = 1, \ldots, n\}, G_t \right] = 0$, with $\varepsilon_{j,t} = \{\varepsilon_{j,t}, \varepsilon_{j,t-1}, \ldots\}$;
- $\frac{1}{M} \leq \sigma_{ii,t} \leq M, \ i = 1, \ldots, n$;
- $E\left[\frac{1}{n} \sum_{i,j} E\left[|\sigma_{ij,t}|^2 | \gamma_i, \gamma_j\right]^{1/2}\right] \leq M$, where $\sigma_{ij,t} = E[\varepsilon_i \varepsilon_j | G_t, \gamma_i, \gamma_j]$.

Assumption A.1 allows for a martingale difference sequence for the error terms (part a)) including potential conditional heteroskedasticity (part b)) as well as weak cross-sectional dependence (part c)). In particular, Assumption A.1 c) is the same as Assumption C.3 in Bai and Ng (2002), except that we have an expectation w.r.t. the random draws of assets. More general error structures are possible but complicate consistent estimation of the asymptotic variances of the estimators (see Section 3.4).

Proposition 3 summarizes consistency of estimators $\hat{\nu}$ and $\hat{\Lambda}$ under the double asymptotics $n, T \to \infty$.

Proposition 3 Under Assumptions APR.1-APR.5,SC.1-SC.2,FS.1-FS.2,A.1b) and B.1,B.4-B.6, we get

- $\|\hat{\nu} - \nu\| = o_p(1), \ b) \ \|\hat{\Lambda} - \Lambda\| = o_p(1)$, when $n, T \to \infty$ such that $n = O(T^{\gamma})$ for $\gamma > 0$.

Part b) implies $\sup_t \|\hat{\lambda}_t - \lambda_t\| = o_p(1)$ under boundedness of process Z_t (Assumption B.4).

Consistency of the estimators holds under double asymptotics such that the cross-sectional size n grows not faster than a power of the time series size T. For instance, the conditions in Proposition 3 allow for n large w.r.t. T (short panel asymptotics) when $\gamma > 1$. In the time-invariant setting, Shanken (1992) shows consistency of $\hat{\nu}$ and $\hat{\lambda}$ for a fixed n and $T \to \infty$. This consistency does not imply Proposition 3. Shanken
(1992) (see also Litzenberger and Ramaswamy (1979)) further shows that we can estimate \(\nu \) consistently in the second pass with a modified cross-sectional estimator for a fixed \(T \) and \(n \to \infty \). Since \(\lambda = \nu + E [f_t] \), consistent estimation of the risk premia themselves is impossible for a fixed \(T \) (see Shanken (1992) for the same point).

Proposition 4 below gives the large-sample distributions under the double asymptotics \(n, T \to \infty \). Let us define \(\tau_{i,j,T} = T/T_{ij} \), where \(T_{ij} = \sum_t I_{ij,t} \) and \(I_{ij,t} = I_{i,t}I_{j,t} \) for \(i, j = 1, ..., n \), and \(\tau_{ij} = \lim_{T \to \infty} \tau_{i,j,T} = E[I_{ij,t} | \gamma_i, \gamma_j]^{-1} \). We make use of matrices \(Q_{ij} = E [\beta_{3,i}w_{i}\beta_{3,j}] \), \(Q_x = E [Z_tZ_t'] \), \(S_{ij} = \lim_{T \to \infty} \frac{1}{T} \sum_t \sigma_{i,j,t}x_{i,t}x_{j,t}' \) and \(S_{Q,ij} = Q_{x,i}^{-1}S_{ij}Q_{x,j}^{-1} \). The following assumption describes the CLTs underlying the proof of the distributional properties.

Assumption A.2 As \(n, T \to \infty \), a) \(\frac{1}{\sqrt{n}} \sum_i \tau_i \left[(Q_{x,i}^{-1}Y_{i,T}) \otimes v_{3,i} \right] \Rightarrow N (0, S_{v_3}) \), with \(Y_{i,T} = \frac{1}{\sqrt{T}} \sum_t I_{i,t}x_{i,t} \epsilon_{i,t} \), \(v_{3,i} = vec[\beta_{3,i}w_i] \) and \(S_{v_3} = \lim_{n \to \infty} \frac{1}{n} \sum_{i,j} \frac{\tau_i \tau_j}{\tau_{ij}} \left[S_{Q,ij} \otimes v_{3,i}v_{3,j}' \right] \) a.s.; b) \(\frac{1}{\sqrt{T}} \sum_t u_t \otimes Z_{t-1} \Rightarrow N (0, \Sigma_u) \), where \(\Sigma_u = E \left[u_tu_t' \otimes Z_{t-1}Z_{t-1}' \right] \) and \(u_t = f_t - FZ_{t-1} \).

Assumptions A.2a) and b) require the asymptotic normality of cross-sectional and time series averages of scaled error terms, and of time series averages of factor values, respectively. These CLTs hold under weak serial and cross-sectional dependencies such as temporal mixing and block dependence (see Appendix 3). Assumption A.2a) would be debatable if we face a power law behavior in the cross-section for the unknown multivariate products \(\tau_i \left[(Q_{x,i}^{-1}Y_{i,T}) \otimes v_{3,i} \right] \). Gabaix (2011) reports such an issue for firm size distribution.

Assumption A.3 For any \(1 \leq t, s \leq T, T \in \mathbb{N} \) and \(\gamma \in [0, 1] \), we have \(E \left[\epsilon_t(\gamma)^2 \epsilon_s(\gamma) | \mathcal{F}_T \right] = 0 \).

Assumption A.3 is a symmetry condition on the conditional distribution of the sampling variability of the estimated weights \(\hat{w}_i \) does not impact the asymptotic distribution of estimator \(\hat{\nu} \). Our setting differs from the standard feasible WLS framework since we have to estimate each incidental parameter \(S_{ii} \). We can dispense with Assumption A.3 if we use OLS to estimate parameter \(\nu \), i.e., estimator \(\hat{\nu}_1 \), or if we put a more restrictive condition on the relative rate of \(n \) w.r.t. \(T \).
Proposition 4. Under Assumptions APR.1-APR.5, SC.1-SC.2, FS.1-FS.2, A.1-A.3 and B.1-B.6, we have

a) \(\sqrt{nT} \left(\hat{\nu} - \nu - \frac{1}{T} \hat{\beta}_\nu \right) \Rightarrow N(0, \Sigma) \) where \(\hat{\beta}_\nu = Q_{\beta_3}^{-1} \sum_i \tau_i T \text{vec} \left[E'_x \hat{Q}_{x,i} \hat{S}_{x,i} \hat{C}_x \hat{w}_i \right] \), and

\[\Sigma = \left(\text{vec} \left[C'_\nu \right] \otimes Q_{\beta_3}^{-1} \right) S_{\nu,3} \left(\text{vec} \left[C'_\nu \right] \otimes Q_{\beta_3}^{-1} \right) \text{, with } J_b = \left(\text{vec} \left[I_{d_1} \right] \otimes I_{K_{y}} \right) \left(I_{d_1} \otimes J_{a} \right), \text{ and} \]

\[C_\nu = (E'_1 - (I_{d_1} \otimes \nu') J_a E'_2)' \]

\(\sqrt{T} \text{vec} \left[\hat{N}' - N' \right] \Rightarrow N(0, \Sigma_{\Lambda}) \text{ where } \Sigma_{\Lambda} = (I_K \otimes Q_z^{-1}) \Sigma_u (I_K \otimes Q_z^{-1}) \),

when \(n, T \to \infty \) such that \(n = O(T^\gamma) \) for \(0 < \gamma < 3 \).

Since \(\lambda_t = \Lambda Z_{t-1} = (Z'_{t-1} \otimes I_K) W_{p,K} \text{vec} \left[\Lambda' \right] \), part b) and the properties of commutation matrices imply conditionally on \(Z_{t-1} \) that \(\sqrt{T} \left(\hat{\lambda}_t - \lambda_t \right) \Rightarrow N(0, (Z'_{t-1} Q_z^{-1} \otimes I_K) E[Z_{t-1} Z'_t \otimes u_t u'_t] (Q_z^{-1} Z_{t-1} \otimes I_K) \).

We can simplify the asymptotic variance matrix in Proposition 4 in the time-invariant setting to \(\Sigma_\nu = Q_b^{-1} S_b Q_b^{-1} \), where \(Q_b = E[w_i b_i b'_i] \) and \(S_b = \lim_{n \to \infty} E \left[\frac{1}{n} \sum_{i,j} w_i w_j v_{ij} b_i b'_j \right] \), with \(v_{ij} = \frac{\tau_{ij}}{\tau_{ij}} c'_y Q_x^{-1} S_{ij} Q_x^{-1} c_y \), which gives \(v_{ii} = v_i \). We can also write the asymptotic variance matrix as a limit:

\[\Sigma_\nu = a.s.- \lim_{n \to \infty} \Sigma_{\nu,n}, \quad \Sigma_{\nu,n} := \left(\frac{1}{n} B'_n W_n B_n \right)^{-1} \frac{1}{n} B'_n W_n V_n W_n B_n \left(\frac{1}{n} B'_n W_n B_n \right)^{-1}, \quad (15) \]

where \(B_n = (b_1, \ldots, b_n)' \), \(W_n = \text{diag} (w_1, \ldots, w_n) \), and \(V_n = [v_{ij}]_{i,j=1,\ldots,n} \). In the conditionally homoskedastic and balanced case, we further have \(c'_y Q_x^{-1} c_y = 1 + \lambda' V[f_t]^{-1} \lambda \) and \(V_n = (1 + \lambda' V[f_t]^{-1} \lambda) \Sigma_{\epsilon,n} \), where \(\Sigma_{\epsilon,n} = [\sigma_{ij}]_{i,j=1,\ldots,n} \). In particular, in the CAPM, we have \(K = 1 \) and \(\nu = 0 \), which implies that \(\sqrt{\lambda^2/V[f_t]} \) is equal to the slope of the Capital Market Line \(\sqrt{E[f_t^2]/V[f_t]} \), i.e., the Sharpe Ratio of the market portfolio.

Proposition 4 shows that the estimator \(\hat{\nu} \) has a fast convergence rate \(\sqrt{nT} \) and features an asymptotic bias term. Both \(\hat{\beta}_{1,i} \) and \(\hat{\beta}_{3,i} \) in the definition of \(\hat{\nu} \) contain an estimation error; for \(\hat{\beta}_{3,i} \), this is the well-known Error-In-Variable (EIV) problem. The EIV problem does not impede consistency since we let \(T \) grow to infinity. However, it induces the bias term \(\hat{B}_\nu/T \) which centers the asymptotic distribution of \(\hat{\nu} \). The upper bound on the relative expansion rates of \(n \) and \(T \) in Proposition 4 is \(n = O(T^\gamma) \) for \(\gamma < 3 \). The control of the first-pass estimation errors uniformly across assets requires that the cross-section dimension \(n \) is not too large w.r.t. the time series dimension \(T \).

In the above setting, we study a semiparametric framework with a double asymptotic treatment and unbalanced panel under a general approximate factor structure. Ang, Liu, and Schwarz (2008) look at a maximum likelihood analysis with a single asymptotic treatment (large \(T \), \(n \) fixed) and balanced panel
under a particular approximate Gaussian factor structure (block diagonal covariance matrix of residuals) and time-invariant coefficients. Their setting further assumes that the factors have zero mean. Such an assumption gives \(\hat{\lambda} = \hat{\nu} \) in a time-invariant setting (see (14)). Under a zero mean (or a known mean, i.e., not to be estimated), the asymptotic variance of \(\hat{\lambda} \) corresponds to the asymptotic variance \(\Sigma_\nu \) of \(\hat{\nu} \) and the rate of convergence is \(\sqrt{nT} \). Our results for \(\Sigma_\nu \) yields their Equation (13), when their intercept parameter \(\alpha \) is assumed 0, for uncorrelated and conditionally homoskedastic idiosyncratic risks across assets. On the contrary, if we do not know the mean of the factor and need to estimate it, we have \(\hat{\lambda} = \hat{\nu} + \frac{1}{T} \sum_t f_t \). The asymptotic variance of \(\hat{\lambda} \) corresponds to the asymptotic variance \(\Sigma_f \) of the sample average of the factors, and the rate of convergence is \(\sqrt{T} \). Jagannathan and Wang (2002) is an early reference on the impact of knowing or not the mean of the factors for asymptotic analysis. With an unknown mean, only the variability of the factor drives the asymptotic distribution of \(\hat{\lambda} \), since the estimation error \(O_p(1/\sqrt{T}) \) of the sample average \(\frac{1}{T} \sum_t f_t \) dominates the estimation error \(O_p(1/\sqrt{nT} + 1/T) \) of \(\hat{\nu} \). This result is an oracle property for \(\hat{\lambda} \), namely that its asymptotic distribution is the same irrespective of the knowledge of \(\nu \). This property is in sharp difference with the single asymptotics with a fixed \(n \) and \(T \to \infty \). In the balanced case and with homoskedastic errors for the time-invariant case, Theorem 1 of Shanken (1992) shows that the rate of convergence of \(\hat{\lambda} \) is \(\sqrt{T} \) and that its asymptotic variance is \(\Sigma_{\lambda,n} = \Sigma_f + \frac{1}{n}(1 + \lambda'V[f_t]^{-1}\lambda) \left(\frac{1}{n}B_n'W_nB_n \right)^{-1} \left(\frac{1}{n}B_n'W_n\Sigma_{\varepsilon,n}W_nB_n \right)^{-1} \left(\frac{1}{n}B_n'W_nB_n \right)^{-1} \), for fixed \(n \) and \(T \to \infty \). The two components in \(\Sigma_{\lambda,n} \) come from estimation of \(E[f_t] \) and \(\nu \), respectively. In the conditionally heteroskedastic setting with fixed \(n \), a slight extension of Theorem 1 in Jagannathan and Wang (1998), or Theorem 3.2 in Jagannathan, Skoulakis, and Wang (2009), to the unbalanced case yields \(\Sigma_{\lambda,n} = \Sigma_f + \frac{1}{n} \Sigma_{\nu,n} \), where \(\Sigma_{\nu,n} \) is defined in (15). Letting \(n \to \infty \) gives \(\Sigma_f \) under weak cross-sectional dependence. Thus, exploiting the full cross-section of assets improves efficiency asymptotically, and the positive definite matrix \(\Sigma_{\lambda,n} - \Sigma_f \) corresponds to the efficiency gain. Using a large number of assets instead of a small number of portfolios does help to eliminate the contribution coming from estimation of \(\nu \).

Proposition 4 suggests exploiting the analytical bias correction \(\hat{B}_\nu/T \) and using estimator \(\hat{\nu}_B = \hat{\nu} - \frac{1}{T} \hat{B}_\nu \) instead of \(\hat{\nu} \). In the time-invariant setting, \(\hat{\lambda}_B = \hat{\nu}_B + \frac{1}{T} \sum_t f_t \) delivers a bias-free estimator of \(\lambda \) at order \(1/T \), which shares the same root-\(T \) asymptotic distribution as \(\hat{\lambda} \).
Finally, we can relate the results of Proposition 4 to bias-corrected estimation accounting for the well-known incidental parameter problem (Neyman and Scott (1948)) in the panel literature (see Lancaster (2000) for a review). To highlight the main idea, let us focus on the model with time-invariant coefficients. We can write the factor model under restriction $a_i = b_i' \nu$ as $R_{i,t} = b_i' (f_t + \nu) + \varepsilon_{i,t}$. In the likelihood setting of Hahn and Newey (2004) (see also Hahn and Kuersteiner (2002)), the b_is correspond to the individual fixed effects and ν to the common parameter of interest. Available results on the fixed-effect approach tell us: (i) the ML estimator of ν is inconsistent if n goes to infinity while T is held fixed, (ii) the ML estimator of ν is asymptotically biased even if T grows at the same rate as n, (iii) an analytical bias correction may yield an estimator of ν that is root-(nT) asymptotically normal and centered at the truth if T grows faster than $n^{1/3}$.

The two-pass estimators $\hat{\nu}$ and $\hat{\nu}_{12}$ exhibit the properties (i)-(iii) as expected by analogy with unbiased estimation in large panels. This clear link with the incidental parameter literature highlights another advantage of working with ν in the second-pass regression. Chamberlain (1992) considers a general random coefficient model nesting the factor model with time-invariant coefficients. He establishes asymptotic normality of an estimator of ν for fixed T and balanced panel data. His estimator does not admit a closed-form and requires numerical optimization. This leads to computational difficulties in the conditional setting. This also makes the study of his estimator under double asymptotics and cross-sectional dependence challenging. Recent advances on the incidental parameter problem in random coefficient models for fixed T are Arellano and Bonhomme (2012) and Bonhomme (2012).

3.4 Confidence intervals

We can use Proposition 4 to build confidence intervals by means of consistent estimation of the asymptotic variance-covariance matrices. We can check with these intervals whether the risk of a given factor $f_{k,t}$ is not remunerated, i.e., $\lambda_{k,t} = 0$, or the restriction $\nu = 0$ holds when the factors are traded. We replace the unknown quantities $Q_{x,i}$, Q_z, Q_{β_3}, and ν by their empirical counterparts $\hat{Q}_{x,i}$, \hat{Q}_z, \hat{Q}_{β_3}, and $\hat{\nu}$. We estimate Σ_u (or Σ_f in the time-invariant setting), by a standard HAC estimator $\hat{\Sigma}_u$ such as in Newey and West (1994) or Andrews and Monahan (1992). Hence, the construction of confidence intervals with valid asymptotic coverage for components of $\hat{\Lambda}$ is straightforward. On the contrary, getting a HAC estimator for $\bar{\Sigma}_f$ appearing in the asymptotic distribution of $\bar{\lambda}$ as discussed after Equation (14) is not obvious in the
unbalanced case.

The construction of confidence intervals for the components of \(\hat{\nu} \) is more difficult. Indeed, the variance-covariance matrix \(\Sigma_\nu \) through \(S_{v3} \) involves a limiting double sum over \(S_{ij} \) scaled by \(n \) and not \(n^2 \). A naive approach consists in replacing \(S_{ij} \) by any consistent estimator such as \(\hat{S}_{ij} = \frac{1}{T_{ij}} \sum_t I_{ij,t} \hat{\epsilon}_{i,t} \hat{\epsilon}_{j,t} x_{i,t} x_{j,t}' \), but this does not work here. To handle this, we rely on recent proposals in the statistical literature on consistent estimation of large-dimensional sparse covariance matrices by hard thresholding (Bickel and Levina (2008), El Karoui (2008)). Fan, Liao, and Mincheva (2011) focus on the estimation of the variance-covariance matrix of the errors in large balanced panel with nonrandom time-invariant coefficients and i.i.d. disturbances.

The idea is to assume sparse contributions of the \(S_{ij} \)s to the double sum. Then, we only have to account for sufficiently large contributions in the estimation, i.e., contributions larger than a threshold vanishing asymptotically. Thresholding permits an estimation invariant to asset permutations; the absence of any natural cross-sectional ordering among the matrices \(S_{ij} \)s motivates this choice of estimator. In the following assumption, we use the notion of sparsity suggested by Bickel and Levina (2008) adapted to our framework with random coefficients.

Assumption A.4 There exist constants \(\bar{q}, \delta \in [0, 1) \) such that \(\max_j \sum_i \| S_{ij} \|^\bar{q} = O_p \left(n^\delta \right) \).

Assumption A.4 tells us that we can neglect most cross-asset contributions \(\| S_{ij} \| \). As sparsity increases, we can choose coefficients \(\bar{q} \) and \(\delta \) closer to zero. Assumption A.4 does not impose sparsity of the covariance matrix of the returns themselves. Assumption A.1 c) is also a sparsity condition, which ensures that the limit matrix \(\Sigma_\nu \) is well-defined when combined with Assumption B.4. We meet both sparsity assumptions, as well as the approximate factor structure Assumption APR.4 (ii), under weak cross-sectional dependence between the error terms, for instance, under a block dependence structure (see Appendix 3). We can also check that the sparsity structure is robust to asset repackaging using the framework of Section 2.2.

As in Bickel and Levina (2008), let us introduce the thresholded estimator \(\tilde{S}_{ij} = \hat{S}_{ij} 1 \{ \| \hat{S}_{ij} \| \geq \kappa \} \) of \(S_{ij} \), which we refer to as \(\hat{S}_{ij} \) thresholded at \(\kappa = \kappa_{n,T} \). We can derive an asymptotically valid confidence interval for the components of \(\hat{\nu} \) from the next proposition giving a feasible asymptotic normality result based on the estimator \(\tilde{\Sigma}_\nu = \left(vec \left[C_{\nu}' \otimes \hat{Q}_{\beta_3}^{-1} \right] \right) \tilde{S}_{v3} \left(vec \left[C_{\nu}' \otimes \hat{Q}_{\beta_3}^{-1} \right] \right) \), with
\[\hat{S}_{v3} = \frac{1}{n} \sum_{i,j} \frac{\tau_{i,T} \tau_{j,T}}{\tau_{i,j,T}} [\tilde{S}_{Q,ij} \otimes \tilde{v}_{3,i} \tilde{v}_{3,j}'], \text{ and } \tilde{S}_{Q,ij} = \hat{Q}_{x,i}^{-1} \tilde{S}_{ij} \hat{Q}_{x,j}^{-1}. \]

Proposition 5 Under Assumptions APR.1-APR.5, SC.1-SC.2, FS.1-FS.2, A.1-A.4, B.1-B.6, we have \(\tilde{\Sigma}_{\nu}^{-1/2} \sqrt{nT} \left(\nu - \frac{1}{T} \hat{B}_{\nu} - \nu \right) \Rightarrow N(0, I_K) \), when \(n, T \to \infty \) such that \(n = O(T^{\gamma}) \) for \(0 < \gamma < \min \left\{ 3, \eta - \frac{2q}{2\delta} \right\} \), and \(\kappa = M \sqrt{\log n \over T^\eta} \) for a constant \(M > 0 \) and \(\eta \in (0, 1] \) as in Assumption B.1.

In Assumption B.1, we define constant \(\eta \in (0, 1] \) which is related to the time series dependence of processes \((\varepsilon_{i,t}) \) and \((x_{i,t}) \). We have \(\eta = 1 \), when \((\varepsilon_{i,t}) \) and \((x_{i,t}) \) are serially i.i.d. as in Appendix 3 and Bickel and Levina (2008). The stronger the time series dependence (smaller \(\eta \)) and the lower the sparsity (\(\bar{q} \) and \(\bar{\delta} \) closer to 1), the more restrictive the condition on the relative rate \(\bar{\gamma} \). We cannot guarantee all thresholded blocks \(\tilde{S}_{ij} \) to be semi definite positive (sdp). However, we expect that the double summation on \(i \) and \(j \) makes \(\tilde{\Sigma}_{\nu} \) sdp in empirical applications. In case it is not, El Karoui (2008) discusses a few solutions based on shrinkage.

3.5 Tests of asset pricing restrictions

From (11), the null hypothesis underlying the asset pricing restriction (3) is

\[\mathcal{H}_0 : \text{there exists } \nu \in \mathbb{R}^bK \text{ such that } \beta_1(\gamma) = \beta_3(\gamma) \nu, \text{ for almost all } \gamma \in [0, 1], \]

where \(\beta_1(\gamma) \) and \(\beta_3(\gamma) \) are defined as \(\beta_{1,i} \) and \(\beta_{3,i} \) in Equations (10) and (11) replacing \(B(\gamma) \) and \(C(\gamma) \) for \(B_i \) and \(C_i \). This null hypothesis is written on the continuum of assets. Under \(\mathcal{H}_0 \), we have

\[E \left[(\beta_{1,i} - \beta_{3,i} \nu)' (\beta_{1,i} - \beta_{3,i} \nu) \right] = 0. \]

Since we estimate \(\nu \) via the WLS cross-sectional regression of the estimates \(\hat{\beta}_{1,i} \) on the estimates \(\hat{\beta}_{3,i} \), we suggest a test based on the weighted sum of squared residuals SSR of the cross-sectional regression. The weighted SSR is \(\hat{Q}_e = \frac{1}{n} \sum_i \tilde{e}_i' \tilde{w}_i \tilde{e}_i \), with \(\tilde{e}_i = \hat{\beta}_{1,i} - \hat{\beta}_{3,i} \hat{\nu} = C_i' \hat{\beta}_i \), which is an empirical counterpart of \(E \left[(\beta_{1,i} - \beta_{3,i} \nu)' w_i (\beta_{1,i} - \beta_{3,i} \nu) \right] \).

Let us define \(S_{i,T} = \frac{1}{T} \sum_t I_{i,t} \sigma_{i,t} x_{i,t} x_{i,t}' \) and introduce the next assumption.

Assumption A.5 As \(n, T \to \infty \), we have \(\frac{1}{\sqrt{n}} \sum_i \tau_{i}^2 \left[\left(Q_{x,i}^{-1} \otimes Q_{x,i}^{-1} \right) (Y_{i,T} \otimes Y_{i,T} - \text{vec} [S_{i,T}]) \right] \otimes \text{vec} [w_i] \).
\[\Rightarrow N (0, \Omega) \text{, where the asymptotic variance matrix is:} \]

\[
\Omega = \lim_{n \to \infty} E \left[\frac{1}{n} \sum_{i,j} \frac{\tau_i^2 j^2}{\tau_{ij}} \left[S_{Q,ij} \otimes S_{Q,ij} + (S_{Q,ij} \otimes S_{Q,ij}) W_d \otimes (\text{vec}[w_i] \text{vec}[w_j]) \right] \right]
\]

\[
= \text{a.s.} \lim_{n \to \infty} \frac{1}{n} \sum_{i,j} \frac{\tau_i^2 j^2}{\tau_{ij}} \left[S_{Q,ij} \otimes S_{Q,ij} + (S_{Q,ij} \otimes S_{Q,ij}) W_d \otimes (\text{vec}[w_i] \text{vec}[w_j]) \right].
\]

Assumption A.5 is a high-level CLT condition. We can prove this assumption under primitive conditions on the time series and cross-sectional dependence. For instance, we prove in Appendix 3 that Assumption A.5 holds under a cross-sectional block dependence structure for the errors. Intuitively, the expression of the variance-covariance matrix \(\Omega \) is related to the result that, for random \(d \times 1 \) vectors \(Y_1 \) and \(Y_2 \) which are jointly normal with covariance matrix \(S \), we have \(\text{Cov}(Y_1 \otimes Y_1, Y_2 \otimes Y_2) = S \otimes S + (S \otimes S) W_d \) (see Section 3.1 and Chapter 3 of MN for the definition of the commutation matrix \(W_d \)).

Let us now introduce the following statistic \(\hat{\xi}_{nT} = T \sqrt{n} \left(\hat{Q}_e - \frac{1}{T} \hat{B}_e \right) \), where the recentering term simplifies to \(\hat{B}_e = d \) thanks to the weighting scheme. Under the null hypothesis \(H_0 \), we prove \(\hat{\xi}_{nT} = \text{vec} \left[\begin{bmatrix} C' \otimes C' \end{bmatrix}' \right] \frac{1}{\sqrt{n}} \sum_i \tau_i^2 \left(\left(Q^{-1}_{x,i} \otimes Q^{-1}_{x,i} \right) (Y_{i,T} \otimes Y_{i,T} - \text{vec} [S_{ii,T}]) \right) \otimes \text{vec}[w_i] + o_p(1) \), which implies

\[\hat{\xi}_{nT} \Rightarrow N (0, \Sigma_\xi) \text{, where } \Sigma_\xi = 2 \lim_{n \to \infty} E \left[\frac{1}{n} \sum_{i,j} \frac{\tau_i^2 j^2}{\tau_{ij}} \text{tr} \left[\left(C' Q^{-1}_{x,i} S_{ij} Q^{-1}_{x,j} C' \right) w_j \left(C' Q^{-1}_{x,i} S_{ij} Q^{-1}_{x,j} C' \right) w_i \right] \right] \]

as \(n, T \to \infty \) (see Appendix A.2.9). Then, a feasible testing procedure exploits the consistent estimator

\[\hat{\Sigma}_\xi = 2 \frac{1}{n} \sum_{i,j} \frac{\tau_i^2 j^2}{\tau_{ij}} \text{tr} \left[\left(C' Q^{-1}_{x,i} S_{ij} Q^{-1}_{x,j} C' \right) w_j \left(C' Q^{-1}_{x,i} S_{ij} Q^{-1}_{x,j} C' \right) w_i \right] \]

of the asymptotic variance \(\Sigma_\xi \).

Proposition 6 Under \(H_0 \) and Assumptions APR.1-APR.5, SC.1-SC.2, FS.1-FS.2, A.1-A.5, and B.1-B.6, we have \(\hat{\Sigma}_\xi^{-1/2} \hat{\xi}_{nT} \Rightarrow N (0, 1) \), as \(n, T \to \infty \) such that \(n = O \left(T^\gamma \right) \) for \(0 < \gamma < \min \left(2, \eta \frac{1 - \bar{q}}{2\delta} \right) \).

In the conditionally homoskedastic case for time-invariant coefficients, the asymptotic variance of \(\hat{\xi}_{nT} \) reduces to \(\Sigma_\xi = 2 \text{a.s.} \lim_{n \to \infty} \frac{1}{n} \sum_{i,j} \frac{\tau_i \tau_j}{\tau_{ij}} \frac{\sigma_{ij}^2}{\sigma_{ii} \sigma_{jj}} \). For fixed \(n \), we can rely on the test statistic \(T \hat{Q}_e \), which is asymptotically distributed as \(\frac{1}{n} \sum_j e_i g_j X_j^2 \) for \(j = 1, \ldots, (n - K) \), where the \(X_j^2 \) are independent chi-square variables with 1 degree of freedom, and the coefficients \(e_i g_j \) are the non-zero eigenvalues of matrix \(V_n^{1/2} (W_n - W_n B_n (B_n' W_n B_n)^{-1} B_n' W_n) V_n^{1/2} \) (see Kan, Robotti, and Shanken (forthcoming, 2012)). By
letting n grow, the sum of chi-square variables converges to a Gaussian variable after recentering and rescaling, which yields heuristically the result of Proposition 6. The condition on the relative expansion rate of n and T for the distributional result on the test statistic in Proposition 6 is more restrictive than the condition for feasible asymptotic normality of the estimators in Proposition 5.

The alternative hypothesis is

$$H_1 : \inf_{\nu \in \mathbb{R}^K} E \left[(\beta_{1,i} - \beta_{3,i}\nu)'(\beta_{1,i} - \beta_{3,i}\nu) \right] > 0.$$

Let us define the pseudo-true value $\nu_\infty = \arg \inf_{\nu \in \mathbb{R}^K} Q_w^w(\nu)$, where $Q_w^w(\nu) = E \left[(\beta_{1,i} - \beta_{3,i}\nu)'w_i(\beta_{1,i} - \beta_{3,i}\nu) \right]$ (White (1982), Gourieroux, Monfort, and Trognon (1984)) and population errors $e_i = \beta_{1,i} - \beta_{3,i}\nu_\infty = C_{\nu_\infty}'\beta_{i,1}$, $i = 1, ..., n$, for all n. In the next proposition, we prove consistency of the test, namely that the statistic $\tilde{\Sigma}^{-1/2}_n\hat{\xi}_{nT}$ diverges to $+\infty$ under the alternative hypothesis H_1 for large n and T. The test of the null H_0 against the alternative H_1 is a one-sided test. We also give the asymptotic distribution of estimators $\hat{\nu}$ and $\hat{\Lambda}$ under H_1.

Proposition 7 Under H_1 and Assumptions APR.1-APR.5, SC.1-SC.2, FS.1-FS.2, A.1-A.5 and B.1-B.6, we have: a) $\sqrt{n} \left(\hat{\nu} - \frac{1}{T}B_\nu - \nu_\infty \right) \Rightarrow N(0, \Sigma_{\nu_\infty})$, where $\Sigma_{\nu_\infty} = Q_{\beta_3}'E[\beta_{3,i}'w_i'e_i'w_i\beta_{3,i}]Q_{\beta_3}^{-1}$, and b) $\sqrt{T}vec \left[\hat{\Lambda}' - \Lambda_\infty' \right] \Rightarrow N(0, \Sigma_{\Lambda})$, where $vec[\Lambda_\infty'] = \nu_\infty + vec[F']$, as $n, T \to \infty$ such that $T/n = o(1)$ and $n = O(T^{\bar{\gamma}})$ for $\bar{\gamma} < 3$; c) $\tilde{\Sigma}_\xi^{-1/2}_n\hat{\xi}_{nT} \overset{p}{\to} +\infty$, as $n, T \to \infty$ such that $n = O(T^{\bar{\gamma}})$ for $0 < \bar{\gamma} < \min \left\{ 2, \frac{1}{2\delta} \right\}$.

Under the alternative hypothesis H_1, the convergence rate of $\hat{\nu}$ is slower than under H_0, while the convergence rate of $\hat{\Lambda}$ remains the same. The asymptotic distribution of the bias-adjusted estimator $\hat{\nu} - \frac{1}{T}B_\nu$ is the same as the one got from a cross-sectional regression of $\beta_{i,1}$ on $\beta_{i,3}$. The condition $T/n = o(1)$ in Propositions 7 a) and b) ensures that cross-sectional estimation of ν has asymptotically no impact on the estimation of Λ.

To study the local asymptotic power, we can adopt the local alternative hypothesis $H_{1,nT} : \inf_{\nu \in \mathbb{R}^K} Q_w^w(\nu) = \frac{\psi}{\sqrt{nT}} > 0$, for a constant $\psi > 0$. We can show that $\hat{\xi}_{nT} \Rightarrow N(\psi, \Sigma_{\xi})$, and the test is locally asymptotically powerful. Pesaran and Yamagata (2008) consider a similar local analysis for a test of slope homogeneity in large panels.
Finally, we can derive a test for the null hypothesis when the factors come from tradable assets, i.e., are portfolio excess returns:

$$\mathcal{H}_0 : \beta_1(\gamma) = 0 \text{ for almost all } \gamma \in [0, 1],$$

against the alternative hypothesis

$$\mathcal{H}_1 : E [\beta_1' \beta_1] > 0.$$

We only have to substitute $$\hat{Q}_a = \frac{1}{n} \sum_i \hat{\beta}_{1,i} \hat{w}_i \hat{\beta}_{1,i}$$ for $$\hat{Q}_e$$, and $$E_1 = (I_{d_1} : 0_{d_1 \times d_2})'$$ for $$C_{\nu}$$. Since the constrained form of $$\beta_{1,i}$$ in (11) comes from (7), we take directly into account the no-arbitrage restrictions imposed by the model specification. This gives an extension of Gibbons, Ross and Shanken (1989) to the conditional case with double asymptotics. Implementing the original Gibbons, Ross, and Shanken (1989) test, which uses a weighting matrix corresponding to an inverted estimated large variance-covariance matrix, becomes quickly problematic. We face a large number $$nd_1$$ of restrictions; each $$\beta_{1,i}$$ is of dimension $$d_1 \times 1$$, and the estimated covariance matrix to invert is of dimension $$nd_1 \times nd_1$$. We expect to compensate the potential loss of power induced by a diagonal weighting via the larger number of restrictions. Our Monte Carlo simulations show that the test exhibits good power properties against both risk-based and non-risk-based alternatives (e.g. MacKinlay (1995)) already for a thousand assets with a time series dimension similar to the one in the empirical analysis.

4 Empirical results

4.1 Asset pricing model and data description

Our baseline asset pricing model is a four-factor model with $$f_t = (r_{m,t}, r_{smb,t}, r_{hml,t}, r_{mom,t})'$$, where $$r_{m,t}$$ is the month $$t$$ excess return on CRSP NYSE/AMEX/Nasdaq value-weighted market portfolio over the risk free rate, and $$r_{smb,t}, r_{hml,t}$$ and $$r_{mom,t}$$ are the month $$t$$ returns on zero-investment factor-mimicking portfolios for size, book-to-market, and momentum (see Fama and French (1993), Jegadeesh and Titman (1993), Carhart (1997)). We proxy the risk free rate with the monthly 30-day T-bill beginning-of-month yield. To account for time-varying alphas, betas and risk premia, we use a conditional specification based on two common variables and a firm-level variable. We take the instruments $$Z_t = (1, Z_{t*})'$$, where bivariate
vector Z_t^* includes the term spread, proxied by the difference between yields on 10-year Treasury and 3-month T-bill, and the default spread, proxied by the yield difference between Moody’s Baa-rated and Aaa-rated corporate bonds. We take a scalar $Z_{i,t}$ corresponding to the book-to-market equity of firm i. We refer to Avramov and Chordia (2006) for convincing theoretical and empirical arguments in favor of the chosen conditional specification. The vector $x_{i,t}$ has dimension $d = 25$, and parsimony explains why we have not included e.g. the size of firm i as an additional stock specific instrument. We report robustness checks with other time-varying specifications in the supplementary materials.

We compute the firm characteristics from Compustat as in the appendix of Fama and French (2008). The CRSP database provides the monthly stock returns data and we exclude financial firms (Standard Industrial Classification Codes between 6000 and 6999) as in Fama and French (2008). The dataset after matching CRSP and Compustat contents comprises $n = 9,936$ stocks, and covers the period from July 1964 to December 2009 with $T = 546$ months. For comparison purposes with a standard methodology for small n, we consider the 25 and 100 Fama-French (FF) portfolios as base assets. In those cases, the asset specific instrument $Z_{i,t-1}$ is the book-to-market equity of the portfolio. We have downloaded the time series of factors, portfolio returns, and portfolio characteristics from the website of Kenneth French.

4.2 Estimation results

We first present the estimates of a time-invariant specification (i.e. $Z_t = 1$ and $Z_{i,t} = 0$) before looking at the path of the time-varying estimates. We use $\chi_{1,T} = 15$ as advocated by Greene (2008), together with $\chi_{2,T} = 546/12$ for the time-invariant estimation and $\chi_{2,T} = 546/60$ for the time-varying estimation. In the data, we have observed condition numbers as large as $1,000$. The number of assets whose condition number is above 15 is 9,930 in the time-invariant four-factor model, and 3,909 in the time-varying four-factor model. For both the time-invariant and the time-varying specifications, the weights \tilde{w}_i are increasing w.r.t. the market capitalization. This finding is explained by the longer lifetimes and the smaller idiosyncratic variances of larger stocks. Thus, our weighting scheme makes sure that the estimates are not entirely driven by small stocks. In the results reported for each model, we denote by n^X the dimension of the cross-section after trimming. We compute confidence intervals with a data-driven threshold selected by cross-validation as in Bickel and Levina (2008). Table 1 gathers the estimated annual risk premia, with the corresponding
confidence intervals at 95% level, for the following time-invariant models: the four-factor model, the Fama-French model, and the CAPM. For the Fama-French model and the CAPM, the trimming level \(\chi_{1,T} \) is not binding when \(\chi_{2,T} = 546/12 \). In Table 2, we display the estimates of the components of \(\nu \). For individual stocks, we use bias-corrected estimates for \(\lambda \) and \(\nu \). For portfolios, we use asymptotics for fixed \(n \) and \(T \to \infty \). The estimated risk premia for the market factor are of the same magnitude and all positive across the three universes of assets and the three models. For the four-factor model and the individual stocks, the size factor is positively remunerated (2.86%) and it is not significantly different from zero. The value factor commands a significant negative reward (-4.60%). Phalippou (2007) obtains a similar growth premium for portfolios built on stocks with a high institutional ownership. The momentum factor is largely remunerated (7.16%) and significantly different from zero. For the 25 and 100 FF portfolios, we observe that the size factor is not significantly positively remunerated while the value factor is significantly positively remunerated (4.81% and 5.11%). The momentum factor bears a significant positive reward (34.03% and 17.33%). The large, but imprecise, estimate for the momentum premium when \(n = 25 \) and \(n = 100 \) comes from the estimate for \(\nu_{mom} \) (25.40% and 8.70%) that is much larger and less accurate than the estimates for \(\nu_m, \nu_{smb} \) and \(\nu_{hml} \) (0.85%, -0.26%, 0.03%, and 0.55%, 0.01%, 0.33%). Moreover, while the estimates of \(\nu_m, \nu_{smb} \) and \(\nu_{hml} \) are statistically not significant for portfolios, the estimates of \(\nu_m \) and \(\nu_{hml} \) are statistically different from zero for individual stocks. In particular, the estimate of \(\nu_{hml} \) is large and negative. This explains the negative estimate on the value premium displayed in Table 1, despite the positive time average of the value factor. The size, value and momentum factors are tradable in theory. In practice, their implementation faces transaction costs due to rebalancing and short selling. A non zero \(\nu \) might capture these market imperfections (Cremers, Petajisto, and Zitzewitz (2010)).

A potential explanation of the discrepancies revealed in Tables 1 and 2 (see below for another potential explanation due to misspecification) between individual stocks and portfolios is the much larger heterogeneity of the factor loadings for the former. As already discussed in Lewellen, Nagel, and Shanken (2010), the portfolio betas are all concentrated in the middle of the cross-sectional distribution obtained from the individual stocks. Creating portfolios distorts information by shrinking the dispersion of betas. The estimation results for the momentum factor exemplify the problems related to a small number of portfolios exhibiting a tight factor structure. For \(\lambda_m, \lambda_{smb}, \) and \(\lambda_{hml} \), we obtain similar inferential results when we consider
the Fama-French model. Our point estimates for λ_m, λ_{smb} and λ_{hml}, for large n agree with Ang, Liu, and Schwarz (2008). Our point estimates and confidence intervals for λ_m, λ_{smb} and λ_{hml}, agree with the results reported by Shanken and Zhou (2007) for the 25 portfolios.

Let us now consider the time-varying four-factor specification. Figure 1 plots the estimated time-varying paths of the four risk premia from the individual stocks. For comparison purpose, we also plot the time-invariant estimates and the average lambdas over time. A well-known bias coming from market-timing and volatility-timing (Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth et al. (2011)) explains the discrepancy between the time-invariant estimate and the average over time. After trimming, we compute the risk premia on $n^{\chi} = 3,900$ individual assets in the four-factor model. The risk premia for the market, size and value factors feature a counter-cyclical pattern. Indeed, these risk premia increase during economic contractions and decrease during economic booms. Gomes, Kogan, and Zhang (2003) and Zhang (2005) construct equilibrium models exhibiting a counter-cyclical behavior in size and book-to-market effects. On the contrary, the risk premium for the momentum factor is pro-cyclical. Furthermore, time-varying estimates of the value premium are often negative and take positive values mostly in recessions. Growth firms are riskier in boom times because of their in-the-money growth options; value firms are riskier in recession times because of default risk. The time-varying estimates of the size premium are most of the time slightly positive.

Figure 2 plots the estimated time-varying path of the four risk premia from the 25 portfolios. We also plot the time-invariant estimates and the average lambdas over time. The discrepancy between the time-invariant estimate and the averages over time is also observed for $n = 25$. The time-varying point estimates for $\lambda_{mom,t}$ are typically smaller than the time-invariant estimate in Table 1. Finally, by comparing Figures 1 and 2, we observe that the patterns of risk premia look similar except for the book-to-market factor. Indeed, the risk premium for the value effect estimated from the 25 portfolios is pro-cyclical, contradicting the counter-cyclical behavior predicted by finance theory. By comparing Figures 2 and 3, we observe that increasing the number of portfolios to 100 does not help in reconciling the discrepancy.

The time-varying risk premia involve both the conditional expectation of the factors, via the coefficients matrix F, and the cross-sectional parameters vector ν. To disentangle their effects on the risk-premia estimates, we report in Table 3 the estimates of the components of vector $vec[F']$, and of vector ν for both
the individual stocks and the two sets of portfolios. As expected, the conditional means are positive for all factors, when term spread and default spread are at their historical averages. The effect of term spread on the factor conditional mean is positive for all factors, while the effect of default spread is negative for the value and momentum factors. The regression coefficients for both instruments are not statistically significant at the 5% level, but their magnitude is economically important, especially for default spread. The estimates of \(\nu \) differ sharply between individual stocks and portfolios, especially for the value and momentum factors, and this explains the differences in average level and dynamics in the risk premia estimates observed in Figures 1 and 2. Let us focus on the value factor. The negative estimate \(-6.1642\) of the intercept coefficient compensates the corresponding coefficient 4.7772 in \(F \), and yields a negative value premium when default spread and term spread are at their historical averages. Similarly, the positive estimate 3.5981 yields a value premium that depends positively on default spread and is counter-cyclical. The estimates of \(\nu \) on the 25 FF portfolios are smaller than for stocks, and smaller than the estimates of \(F \), which explains the mostly positive and pro-cyclical value premium observed in Figure 2. To speed up the computation of the standard errors of \(\hat{\nu} \), we use here the numerically equivalent estimated variance-covariance matrix

\[
\hat{\Sigma}_\nu = \hat{Q}^{-1} \beta_3 \left(\frac{1}{n} \sum_{i,j} \tau_{i,T} \tau_{j,T} \beta_{3,i} \beta_{3,j} \hat{\Sigma}_i \hat{\Sigma}_j \hat{w}_i \hat{w}_j \right) \hat{Q}^{-1} \beta_3^n \]

instead of the expression of Section 3.4 where the Kronecker products of the large dimensional matrices slow down the computations. The coefficients of \(\nu \) corresponding to the effect of default spread are statistically significant at the 5% level for the size, value and momentum factors, while the coefficients of term spread are statistically significant for the market and momentum factors. The confidence intervals for the estimates of parameters \(\nu \) on the individual stocks are narrower than the confidence intervals for parameters \(F \), reflecting the fast root-\(nT \) convergence rate of the former parameters.

A potential explanation of the differences between the results on individual stocks and portfolios is misspecification of the functional form of the portfolio beta dynamics. To clarify this, we need to consider in more details the procedure of portfolio aggregation. Let us formalize the concept of portfolio with a function \(w(\gamma, \omega) \), which is \(\mathcal{F}_0 \)-measurable w.r.t. \(\omega \) for a.e. \(\gamma \in [0,1] \), and Lebesgue measurable w.r.t. \(\gamma \in [0,1] \) for a.e. \(\omega \in \Omega \), such that \(\int w(\gamma, \omega) d\gamma = 1 \) for a.e. \(\omega \in \Omega \). Function \(w \) is proportional to the weights of the assets in the portfolio. Let \(w_j \) for \(j = 1, ..., m \) be a set of portfolios, and let \(w_j^d(\gamma, \omega) = w_j^d[\gamma, S^{t-1}(\omega)] \) be the corresponding portfolio weights at time \(t \). Given a sample of \(n \) assets, the portfolio returns are
\[R^j_t = \frac{1}{n^j_t} \sum_i w^j_t(\gamma_i) R_t(\gamma_i) \], where \(n^j_t = \sum_i w^j_t(\gamma_i) \) is the “weighted number” of assets included in portfolio \(j \) at time \(t \). In contrast to above, here we use the index \(j \) and the cardinality \(m \) for portfolios in order to distinguish them from the corresponding quantities \(i \) and \(n \) for the fundamental assets. Under the no-arbitrage restrictions, the portfolio returns satisfy the model:

\[R^j_t = a^j_t + (b^j_t)' f_t + \varepsilon^j_t, \]

(16)

with sensitivities:

\[b^j_t = \frac{1}{n^j_t} \sum_i w^j_t(\gamma_i)b_{i,t}, \]

(17)

intercepts \(a^j_t = (b^j_t)' \nu_t \), and error terms \(\varepsilon^j_t = \frac{1}{n^j_t} \sum_i w^j_t(\gamma_i)\varepsilon_t(\gamma_i) \). Model (16) is a factor model with the same factors as the original model for the individual assets, and time-varying betas. Hence, as observed in Section 2.2 for repackaging, we have robustness w.r.t. portfolio aggregation. However, if we choose a constrained parametric specification for the coefficients of a time-varying model, that parametric choice does not transmit easily under portfolio aggregation. First, the dynamics of the portfolio betas result from a combination of the dynamics of the individual stocks betas and of the portfolio weights. Second, even with time-invariant portfolio weights, the aggregation of the asset specific instruments is complex, and results in models with portfolio specific instruments which involve unknown model parameters. For instance, let us consider the linear beta specification \(b_{i,t} = B_i Z_{i,t-1} + C_i Z_{i,t-1} \) with a scalar stock specific instrument estimated in our empirical analysis, and equally-weighted portfolios, i.e. \(w^j_t = 1/|A^j| \) for \(\gamma \in A^j \), and 0 otherwise, for all \(j \) and \(t \), where \(A^j \subset [0,1] \) is a measurable set with measure \(|A^j| \). Then, from (17), the portfolio betas are \(b^j_t = B^j Z_{t-1} + C^j Z_{t-1}^j \), where the portfolio coefficients \(B^j = \frac{1}{n^j} \sum_{i: \gamma_i \in A^j} B_i \) and \(C^j = \frac{1}{n^j} \sum_{i: \gamma_i \in A^j} C_i \) are averages of the individual coefficients, \(n_j \) is the number of indices \(i \) with \(\gamma_i \in A^j \), and the portfolio specific instrument \(Z^j_{t-1} = \sum_{i: \gamma_i \in A^j} C_i Z_{i,t-1} \) is a weighted average of the assets specific instruments, with weights involving the unknown coefficients \(C_i \). If we use an ad-hoc aggregation scheme to define the portfolio specific instruments, the resulting model is in general misspecified. If we try to replace the unknown \(C_i \) with estimates to get a proxy for the \(Z^j_{t-1} \), we need first to estimate the
model for the individual assets and face a EIV problem. We deduce that the difference in the estimation results between individual stocks and portfolios can be due to misspecification of the functional form of the portfolio betas. This misspecification is induced by the time-varying weights of the Fama-French portfolios, and the ad-hoc aggregation scheme used to construct the portfolio specific instrument, namely the book-to-market equity of the portfolio. Time-variation in the weights of the Fama-French portfolios also yields time-variation in the portfolio betas even if we have a time-invariant specification for the individual assets.

Even if Table 3 displays some statistically significant coefficients for the effects of instruments, it is useful to test formally whether risk premia indeed fluctuate over time. Time variation can pass through either the conditional expectation of the factors, or the cross-sectional parameter ν. We distinguish accordingly the null hypotheses $H_0^F : \text{Avec}[F'] = 0$ and $H_0^\nu : \nu = 0$, where the matrix $A = I_4 \otimes \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ selects the instruments coefficients. For individual stocks we build standard asymptotic chi-square statistics with 8 degrees of freedom based on Propositions 4 and 5. The values of the test statistics are 11.8765 for the null hypothesis H_0^F (p-value 0.157), and 389.27 for the null hypothesis H_0^ν (p-value 0.000). Hence, we cannot reject time-invariance of the factors conditional expectations, but we reject time-invariance of the risk premia due to the dynamics induced by the cross-sectional parameter ν. Instead, the value of the test statistic for the null hypothesis H_0^ν is 1.5566 (p-value 0.992) when using the 25 FF portfolios, and 17.8452 (p-value 0.022) when using the 100 FF portfolios. Hence, aggregation in the 25 portfolios completely masks the time variation of the risk premia.

4.3 Results on testing the asset pricing restrictions

As already discussed in Lewellen, Nagel, and Shanken (2010), the 25 FF portfolios have four-factor market and momentum betas close to one and zero, respectively. For the 100 FF portfolios, the dispersion around one and zero is slightly larger. As depicted in Figure 1 by Lewellen, Nagel, and Shanken (2010), this empirical concentration implies that it is easy to get artificially large estimates $\hat{\rho}^2$ of the cross-sectional R^2 for three- and four-factor models. On the contrary, the observed heterogeneity in the betas coming from the individual stocks impedes this. This suggests that it is much less easy to find factors that explain the cross-sectional variation of expected excess returns on individual stocks than on portfolios. Reporting large $\hat{\rho}^2$, or small SSR \hat{Q}_c, when n is large, is much more impressive than when n is small.

32
Table 4 gathers the results for the tests of the asset pricing restrictions in factor models with time-invariant coefficients. When \(n \) is large, we prefer working with test statistics based on the SSR \(\hat{Q}_e \) instead of \(\hat{\rho}^2 \) since the population \(R^2 \) is not well-defined with tradable factors under the null hypothesis (its denominator is zero). For the individual stocks, we compute the test statistics \(\hat{\Sigma}_\xi^{-1/2} \hat{\xi}_T \) based on \(\hat{Q}_e \) and \(\hat{Q}_a \) as well as their associated one-side \(p \)-value. Our Monte Carlo simulations show that we need to set a stronger trimming level \(\chi_{2,T}^2 \) to compute the test statistic than to estimate the risk premium. We use \(\chi_{2,T}^2 = 546/240 \).

For the 25 and 100 FF portfolios, we compute weighted test statistics (Gibbons, Ross, and Shanken (1989)) as well as their associated \(p \)-values. For individual stocks, the test statistics reject both null hypotheses \(H_0 : a(\gamma) = b(\gamma)'\nu \) and \(H_0 : a(\gamma) = 0 \) for the three specifications at 5% level. Instead, the null hypothesis \(H_0 : a(\gamma) = b(\gamma)'\nu \) is not rejected for the four-factor specification at 1% level. Similar conclusions are obtained when using the two sets of Fama-French portfolios as base assets. Table 5 gathers the results for tests of the asset pricing restrictions in time-varying specifications. Contrary to the time-invariant case, we do not report the values of the weighted test statistics (Gibbons, Ross and Shanken (1989)) computed for portfolios because of the numerical instability in the inversion of the covariance matrix. The latter has dimension \(2,500 \times 2,500 \) for the time-varying four-factor specification with the 100 FF portfolios. Instead, we report the values of the test statistics \(T\hat{Q}_e \) and \(T\hat{Q}_a \). For individual stocks, the test statistics reject both null hypotheses \(H_0 : \beta_1(\gamma) = \beta_3(\gamma)\nu \) and \(H_0 : \beta_1(\gamma) = 0 \) for the three specifications at 5% level, but not for the conditional CAPM at 1% level. For portfolios, the two null hypotheses are not rejected under the conditional CAPM even at 5% level.

For individual stocks, the rejection of the asset pricing restriction using a time-varying multi-factor specification (at 1% level), and the non rejection under a time-invariant specification, might seem counter-intuitive. Indeed, for a given choice of the factors and instruments, the set of time-invariant specifications satisfying the no-arbitrage restriction \(a(\gamma) = b(\gamma)'\nu \), is a strict subset of the collection of time-varying specifications with \(a_t(\gamma) = b_t(\gamma)'\nu_t \). However, what we are testing here is whether the projection of the DGP on a given time-varying or time-invariant specification is compatible with no-arbitrage. The set of time-invariant models is included in the set of time-varying factor models, and it may well be the case that the projection of the DGP on the former set satisfies the no-arbitrage restrictions, while the projection on the latter does not. Therefore, the results in Tables 4 and 5 for individual stocks are not incompatible with
each other. A similar argument might explain why in Table 5 we fail to reject the asset pricing restriction \(\mathcal{H}_0 : \beta_1 (\gamma) = \beta_3 (\gamma) \nu\) under the conditional CAPM (at level 1\% for individual assets, and 5\% for portfolios), while this restriction is rejected under the three- and four-factor specifications.

The analysis of the validity of the asset pricing restrictions could be completed by an analysis of correct specification of the different time-varying and time-invariant factor models. A specification test would assess whether the proposed set of linear factors captures the systematic risk component in equity returns, and clearly differs from the test of the no-arbitrage restrictions introduced above. Developing a test of correct specification of time-varying factor models with an unbalanced panel and double asymptotics is beyond the scope of the paper. We leave this interesting topic for future research.
References

D.A. Belsley, E. Kuh, and R.E. Welsch. *Regression diagnostics - Identifying influential data and sources of*

W. E. Ferson and C. R. Harvey. Conditioning variables and the cross section of stock returns. *Journal of

J. Lintner. The valuation of risk assets and the selection of risky investments in stock portfolios and capital

2005.

Figure 1: Path of estimated annualized risk premia with $n = 9,936$

The figure plots the path of estimated annualized risk premia $\hat{\lambda}_{m,t}$, $\hat{\lambda}_{smb,t}$, $\hat{\lambda}_{hml,t}$ and $\hat{\lambda}_{mom,t}$ and their pointwise confidence intervals at 95% probability level. We also report the time-invariant (dashed horizontal line) and the average conditional estimate (solid horizontal line). We consider all stocks as base assets ($n = 9,936$ and $n^{\chi} = 3,900$). The vertical shaded areas denote recessions determined by the National Bureau of Economic Research (NBER). The recessions start at the peak of a business cycle and end at the trough.
The figure plots the path of estimated annualized risk premia $\hat{\lambda}_{m,t}$, $\hat{\lambda}_{smb,t}$, $\hat{\lambda}_{hml,t}$ and $\hat{\lambda}_{mom,t}$ and their pointwise confidence intervals at 95% probability level. We use the returns of the 25 Fama-French portfolios. We also report the time-invariant (dashed horizontal line) and the average conditional estimate (solid horizontal line). The vertical shaded areas denote recessions determined by the National Bureau of Economic Research (NBER).
The figure plots the path of estimated annualized risk premia $\hat{\lambda}_{m,t}$, $\hat{\lambda}_{smb,t}$, $\hat{\lambda}_{hml,t}$, and $\hat{\lambda}_{mom,t}$ and their pointwise confidence intervals at 95% probability level. We use the returns of the 100 Fama-French portfolios. We also report the time-invariant (dashed horizontal line) and the average conditional estimate (solid horizontal line). The vertical shaded areas denote recessions determined by the National Bureau of Economic Research (NBER).
Table 1: Estimated annualized risk premia for the time-invariant models

<table>
<thead>
<tr>
<th></th>
<th>Stocks ($n = 9,936$)</th>
<th>Portfolios ($n = 25$)</th>
<th>Portfolios ($n = 100$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bias corrected estimate (%)</td>
<td>95% conf. interval</td>
<td>point estimate (%)</td>
</tr>
<tr>
<td>Four-factor model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(n^x = 9,902)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_m</td>
<td>8.14</td>
<td>(3.26, 13.02)</td>
<td>5.70</td>
</tr>
<tr>
<td>λ_{smb}</td>
<td>2.86</td>
<td>(-0.50, 6.22)</td>
<td>3.02</td>
</tr>
<tr>
<td>λ_{hml}</td>
<td>-4.60</td>
<td>(-8.06, -1.14)</td>
<td>4.81</td>
</tr>
<tr>
<td>λ_{mom}</td>
<td>7.16</td>
<td>(2.56, 11.76)</td>
<td>34.03</td>
</tr>
<tr>
<td>Fama-French model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(n^x = 9,904)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_m</td>
<td>7.77</td>
<td>(2.89, 12.65)</td>
<td>5.04</td>
</tr>
<tr>
<td>λ_{smb}</td>
<td>2.64</td>
<td>(-0.72, 5.99)</td>
<td>3.00</td>
</tr>
<tr>
<td>λ_{hml}</td>
<td>-5.18</td>
<td>(-8.65, -1.72)</td>
<td>5.20</td>
</tr>
<tr>
<td>CAPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(n^x = 9,904)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_m</td>
<td>7.42</td>
<td>(2.54, 12.31)</td>
<td>6.98</td>
</tr>
</tbody>
</table>

The table contains the estimated annualized risk premia for the market (λ_m), size (λ_{smb}), book-to-market (λ_{hml}) and momentum (λ_{mom}) factors. We report the bias corrected estimates $\hat{\lambda}_B$ of λ for individual stocks ($n = 9,936$). In order to build the confidence intervals for $n = 9,936$, we use the HAC estimator $\hat{\Sigma}_f$ defined in Section 3.4. When we consider 25 and 100 portfolios as base assets, we compute an estimate of the variance-covariance matrix $\Sigma_{\lambda,n}$ defined in Section 3.4.
Table 2: Estimated annualized ν for the time-invariant models

<table>
<thead>
<tr>
<th></th>
<th>Stocks ($n = 9,936$)</th>
<th>Portfolios ($n = 25$)</th>
<th>Portfolios ($n = 100$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bias corrected estimate (%)</td>
<td>95% conf. interval</td>
<td>point estimate (%)</td>
</tr>
<tr>
<td>Four-factor model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(n^x = 9,902)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν_m</td>
<td>3.29</td>
<td>(2.88, 3.69)</td>
<td>0.85</td>
</tr>
<tr>
<td>ν_{smb}</td>
<td>-0.41</td>
<td>(-0.95, 0.13)</td>
<td>-0.26</td>
</tr>
<tr>
<td>ν_{hml}</td>
<td>-9.38</td>
<td>(-10.12, -8.64)</td>
<td>0.03</td>
</tr>
<tr>
<td>ν_{mom}</td>
<td>-1.47</td>
<td>(-2.86, -0.08)</td>
<td>25.40</td>
</tr>
<tr>
<td>Fama-French model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(n^x = 9,904)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν_m</td>
<td>2.92</td>
<td>(2.48, 3.35)</td>
<td>0.18</td>
</tr>
<tr>
<td>ν_{smb}</td>
<td>-0.63</td>
<td>(-1.11, -0.15)</td>
<td>-0.27</td>
</tr>
<tr>
<td>ν_{hml}</td>
<td>-9.96</td>
<td>(-10.62, -9.31)</td>
<td>0.41</td>
</tr>
<tr>
<td>CAPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(n^x = 9,904)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν_m</td>
<td>2.57</td>
<td>(2.17, 2.97)</td>
<td>2.12</td>
</tr>
</tbody>
</table>

The table contains the annualized estimates of the components of vector ν for the market (ν_m), size (ν_{smb}), book-to-market (ν_{hml}) and momentum (ν_{mom}) factors. We report the bias corrected estimates $\hat{\nu}_B$ of ν for individual stocks ($n = 9,936$). In order to build the confidence intervals, we compute Σ_ν in Proposition 5 for $n = 9,936$. When we consider 25 and 100 portfolios as base assets, we compute an estimate of the variance-covariance matrix $\Sigma_{\nu,n}$ defined in Section 3.4.
Table 3: Estimated annualized components of $vec[F']$ and ν for the time-varying four-factor model

<table>
<thead>
<tr>
<th></th>
<th>$vec[F']$</th>
<th>$\nu (n = 9,936)$</th>
<th>$\nu (n = 25)$</th>
<th>$\nu (n = 100)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>4.8322</td>
<td>1.3744</td>
<td>0.5251</td>
<td>0.4213</td>
</tr>
<tr>
<td></td>
<td>(0.2653, 9.3990)</td>
<td>(0.6791, 2.0697)</td>
<td>(-0.4704, 1.5206)</td>
<td>(-0.6725, 1.5150)</td>
</tr>
<tr>
<td>smb</td>
<td>3.0353</td>
<td>-0.6032</td>
<td>-0.2916</td>
<td>0.2222</td>
</tr>
<tr>
<td></td>
<td>(-2.6803, 8.7509)</td>
<td>(-1.2964, 0.8899)</td>
<td>(-1.1614, 0.5782)</td>
<td>(-0.8207, 1.2651)</td>
</tr>
<tr>
<td>hml</td>
<td>1.8677</td>
<td>-0.9254</td>
<td>0.0828</td>
<td>0.0369</td>
</tr>
<tr>
<td></td>
<td>(-2.8399, 6.5754)</td>
<td>(-1.5914, -0.2593)</td>
<td>(-0.6660, 0.8316)</td>
<td>(-0.8892, 0.9629)</td>
</tr>
<tr>
<td></td>
<td>3.2739</td>
<td>-0.2130</td>
<td>0.0607</td>
<td>0.3404</td>
</tr>
<tr>
<td></td>
<td>(0.0410, 6.5067)</td>
<td>(-0.8933, 0.4674)</td>
<td>(-0.9898, 1.1112)</td>
<td>(-0.9540, 1.6349)</td>
</tr>
<tr>
<td></td>
<td>2.5468</td>
<td>-0.5948</td>
<td>0.4134</td>
<td>-0.2811</td>
</tr>
<tr>
<td></td>
<td>(-0.5998, 5.6934)</td>
<td>(-1.1622, -0.0273)</td>
<td>(-0.6129, 1.4397)</td>
<td>(-1.5792, 1.0171)</td>
</tr>
<tr>
<td></td>
<td>0.2855</td>
<td>-0.2157</td>
<td>-0.1966</td>
<td>-0.3713</td>
</tr>
<tr>
<td></td>
<td>(-2.6271, 3.1982)</td>
<td>(-0.7584, 0.3269)</td>
<td>(-0.9679, 0.5746)</td>
<td>(-1.5035, 0.7610)</td>
</tr>
<tr>
<td>mom</td>
<td>4.7772</td>
<td>-0.1642</td>
<td>-0.2267</td>
<td>-0.5380</td>
</tr>
<tr>
<td></td>
<td>(1.7905, 7.7639)</td>
<td>(-6.8891, -5.4393)</td>
<td>(-1.3134, 0.8601)</td>
<td>(-1.7373, 0.6614)</td>
</tr>
<tr>
<td></td>
<td>-1.7898</td>
<td>3.5981</td>
<td>0.2187</td>
<td>0.7313</td>
</tr>
<tr>
<td></td>
<td>(-5.5963, 2.0167)</td>
<td>(2.8651, 4.3311)</td>
<td>(-1.0354, 1.4728)</td>
<td>(-0.6286, 2.0912)</td>
</tr>
<tr>
<td></td>
<td>0.8933</td>
<td>-0.4292</td>
<td>-0.0073</td>
<td>0.1653</td>
</tr>
<tr>
<td></td>
<td>(-2.2598, 4.0465)</td>
<td>(-1.0310, 0.1726)</td>
<td>(-0.8758, 0.8612)</td>
<td>(-0.8924, 1.2230)</td>
</tr>
<tr>
<td></td>
<td>8.6543</td>
<td>-2.5592</td>
<td>9.0179</td>
<td>6.8198</td>
</tr>
<tr>
<td></td>
<td>(-4.2482, 13.0605)</td>
<td>(-3.4360, -1.6825)</td>
<td>(0.4373, 17.5986)</td>
<td>(2.8561, 10.7834)</td>
</tr>
<tr>
<td></td>
<td>-7.3714</td>
<td>6.0148</td>
<td>1.9403</td>
<td>8.5209</td>
</tr>
<tr>
<td></td>
<td>(-14.6656, -0.0771)</td>
<td>(5.0903, 6.9394)</td>
<td>(-5.9930, 9.8736)</td>
<td>(4.0683, 12.9736)</td>
</tr>
<tr>
<td></td>
<td>1.5804</td>
<td>-3.2960</td>
<td>-2.5080</td>
<td>-2.3874</td>
</tr>
<tr>
<td></td>
<td>(-2.8226, 5.9833)</td>
<td>(-4.0400, -2.5519)</td>
<td>(-9.9800, 4.9641)</td>
<td>(-6.0855, 1.3107)</td>
</tr>
</tbody>
</table>

The table contains the estimated annualized components of vector $vec[F']$, and of vector ν for the individual stocks ($n = 9,936$ and $n^x = 3,900$) and portfolios ($n = 25, 100$). We report the bias corrected estimates $\hat{\nu}_B$ of ν for individual stocks. In order to build the confidence intervals for ν for individual stocks, we use the thresholded variance-covariance matrix of Proposition 5. When we consider the 25 and 100 FF portfolios as base assets, we compute an estimate of the variance-covariance matrix $\Sigma_{\nu,n}$ defined in Section 3.4. The default spread $d_{s_{t-1}}$ and the term spread $t_{s_{t-1}}$ are centered and standardized.
Table 4: Test results for asset pricing restrictions in the time-invariant models

<table>
<thead>
<tr>
<th>Test of the null hypothesis $H_0 : a(\gamma) = b(\gamma)'\nu$</th>
<th>Test of the null hypothesis $H_0 : a(\gamma) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>Portfolios ($n = 25$)</td>
</tr>
<tr>
<td>Four-factor model</td>
<td></td>
</tr>
<tr>
<td>$(n^X = 1,400)$</td>
<td>$(n^X = 1,400)$</td>
</tr>
<tr>
<td>Test statistic</td>
<td>2.0088</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0223</td>
</tr>
<tr>
<td>Fama-French model</td>
<td></td>
</tr>
<tr>
<td>$(n^X = 1,400)$</td>
<td>$(n^X = 1,400)$</td>
</tr>
<tr>
<td>Test statistic</td>
<td>2.9593</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0015</td>
</tr>
<tr>
<td>CAPM</td>
<td></td>
</tr>
<tr>
<td>$(n^X = 1,400)$</td>
<td>$(n^X = 1,400)$</td>
</tr>
<tr>
<td>Test statistic</td>
<td>8.2576</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

We compute the statistics $\Sigma^{-1/2}_\xi \tilde{\xi}_{NT}$ based on \tilde{Q}_e and \tilde{Q}_a defined in Proposition 6 for the individual stocks to test the null hypotheses $H_0 : a(\gamma) = b(\gamma)'\nu$ and $H_0 : a(\gamma) = 0$, respectively. The trimming levels are $\chi_1,T = 15$ and $\chi_2,T = 546/240$. For $n = 25$ and $n = 100$, we compute the weighted statistics $T\hat{c}'\hat{V}^{-1}\hat{e}$ and $T\hat{a}'\hat{V}_a^{-1}\hat{a}$ (Gibbons, Ross and Shanken (1989)), where \hat{e} and \hat{a} are $n \times 1$ vectors with elements \hat{e}_i and \hat{a}_i, and $\hat{V} = (\hat{v}_{ij})$ and $\hat{V}_a = (\hat{v}_{a,ij})$ are $n \times n$ matrices with elements $\hat{v}_{ij} = \hat{c}_i^\prime\hat{Q}_x^{-1}\hat{S}_{ij}\hat{Q}_x^{-1}\hat{c}_j$ and $\hat{v}_{a,ij} = E_1'^\prime\hat{Q}_x^{-1}\hat{S}_{ij}\hat{Q}_x^{-1}E_1$. The table reports the p-values of the statistics.
Table 5: Test results for the asset pricing restrictions in the time-varying models

<table>
<thead>
<tr>
<th>Test of the null hypothesis (H_0): (\beta_1 (\gamma) = \beta_3 (\gamma) \nu)</th>
<th>Test of the null hypothesis (H_0): (\beta_1 (\gamma) = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>Portfolios ((n = 25))</td>
</tr>
<tr>
<td>Four-factor model</td>
<td></td>
</tr>
<tr>
<td>((n^X = 1, 373))</td>
<td>((n^X = 1, 373))</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0000</td>
</tr>
<tr>
<td>Fama-French model</td>
<td></td>
</tr>
<tr>
<td>((n^X = 1, 393))</td>
<td>((n^X = 1, 393))</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0008</td>
</tr>
<tr>
<td>CAPM</td>
<td></td>
</tr>
<tr>
<td>((n^X = 1, 395))</td>
<td>((n^X = 1, 395))</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0416</td>
</tr>
</tbody>
</table>

We compute the statistics \(\tilde{\Sigma}_\xi^{-1/2} \hat{\xi}_{nT} \) based on \(\hat{Q}_e \) and \(\hat{Q}_a \) defined in Proposition 6 for the individual stocks to test the null hypotheses \(H_0 : \beta_1 (\gamma) = \beta_3 (\gamma) \nu \) and \(H_0 : \beta_1 (\gamma) = 0 \), respectively. The trimming levels are \(\chi_{1,T} = 15 \) and \(\chi_{2,T} = 546/240 \). For \(n = 25 \) and \(n = 100 \), we compute the test statistics \(T \hat{Q}_e \) and \(T \hat{Q}_a \). The table reports the p-values of the statistics.
Appendix 1: Regularity conditions

In this Appendix, we list and comment the additional assumptions used to derive the large sample properties of the estimators and test statistics. We use below the extended vector of common and firm-specific regressors \(x_t(\gamma) := (vech(X_t)', Z_t' - 1 \otimes Z_t - 1(\gamma)', f_t' \otimes Z_t' - 1, f_t' \otimes \gamma, \gamma)' \) (see Section 3.1).

Assumption B.1 There exist constants \(\eta, \bar{\eta} \in (0, 1) \) and \(C_1, C_2, C_3, C_4 > 0 \) such that, for all \(\delta > 0 \) and \(T \in \mathbb{N} \), we have:

\[a) \sup_{\gamma \in [0,1]} P \left[\frac{1}{T} \sum_t (x_t(\gamma)x_t(\gamma)' - E [x_t(\gamma)x_t(\gamma)']) \geq \delta \right] \leq C_1 T \exp \left\{ -C_2 \delta^2 T^\eta \right\} + C_3 \delta^{-1} \exp \left\{ -C_4 T^{\bar{\eta}} \right\}. \]

Furthermore, for all \(\delta > 0, T \in \mathbb{N} \), and \(1 \leq k, l, m \leq d \), the same upper bound holds for:

\[b) \sup_{\gamma \in [0,1]} P \left[\frac{1}{T} \sum_t I_t(\gamma) (x_t(\gamma)x_t(\gamma)' - E [x_t(\gamma)x_t(\gamma)']) \geq \delta \right]; \]

\[c) \sup_{\gamma \in [0,1]} P \left[\frac{1}{T} \sum_t I_t(\gamma)x_t(\gamma) \varepsilon_t(\gamma) \geq \delta \right]; \]

\[d) \sup_{\gamma, \tilde{\gamma} \in [0,1]} P \left[\frac{1}{T} \sum_t (I_t(\gamma)I_t(\tilde{\gamma}) - E[I_t(\gamma)I_t(\tilde{\gamma})]) \geq \delta \right]; \]

\[e) \sup_{\gamma, \tilde{\gamma} \in [0,1]} P \left[\frac{1}{T} \sum_t I_t(\gamma)I_t(\tilde{\gamma}) (\varepsilon_t(\gamma)\varepsilon_t(\tilde{\gamma})x_t(\gamma)x_t(\tilde{\gamma})' - E [\varepsilon_t(\gamma)\varepsilon_t(\tilde{\gamma})x_t(\gamma)x_t(\tilde{\gamma})']) \geq \delta \right]; \]

\[f) \sup_{\gamma, \tilde{\gamma} \in [0,1]} P \left[\frac{1}{T} \sum_t I_t(\gamma)I_t(\tilde{\gamma})x_t(\gamma)x_t(\tilde{\gamma})x_{t,m}(\gamma)x_{t,m}(\tilde{\gamma}) \varepsilon_t(\gamma) \geq \delta \right]. \]

Assumption B.2 There exists a constant \(M > 0 \) such that, for all \(T \in \mathbb{N} \), we have:

\[\sup_{\gamma \in [0,1]} E \left[\frac{1}{T} \sum_{t_1, t_2, t_3} \left| \text{cov}(\varepsilon_{t_1}^2(\gamma), \varepsilon_{t_2}(\gamma)\varepsilon_{t_3}(\gamma)|\mathcal{F}_T) \right| \right] \leq M. \]

Assumption B.3 There exists a constant \(M > 0 \) such that, for all \(n, T \in \mathbb{N} \), we have for \(\eta_{i,t} = \varepsilon_{i,t}^2 - \sigma_{i,t}^2 \):

\[a) E \left[\frac{1}{nT} \sum_{i,j} \sum_{t_1, t_2} E \left[\left| \text{cov}(\varepsilon_{i,t_1}^2, \varepsilon_{j,t_2}^2|\mathcal{F}_T, \gamma_i, \gamma_j) \right|^2 \right]^{1/2} \right] \leq M. \]

\[b) E \left[\frac{1}{nT^2} \sum_{i,j} \sum_{t_1, t_2, t_3, t_4} E \left[\left| \text{cov}(\varepsilon_{i,t_1}^2 \varepsilon_{i,t_2}^2 \varepsilon_{i,t_3} \varepsilon_{j,t_4}|\mathcal{F}_T, \gamma_i, \gamma_j) \right|^2 \right]^{1/2} \leq M; \]

\[c) E \left[\frac{1}{nT^2} \sum_{i,j} \sum_{t_1, t_2, t_3, t_4} E \left[\left| \text{cov}(\eta_{i,t_1}^2 \varepsilon_{i,t_2} \varepsilon_{j,t_3} \varepsilon_{j,t_4}|\mathcal{F}_T, \gamma_i, \gamma_j) \right|^2 \right]^{1/2} \leq M; \]

\[d) E \left[\frac{1}{nT^2} \sum_{i,j} \sum_{t_1, t_2, t_3, t_4} E \left[\left| \text{cov}(\eta_{i,t_1} \eta_{i,t_2} \eta_{j,t_3} \eta_{j,t_4}|\mathcal{F}_T, \gamma_i, \gamma_j) \right|^2 \right]^{1/2} \leq M; \]
\[e) \quad E \left[\frac{1}{nT^3} \sum_{i,j} \sum_{t_1, \ldots, t_6} E \left[\left| \text{cov} \left(\varepsilon_{i,t}, \varepsilon_{i,t_2}, \varepsilon_{j,t_3}, \varepsilon_{j,t_4}, \varepsilon_{j,t_5}, \varepsilon_{j,t_6} \middle| F_T, \gamma_i, \gamma_j \right) \right|^2 \middle| \gamma_i, \gamma_j \right]^{1/2} \right] \leq M; \]

\[f) \quad E \left[\frac{1}{nT^3} \sum_{i,j} \sum_{t_1, \ldots, t_6} E \left[\left| \text{cov} \left(\eta_{i,t}, \varepsilon_{i,t_2}, \varepsilon_{i,t_3}, \eta_{j,t_4}, \varepsilon_{j,t_5}, \varepsilon_{j,t_6} \middle| F_T, \gamma_i, \gamma_j \right) \right|^2 \middle| \gamma_i, \gamma_j \right]^{1/2} \right] \leq M. \]

Assumption B.4

a) There exists a constant \(M > 0 \) such that \(\sup_{\gamma \in [0,1]} \| x_t(\gamma) \| \leq M, \text{ P-a.s.} \). Moreover,

b) \(\sup_{\gamma \in [0,1]} \| B(\gamma) \| < \infty, \sup_{\gamma \in [0,1]} \| C(\gamma) \| < \infty, c \) \(\inf_{\gamma \in [0,1]} E[I_t(\gamma)] > 0, \) and

d) \(\inf_{\gamma \in [0,1]} \text{eig}_{\min}(E[x_t(\gamma)x_t(\gamma)']) > 0. \)

Assumption B.5 The trimming constants satisfy \(\chi_{1,T} = O((\log T)^{\kappa_1}) \) and \(\chi_{2,T} = O((\log T)^{\kappa_2}) \), with \(\kappa_1, \kappa_2 > 0. \)

Assumption B.6 There exists a constant \(M > 0 \) such that \(\| E[u_t u_t'|Z_{t-1}] \| \leq M \) for all \(t \), where \(u_t = f_t - E[f_t|F_{t-1}] \).

Assumptions B.1 and B.2 restrict the serial dependence of the factors and the individual processes of observability indicators and error terms. Specifically, Assumption B.1 a) gives an upper bound for large-deviation probabilities of the sample average of random matrices \(x_t(\gamma)x_t(\gamma)' \), uniformly w.r.t. \(\gamma \in [0,1] \).

It implies that the first two sample moments of the regressor vector converge in probability to the corresponding population moments at a rate \(O_p(T^{-\eta/2}(\log T)^c) \), for some \(c > 0 \). Assumptions B.1 b)-f) give similar upper bounds for large-deviation probabilities of sample averages of processes involving regressors, observability indicators and error terms, uniformly w.r.t. \(\gamma \in [0,1] \). We use these assumptions to prove the convergence of time series averages uniformly across assets. Assumption B.2 involves conditional covariances of products of error terms. Assumptions B.1 and B.2 are satisfied e.g. when the individual processes of the regressors, observability indicators and error terms feature mixing serial dependence, with mixing coefficients uniformly bounded w.r.t. \(\gamma \in [0,1] \) (see e.g. Bosq (1998), Theorems 1.3 and 1.4). Assumptions B.3 a)-f) restrict both serial and cross-sectional dependence of the error terms. They involve conditional covariances between products of error terms \(\varepsilon_{i,t} \) and innovations \(\eta_{i,t} = \varepsilon_{i,t}^2 - \sigma_{ii,t} \) for different assets and dates. These assumptions can be satisfied under weak serial and cross-sectional dependence of the errors, such as temporal mixing and block dependence across assets. Assumptions B.4 a) and b) require uniform upper bounds on regressor values, model coefficients and intercepts. Assumption B.4 c) implies that asymptotically the fraction of the time period in which an asset return is observed is bounded away from zero.
uniformly across assets. Assumption B.4 d) excludes asymptotically multicollinearity problems in the first-pass regression uniformly across assets. Assumptions B.4 a)-d) ease the proofs. Assumption B.5 gives an upper bound on the divergence rate of the trimming constants. The slow logarithmic divergence rate allows to control the first-pass estimation error in the second-pass regression. Assumption B.6 requires a bounded conditional variance-covariance matrix for the linear innovation u_t associated with the factor process. We use this assumption to prove that we can consistently estimate matrix F of the coefficients of the linear projection of factor f_t on variables Z_{t-1} by a SUR regression.

Appendix 2: Proofs

A.2.1 Proof of Proposition 1 and link with Chamberlain and Rothschild (1983)

To ease notations, we assume w.l.o.g. that the continuous distribution G is uniform on $[0, 1]$. We can work at $t = 1$ because of stationarity, and use that $a(\gamma), b(\gamma)$, for $\gamma \in [0, 1]$, are \mathcal{F}_0-measurable. For a given countable collection of assets $\{\gamma_i\}_{i \in \Gamma}$, let $\mu_n = A_n + B_n E[f_1 | \mathcal{F}_0]$ and $\Sigma_n = B_n V[f_1 | \mathcal{F}_0] B_n^\prime + \Sigma_{\varepsilon,1,n}$, for $n \in \mathbb{N}$, be the mean vector and the variance-covariance matrix of asset excess returns $(R_1(\gamma_1), ..., R_1(\gamma_n))'$ conditional on \mathcal{F}_0, where $A_n = [a(\gamma_1), ..., a(\gamma_n)]'$, and $B_n = [b(\gamma_1), ..., b(\gamma_n)]'$. Let $e_n = \mu_n - B_n (B_n^\prime B_n)^{-1} B_n^\prime \mu_n = A_n - B_n (B_n^\prime B_n)^{-1} B_n^\prime A_n$ be the residual of the orthogonal projection of μ_n (and A_n) onto the columns of B_n. Furthermore, let \mathcal{P}_n denote the set of portfolios p_n that invest in the risk-free asset and risky assets $\gamma_1, ..., \gamma_n$, for $n \in \mathbb{N}$, with portfolio shares measurable w.r.t. \mathcal{F}_0, and let \mathcal{P} denote the set of portfolio sequences (p_n), with $p_n \in \mathcal{P}_n$. For portfolio $p_n \in \mathcal{P}_n$, the cost, the conditional expected return, and the conditional variance are given by $C(p_n) = \alpha_{0,n} + \alpha_n \iota_n$, $E[p_n | \mathcal{F}_0] = R_0 C(p_n) + \alpha_n \mu_n$, and $V[p_n | \mathcal{F}_0] = \alpha_n \Sigma \alpha_n$, where $\iota_n = (1, ..., 1)'$ and $\alpha_n = (\alpha_{1,n}, ..., \alpha_{n,n})'$. Let $\mathcal{P} = \bigcup_{n=1}^{\infty} \mathcal{P}_n$ be the set of finite portfolios. For expository purpose, we do not make explicit the dependence of $\mu_n, \Sigma_n, e_n, \mathcal{P}_n$ and \mathcal{P} on the collection of assets $\{\gamma_i\}$.

The statement of Proposition 1 is proved by contradiction. Suppose that there exists a set $A \in \mathcal{F}$ with $P(A) > 0$, such that $\delta(\omega) > 0$ for any $\omega \in A$, where $\delta(\omega) := \inf_{\nu \in \mathbb{R}^k} \int [a(\gamma, \omega) - b(\gamma, \omega) \nu]^2 d\gamma = \int [a(\gamma, \omega) - b(\gamma, \omega) \nu_\infty(\omega)]^2 d\gamma$ and $\nu_\infty = \left(\int b(\gamma) b(\gamma)' d\gamma \right)^{-1} \int b(\gamma) a(\gamma) d\gamma$. By the Main Theorem in Al-Najjar (1995) and Al-Najjar (1999a) (see also Khan and Sun (1999), Theorem 2) and Assumption
Since asymptotic arbitrage portfolios are ruled out by Assumption APR.5, it follows that we must have
\[\lim \inf_n \text{APR.2}, \]
there exists a set \(J_1 \subset \Gamma \), with measure \(\mu_{\Gamma}(J_1) = 1 \), such that:

\[
\frac{1}{n} \| e_n \|^2 = \frac{1}{n} \sum_{i=1}^{n} a(\gamma_i)^2 - \left(\frac{1}{n} \sum_{i=1}^{n} a(\gamma_i)b(\gamma_i) \right) ' \left(\frac{1}{n} \sum_{i=1}^{n} b(\gamma_i)b(\gamma_i) \right)'^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} a(\gamma_i)b(\gamma_i) \right)
\]

\[\to \int a(\gamma)^2 d\gamma - \left(\int a(\gamma)b(\gamma)d\gamma \right)' \left(\int b(\gamma)b(\gamma)'d\gamma \right)'^{-1} \left(\int b(\gamma)a(\gamma)d\gamma \right) = \delta, \quad (18) \]
as \(n \to \infty \), for any sequence \((\gamma_i) \) in \(J_1 \). Indeed, under Assumption APR.2, the condition \((i') \) in Al-Najjar (1999a) is satisfied, and the Lebesgue integral \(\int \beta(\gamma)\beta(\gamma)'d\gamma \) coincides with the Bochner integral, \(P \)-a.s. (see e.g. Yosida (1995), Chapter V.5, on the Bochner integral). Moreover, from Assumption APR.4 (ii), there exists a set \(J \subset \Gamma \) with measure \(\mu_{\Gamma}(J) = 1 \), such that \(n^{-1}\epsilon_{\text{max}}(\Sigma_{\epsilon,1,n}) \to 0 \), for any sequence \((\gamma_i) \) in \(J \cap J_1 \). Define the portfolio sequence \((q_n) \) as follows. The portfolio is based on sequence \((\gamma_i) \) with investments \(\alpha_n = \frac{1}{\| e_n \|^2} e_n \) and \(\alpha_{0,n} = -i_n^* \alpha_n \), if \(\omega \in A \), and is the zero-investment portfolio, if \(\omega \in A^c \). This portfolio has zero cost, i.e., \(C(q_n) = 0 \). Let us now consider its conditional mean and variance. If \(\omega \in A \), we have \(E[q_n|\mathcal{F}_0] = 1 \) and \(V[q_n|\mathcal{F}_0] \leq \epsilon_{\text{max}}(\Sigma_{\epsilon,1,n})\| e_n \|^{-2} \). Moreover, we have \(V[q_n|\mathcal{F}_0] = E[(q_n - E[q_n|\mathcal{F}_0])^2|\mathcal{F}_0] \geq E[(q_n - E[q_n|\mathcal{F}_0])^2|\mathcal{F}_0, q_n \leq 0] P[q_n \leq 0|\mathcal{F}_0] \geq P[q_n \leq 0|\mathcal{F}_0] \). Hence, we get: \(P[q_n > 0|\mathcal{F}_0] \geq 1 - V[q_n|\mathcal{F}_0] \geq 1 - \epsilon_{\text{max}}(\Sigma_{\epsilon,1,n})\| e_n \|^{-2} \), if \(\omega \in A \). Thus, by using \(n^{-1}\epsilon_{\text{max}}(\Sigma_{\epsilon,1,n}) \to 0 \), from Assumption APR.4 (ii), and \(n\| e_n \|^{-2} \to 1 \), \(L^2 \to \delta^{-1}1_A \) from Equation (18), we get

\[
P[q_n > 0|\mathcal{F}_0] \to 1 \quad (A) \]

Then, \(E[P(q_n > 0|\mathcal{F}_0) 1_A] \to P(A) \). Since \(P[q_n > 0] = E[P(q_n > 0|\mathcal{F}_0)] \geq E[P(q_n > 0|\mathcal{F}_0) 1_A] \), this implies \(\lim \inf P[q_n > 0] \geq P(A) > 0 \). Moreover, since \(P[q_n \geq 0|\mathcal{F}_0] 1_{A^c} = 1_{A^c} \), from (19) we get

\[
P[q_n \geq 0|\mathcal{F}_0] \to 1 \quad (A) \]

Thus, \(P[q_n \geq 0] \to 1 \). Hence, portfolio \((q_n) \) is an asymptotic arbitrage opportunity. Since asymptotic arbitrage portfolios are ruled out by Assumption APR.5, it follows that we must have

\[
\int [a(\gamma) - b(\gamma)\nu_{\infty}]^2 d\gamma = 0 \quad (P \text{-a.s.}, \text{that is}, a(\gamma) = b(\gamma)\nu, \text{with}\ \nu = \nu_{\infty}, \text{for almost all}\ \gamma \in [0, 1], \quad (P \text{-a.s.})
\]

Such random vector \(\nu \) is unique by Assumption APR.2 and is \(\mathcal{F}_0 \)-measurable, and Proposition 1 follows.

Let us now establish the link between the no-arbitrage conditions and asset pricing restrictions in CR on the one hand, and the asset pricing restriction (3) in the other hand. Let \(J^* \subset \Gamma \) be the set of countable collections of assets \((\gamma_i) \) such that Conditions (i) and (ii) hold for any portfolio sequence \((p_n) \in \mathcal{P} \), where
Conditions (i) and (ii) are: (i) If \(V[p_n|\mathcal{F}_0] \xrightarrow{L^2} 0 \) and \(C(p_n) \xrightarrow{L^2} 0 \), then \(E[p_n|\mathcal{F}_0] \xrightarrow{L^2} 0 \); (ii) If \(V[p_n|\mathcal{F}_0] \xrightarrow{L^2} 0 \), \(C(p_n) \geq 0 \), \(P \)-a.s., \(\limsup_{n \to \infty} E[C(p_n)^2] > 0 \), and \(E[p_n|\mathcal{F}_0] \xrightarrow{L^2} \bar{\delta} \), for some constant \(\bar{\delta} > 0 \). Condition (i) means that, if the conditional variability and cost vanish, so does the conditional expected return. Condition (ii) means that, if the conditional variability vanishes and the cost is positive, the conditional expected return is positive. They correspond to Conditions A.1 (i) and (ii) in CR written conditionally on \(\mathcal{F}_0 \) and for a given countable collection of assets \((\gamma_i)\). Hence, the set \(\mathcal{J}^* \) is the set permitting no asymptotic arbitrage opportunities in the sense of CR in a conditional setting (see also Chamberlain (1983)). We use the convergence of conditional expectations as in Hansen and Richard (1987), but focus on \(L^2 \) convergence as opposed to convergence in probability since this helps when defining the extension of the cost function \(C(\cdot) \) to the completion of set \(\mathcal{P} \). Let \(\mathcal{J}^{**} \subset \Gamma \) be the set of sequences \((\gamma_i)\) such that \(\inf_{\nu \in \mathbb{R}^K} \sum_{i=1}^{\infty} [a(\gamma_i) - b(\gamma_i)^t \nu]^2 < \infty \), \(P \)-a.s. These sequences met the summability condition of CR in a conditional setting. In the proof of the following Proposition we assume that function \(\beta \) is jointly measurable on \([0, 1] \times \Omega \) and bounded.

Proposition APR: Under Assumptions APR.1-APR.4, and (i) \(\inf_{n \geq 1} \text{eig}_{\mu_{\Gamma}}(\Sigma_{\varepsilon,t,n}) > 0 \), \(P \)-a.s., for a.e. \((\gamma_i) \in \Gamma\), (ii) \(\inf_{n \geq 1} \text{eig}_{\mu_{\Gamma}}(V[f_i|\mathcal{F}_{i-1}]) > 0 \), \(P \)-a.s., we have: either \(\mu_{\Gamma}(\mathcal{J}^*) = \mu_{\Gamma}(\mathcal{J}^{**}) = 1 \), or \(\mu_{\Gamma}(\mathcal{J}^*) = \mu_{\Gamma}(\mathcal{J}^{**}) = 0 \). The former case occurs if, and only if, the asset pricing restriction (3) holds.

When we condition on \(\mathcal{F}_0 \), the fact that the set of sequences such that \(\inf_{\nu \in \mathbb{R}^K} \sum_{i=1}^{\infty} [a(\gamma_i) - b(\gamma_i)^t \nu]^2 < \infty \) has \(\mu_{\Gamma} \)-measure equal to either 1, or 0, is a consequence of the Kolmogorov zero-one law (e.g., Billingsley (1995)). Indeed, \(\inf_{\nu \in \mathbb{R}^K} \sum_{i=1}^{\infty} [a(\gamma_i) - b(\gamma_i)^t \nu]^2 < \infty \) if, and only if, \(\inf_{\nu \in \mathbb{R}^K} \sum_{i=1}^{\infty} [a(\gamma_i) - b(\gamma_i)^t \nu]^2 < \infty \), for any \(n \in \mathbb{N} \). Thus, the zero-one law applies since the event \(\inf_{\nu \in \mathbb{R}^K} \sum_{i=1}^{\infty} [a(\gamma_i) - b(\gamma_i)^t \nu]^2 < \infty \) belongs to the tail sigma-field \(\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(\gamma_i, i = n, n + 1, ...), \) and the variables \(\gamma_i \) are i.i.d. under measure \(\mu_{\Gamma} \). Proposition APR shows that this zero-one measure property applies also for the set \(\mathcal{J}^{**} \).

Proof of Proposition APR: The proof involves four steps.

Step 1: If the asset pricing restriction (3) holds, then \(\mu_{\Gamma}(\mathcal{J}^{**}) = 1 \). Indeed, if the asset pricing restriction (3) holds for some \(\mathcal{F}_0 \)-measurable function \(\nu \), we have for a.e. \(\omega \in \Omega \): \(a(\gamma, \omega) - b(\gamma, \omega)^t \nu(\omega) = 0 \) for a.e. \(\gamma \in [0, 1] \). Since functions \(a \) and \(b \) are jointly measurable on \([0, 1] \times \Omega \), this implies that for a.e. \(\gamma \in [0, 1] \): \(a(\gamma, \omega) - b(\gamma, \omega)^t \nu(\omega) = 0 \) for a.e. \(\omega \in \Omega \). Then, the set \(\left\{ (\gamma_i) \in \Gamma : \sum_{i=1}^{\infty} [a(\gamma_i) - b(\gamma_i)^t \nu]^2 = 0, P \)-a.s. \right\} = 54
\[\bigcap_{i=1}^{\infty} \{ (\gamma_i) \in \Gamma : a(\gamma_i, \omega) - b(\gamma_i, \omega)' \nu(\omega) = 0, \text{ for a.e. } \omega \in \Omega \} \] has \(\mu_\Gamma \)-measure 1. Since this set is a subset of \(J^{**} \), it follows that \(\mu_\Gamma(J^{**}) = 1 \).

STEP 2: If the asset pricing restriction (3) does not hold, then \(\mu_\Gamma(J^{**}) = 0 \). Indeed, by the convergence in (18) we have
\[
\inf_{\nu \in \mathbb{R}^K} \frac{1}{n} \sum_{i=1}^{\infty} [a(\gamma_i) - b(\gamma_i)' \nu]^2 \rightarrow \delta, \quad \text{for any sequence } (\gamma_i) \text{ in set } J_1 \text{ with } \mu_\Gamma \text{-measure 1},
\]
where \(\delta = \inf_{\nu \in \mathbb{R}^K} \int [a(\gamma) - b(\gamma)' \nu]^2 d\gamma \). If the asset pricing restriction (3) does not hold, we have \(\delta \neq 0 \).

Let us now show that \(J_1 \cap J^{**} = \emptyset \), which implies \(\mu_\Gamma(J^{**}) = 0 \). The proof is by contradiction. Let us assume that sequence \((\gamma_i) \) is in \(J_1 \cap J^{**} \), and let \(\xi_n := \inf_{\nu \in \mathbb{R}^K} \frac{1}{n} \sum_{i=1}^{n} [a(\gamma_i) - b(\gamma_i)' \nu]^2 \). Since \((\gamma_i) \in J_1 \), we have \(||\xi_n - \delta||_2 \rightarrow 0 \), where \(\cdot \rightarrow \) denotes the \(L^2 \) norm. Since \((\gamma_i) \in J^{**} \), we have \(\xi_n \rightarrow 0 \), \(P \)-a.s. Moreover, since function \(\beta \) is bounded, we have \(||\xi_n|| \leq C \), \(P \)-a.s., for some constant \(C \). Then, by the Lebesgue dominated convergence theorem, it follows that \(||\xi_n||_2 \rightarrow 0 \). By the triangular inequality we get
\[||\delta||_2 \leq ||\xi_n - \delta||_2 + ||\xi_n||_2 \rightarrow 0, \]
which is impossible since \(\delta \neq 0 \).

STEP 3: If the asset pricing restriction (3) holds, then \(\mu_\Gamma(J^*) = 1 \). As in Step 1, if (3) holds, it follows that \(e_n = 0 \), \(P \)-a.s., for all \(n \), for \(\mu_\Gamma \)-almost all sequences \((\gamma_i) \). Then, for any portfolio sequence \((p_n) \), we get
\[E[p_n|\mathcal{F}_0] = R_0 C(p_n) + \alpha_n' B_n (B_n' B_n/n)^{-1} B_n' \mu_n/n. \]
Moreover, we have:
\[V[p_n|\mathcal{F}_0] = (B_n' \alpha_n)' V[f_1|\mathcal{F}_0] (B_n' \alpha_n) + \alpha_n' \Sigma_{n,1,n} \alpha_n \geq \text{eig}_\min(V[f_1|\mathcal{F}_0]) \| B_n' \alpha_n \|_2^2, \]
where \(\text{eig}_\min(V[f_1|\mathcal{F}_0]) > 0 \), \(P \)-a.s.. By the Main Theorem in Al-Najjar (1995) and Al-Najjar (1999a), we have \(B_n' B_n/n \overset{L^2}{\rightarrow} \int b(\gamma) b(\gamma)' d\gamma \) and \(B_n' \mu_n/n \overset{L^2}{\rightarrow} \int b(\gamma) (a(\gamma) + b(\gamma)' E[f_1|\mathcal{F}_0]) d\gamma \). Then, Conditions (i) and (ii) in the definition of set \(J^* \) follow, for \(\mu_\Gamma \)-almost any sequence \((\gamma_i) \), that is, \(\mu_\Gamma(J^*) = 1 \).

STEP 4: If the asset pricing restriction (3) does not hold, then \(\mu_\Gamma(J^*) = 0 \). To prove that \(\mu_\Gamma(J^*) = 0 \), we show that \(J^* \cap J \cap J_1 = \emptyset \), where \(J \) and \(J_1 \) are the sets with \(\mu_\Gamma \)-measure 1 defined in Assumption APR.4 (ii) and in the proof of Proposition 1, respectively. The proof is by contradiction. Let us assume that sequence \((\gamma_i) \) is in set \(J^* \cap J \cap J_1 \). By following the same arguments as in CR on p. 1292 and 1295, we have:
\[\mu_\Gamma^{-1} \Sigma_n^{-1} \mu_n = \sup_{p_n \in \mathcal{P}_n : C(p_n) = 0} E[p_n|\mathcal{F}_0]^2 / V[p_n|\mathcal{F}_0], \]
\[\Sigma_n^{-1} \geq \text{eig}_\max(\Sigma_{n,1,n})^{-1} [I_n - B_n (B_n' B_n)^{-1} B_n'], \]
\(P \)-a.s. Let us prove that the RHS of (20) is upper bounded uniformly in \(n \). We use Hilbert space methods as
in Hansen and Richard (1987) applied to the conditional economy generated by the countable collection of assets \((\gamma_i)\). Let \((p, q)_\mathcal{F}_0 = E[pq|\mathcal{F}_0]\) and \(\|p\|_{\mathcal{F}_0} = \langle p, p \rangle_{\mathcal{F}_0}^{1/2}\) be the conditional scalar product and norm in the linear space \(L^2(\Omega, \mathcal{F}_1, P)\) of square integrable \(\mathcal{F}_1\)-measurable random variables. Conditional convergence of \((p_n)\) to \(p\) is defined as \(\|p_n - p\|_{\mathcal{F}_0} \xrightarrow{L^2} 0\) for \(n \to \infty\). Conditional Cauchy sequences are defined similarly. Since \((\gamma_i) \in \mathcal{J}^*\), Condition (ii) is satisfied for any portfolio sequence in \(\mathcal{P}\). This implies that Condition (iii): If \(E[p_n^2|\mathcal{F}_0] \xrightarrow{L^2} 0\), then \(C(p_n) \xrightarrow{L^2} 0\), holds for any portfolio sequence \((p_n)\) in \(\mathcal{P}\). Indeed, suppose that \((p_n)\) is such that \(E[p_n^2|\mathcal{F}_0] \xrightarrow{L^2} 0\) but \(C(p_n)\) does not converge to 0 in \(L^2\). Define the new portfolio sequence \((p'_n)\), such that \(p'_n = p_n\) if \(C(p_n) \geq 0\), and \(p'_n = -p_n\) otherwise. Then, portfolio sequence \((p'_n)\) violates Condition (ii), which is impossible. Now, by using Condition (iii) we can extend the cost function \(C(\cdot)\) to the linear space \(\tilde{\mathcal{P}}\), that is the completion of \(\mathcal{P}\) w.r.t. the limits of conditional Cauchy sequences. Indeed, let \(p \in \mathcal{P}\), and let \((p_n)\) be a conditional Cauchy sequence in \(\mathcal{P}\) converging to \(p\). Then, \(C(p_n)\) is a Cauchy sequence in \(L^2(\Omega, \mathcal{F}_0, P)\). By the completeness property of this space, this Cauchy sequence converges in \(L^2\) to some element in \(L^2(\Omega, \mathcal{F}_0, P)\), which we define as \(C(p)\). This extension of the function \(C(\cdot)\) is conditionally linear and continuous. By the same arguments as in the proof of Theorem 2.1 in Hansen and Richard (1987), there exists a \(\mathcal{F}_1\)-measurable random variable \(c\) such that \(E[c^2|\mathcal{F}_0] < \infty\) and \(C(p) = E[cp|\mathcal{F}_0]\), \(P\)-a.s., for any portfolio \(p \in \tilde{\mathcal{P}}\). This property is the conditional analogue of the Riesz Representation Theorem. Any portfolio \(p \in \tilde{\mathcal{P}}\) can be written as \(p = \pi_0 + \pi_1 c + \bar{p}\), where \(\pi_0\) and \(\pi_1\) are \(\mathcal{F}_0\)-measurable, and \(\bar{p}\) is conditionally orthogonal to 1 and \(c\), namely, \(E[\bar{p}|\mathcal{F}_0] = E[c\bar{p}|\mathcal{F}_0] = 0\). If the portfolio \(p\) has zero cost, i.e. \(C(p) = 0\), then \(p = \pi_0 (1 - E[c|\mathcal{F}_0]E[c^2|\mathcal{F}_0]^{-1} c) + \bar{p} =: \pi_0 p^* + \bar{p}\). The payoff \(p^*\) is the residual of the conditional projection of the constant payoff 1 on the payoff \(c\). Since the component \(\bar{p}\) contributes to the conditional variance of portfolio \(p\) but not to its conditional mean, we deduce that for any portfolio \(p \in \tilde{\mathcal{P}}\) such that \(C(p) = 0\) we get:

\[
E[p|\mathcal{F}_0]^2 / V[p|\mathcal{F}_0] \leq E[p^*|\mathcal{F}_0]^2 / V[p^*|\mathcal{F}_0] =: \rho^2 < \infty,
\]

\(P\)-a.s. (see CR, Corollary 1, for a similar result in their unconditional framework). From (20), (21) and (22), we get: \(\rho^2 \epsilon_{\text{max}}(\Sigma_{e,1,n}) \geq \mu_n^\prime (I_n - B_n (B_n^\prime B_n)^{-1} B_n^\prime) \mu_n = \min_{\lambda \in \mathbb{R}^K} \|\mu_n - B_n \lambda\|^2 = \min_{\nu \in \mathbb{R}^K} \|A_n - B_n \nu\|^2 = \).
The conditional covariance function of the error terms in the repackaged economy is given by:

\[\min_{\nu \in \mathbb{R}^K} \sum_{i=1}^n [a(\gamma_i) - b(\gamma_i)'\nu]^2, \text{ for any } n \in \mathbb{N}, P\text{-a.s.} \]

Hence, we deduce

\[\min_{\nu \in \mathbb{R}^K} \frac{1}{n} \sum_{i=1}^n [a(\gamma_i) - b(\gamma_i)'\nu]^2 \leq \rho^2 \frac{1}{n} \text{eig}_{\text{max}}(\Sigma_{\varepsilon,1,n}), \] \hspace{1cm} (23)

for any \(n, P\text{-a.s.} \). Then, since \((\gamma_i) \in \mathcal{J}_1 \), by the convergence in (18) the LHS of Inequality (23) converges in \(L^2 \) to \(\delta = \int [a(\gamma) - b(\gamma)'\nu_{\infty}]^2 d\gamma \). Since \((\gamma_i) \in \mathcal{J} \), from Assumption APR.4 (ii) the RHS converges in \(L^2 \) to 0. This is impossible, since \(\delta \neq 0 \) if the asset pricing restriction (3) does not hold.

A.2.2 Proof of Proposition 2

The conditional covariance function of the error terms in the repackaged economy is given by:

\[E[\overline{\varepsilon}(\gamma_1)\overline{\varepsilon}(\gamma_2)|\mathcal{F}_0] = \sum_k \sum_l w_k [G_k^{-1}(\gamma_1)]w_l [G_l^{-1}(\gamma_2)]E[\overline{\varepsilon}(G_k^{-1}(\gamma_1))\overline{\varepsilon}(G_l^{-1}(\gamma_2))|\mathcal{F}_0]. \] \hspace{1cm} (24)

This function is jointly measurable w.r.t. \(\gamma_1, \gamma_2 \in [0,1] \) and \(\omega \in \Omega \), since function \(E[\overline{\varepsilon}(\gamma_1)\overline{\varepsilon}(\gamma_2)|\mathcal{F}_0] \) is jointly measurable w.r.t. \(\gamma_1, \gamma_2 \in [0,1] \) and \(\omega \in \Omega \) under Assumption APR.4 (i) in the original economy, functions \(w_k \) and \(G_k \) are measurable, and the limit of measurable functions is measurable. Hence, the error terms in the repackaged economy satisfy the condition in Assumption APR.4 (i).

Let us show that the repackaged economy satisfies the condition of approximate factor structure in Assumption APR.4 (ii), namely, the set \(\tilde{\mathcal{J}} = \left\{ (\gamma_i) \in \Gamma : n^{-1} \text{eig}_{\text{max}}(\Sigma_{\varepsilon,1,n}) \overset{L^2}{\to} 0 \right\} \) has \(\mu_{\Gamma} \)-measure 1, where \(\Sigma_{\varepsilon,1,n} \) is the \(n \times n \) conditional variance-covariance matrix of \(\left[\overline{\varepsilon}(\gamma_1), ..., \overline{\varepsilon}(\gamma_n) \right]' \). By using Equation (24) and the Cauchy-Schwarz inequality, we prove the following Lemma.

Lemma 1 We have:

\[\text{eig}_{\text{max}}(\Sigma_{\varepsilon,1,n}) \leq \sum_k \sum_l \tilde{w}_k \tilde{w}_l \text{eig}_{\text{max}}(\Sigma_{\varepsilon,1,n}(G_k))^{1/2} \text{eig}_{\text{max}}(\Sigma_{\varepsilon,1,n}(G_l))^{1/2}, \]

where \(\Sigma_{\varepsilon,1,n}(G_k) \) is the symmetric \(n \times n \) matrix with elements \(\text{Cov}(\varepsilon[G_k^{-1}(\gamma_i)], \varepsilon[G_k^{-1}(\gamma_j)]|\mathcal{F}_0) \).

From Lemma 1, the triangular inequality and the Cauchy-Schwarz inequality, we get:

\[\|n^{-1} \text{eig}_{\text{max}}(\Sigma_{\varepsilon,1,n})\|_2 \leq \sum_k \sum_l \tilde{w}_k \tilde{w}_l \|n^{-1} \text{eig}_{\text{max}}(\Sigma_{\varepsilon,1,n}(G_k))\|_2^{1/2} \|n^{-1} \text{eig}_{\text{max}}(\Sigma_{\varepsilon,1,n}(G_l))\|_2^{1/2}. \] \hspace{1cm} (25)
Now, let us define the sets $\mathcal{J}_k = \left\{ (\gamma_i) \in \Gamma : n^{-1} \text{eig}_{\max}(\Sigma_{\varepsilon,1,n}(G_k)) \overset{L_2}{\to} 0 \right\}$, for any k. We have $\mathcal{J}_k = G_k^\infty(\mathcal{J})$, where the set \mathcal{J} is defined in Assumption APR.4 (ii) for the original economy and has μ_1-measure 1, and G_k^∞ is the mapping on Γ defined by $G_k^\infty(\gamma_1, \gamma_2, \ldots) = (G_k(\gamma_1), G_k(\gamma_2), \ldots)$. Since the mapping G_k is measure-preserving on $[0,1]$, the mapping G_k^∞ is measure-preserving on Γ. Thus, it follows that $\mu_1(\mathcal{J}_k) = 1$ for all k. We now prove that $\bigcap_{k=1}^\infty \mathcal{J}_k \subset \widetilde{\mathcal{J}}$, which implies $\mu_1(\widetilde{\mathcal{J}}) = 1$. Indeed, let us assume that $(\gamma_i) \notin \mathcal{J}_k$ for all k. Then, by taking the limit $n \to \infty$ on both sides of (25), and interchanging the limit and the double sum, we get $\|n^{-1} \text{eig}_{\max}(\Sigma_{\varepsilon,1,n})\|_2 \to 0$, i.e. $(\gamma_i) \notin \widetilde{\mathcal{J}}$. The limit and the double sum can be interchanged by applying the Lebesgue dominated convergence theorem. Indeed, the summands are uniformly dominated since $n^{-1} \text{eig}_{\max}(\Sigma_{\varepsilon,1,n}(G_k)) \leq \sup_{\gamma \in [0,1]} E[\varepsilon_1(\gamma)^2|F_{t-1}] \leq M$, P-a.s., and the \tilde{w}_k are summable.

A.2.3 Derivation of Equations (9) and (10)

From Equation (8) and by using $\text{vec}[ABC] = [C' \otimes A] \text{vec}[B]$ (MN Theorem 2, p. 35), we get $Z_{t-1}'B_i'f_t = \text{vec} [Z_{t-1}'B_i'f_t] = [f_t' \otimes Z_{t-1}'] \text{vec} [B_i']$, and $Z_{i,t-1}'C_i'f_t = [f_t' \otimes Z_{i,t-1}'] \text{vec} [C_i']$, which gives $Z_{t-1}'B_i'f_t + Z_{i,t-1}'C_i'f_t = x_{2,i,t}^j \beta_{2,i}$. Let us now consider the first two terms in the RHS of Equation (8).

a) By definition of matrix X_i in Section 3.1, we have

$$Z_{t-1}'B_i' (\Lambda - F) Z_{t-1} = \frac{1}{2} Z_{t-1}' \left[B_i' (\Lambda - F) + (\Lambda - F)' B_i \right] Z_{t-1} = \frac{1}{2} \text{vech} [X_i] \text{vech} \left[B_i' (\Lambda - F) + (\Lambda - F)' B_i \right].$$

By using the Moore-Penrose inverse of the duplication matrix D_p, we get

$$\text{vech} \left[B_i' (\Lambda - F) + (\Lambda - F)' B_i \right] = D_p^+ \left[\text{vec} [B_i' (\Lambda - F)] + \text{vec} [(\Lambda - F)' B_i] \right].$$

Finally, by the properties of the vec operator and the commutation matrix W_p, and the definition of matrix N_p, we obtain

$$\frac{1}{2} D_p^+ \left[\text{vec} [B_i' (\Lambda - F)] + \text{vec} [(\Lambda - F)' B_i] \right] = \frac{1}{2} D_p^+ (I_p^2 + W_p) \text{vec} [B_i'(\Lambda - F)] = N_p \left[(\Lambda - F)' \otimes I_p \right] \text{vec} [B_i'].$$
b) By the properties of the \(tr \) and \(vec \) operators, we have

\[
Z_{i,t-1}' C_i' (\Lambda - F) Z_{t-1} = tr \left[Z_{i,t-1}' Z_{i,t-1}' C_i' (\Lambda - F) \right] = vec \left[Z_{i,t-1}' Z_{i,t-1}' C_i' (\Lambda - F) \right] = (Z_{i,t-1} \otimes Z_{i,t-1}) \left[(\Lambda - F)' \otimes I_q \right] vec \left[C_i' \right].
\]

By combining a) and b), we get \(Z_{i,t-1}' B_i' (\Lambda - F) Z_{t-1} + Z_{i,t-1}' C_i' (\Lambda - F) Z_{t-1} = x_{1,i,t}^a \beta_{1,i} \) and \(\beta_{1,i} = \left(\left[N_p \left[(\Lambda - F)' \otimes I_p \right] vec [B_i'] \right], \left[(\Lambda - F)' \otimes I_q \right] vec [C_i'] \right)' \).

A.2.4 Derivation of Equation (11)

We use \(\beta_{1,i} = \left(\left(\frac{1}{2} D_p^+ [vec [B_i' (\Lambda - F)] + vec [(\Lambda - F)' B_i]] \right)', \left(vec [C_i' (\Lambda - F)] \right)' \)' from Section A.2.3. a) From the properties of the \(vec \) operator and the commutation matrix \(W_p \), we get

\[
vec \left[B_i' (\Lambda - F) \right] + vec \left[(\Lambda - F)' B_i \right] = (W_p + I_p^a) vec \left[(\Lambda - F)' B_i \right] = (W_p + I_p^a) \left(B_i' \otimes I_p \right) vec \left[\Lambda' - F' \right] .
\]

From \(\nu = vec \left[\Lambda' - F' \right] \) we obtain

\[
\frac{1}{2} D_p^+ [vec [B_i' (\Lambda - F)] + vec [(\Lambda - F)' B_i]] = \frac{1}{2} D_p^+ (I_p^a + W_p) (B_i' \otimes I_p) \nu = N_p (B_i' \otimes I_p) \nu.
\]

b) From the properties of the \(vec \) operator and the commutation matrix \(W_{p,q} \), we get

\[
vec \left[C_i' (\Lambda - F) \right] = W_{p,q} vec [(\Lambda - F)' C_i] = W_{p,q} \left(C_i' \otimes I_p \right) \nu.
\]

A.2.5 Derivation of Equation (12)

We use \(vec \left[\beta_{d,i} \right] = \left(vec \left[\left\{ N_p \left(B_i' \otimes I_p \right) \right\}' \right], vec \left[\left\{ W_{p,q} \left(C_i' \otimes I_p \right) \right\}' \right] \right)' \).

a) By MN Theorem 2 p. 35 and Exercise 1 p. 56, and by writing \(I_{p,K} = I_K \otimes I_p \), we obtain

\[
vec \left[N_p \left(B_i' \otimes I_p \right) \right] = \left(I_{p,K} \otimes N_p \right) vec \left[B_i' \otimes I_p \right] = \left(I_{p,K} \otimes N_p \right) \left(I_K \otimes \left[(W_p \otimes I_p) (I_p \otimes vec [I_p]) \right] \right) vec \left[B_i' \right] = \left(I_K \otimes \left[\left(I_p \otimes N_p \right) \left(W_p \otimes I_p \right) (I_p \otimes vec [I_p]) \right] \right) vec \left[B_i' \right].
\]

Moreover, \(vec \left[\left\{ N_p \left(B_i' \otimes I_p \right) \right\}' \right] = W_p^{(p+1)/2,p,K} vec \left[N_p \left(B_i' \otimes I_p \right) \right] \).

b) Similarly, \(vec \left[W_{p,q} \left(C_i' \otimes I_p \right) \right] = \left(I_K \otimes \left[(I_p \otimes W_{p,q}) (W_{p,q} \otimes I_p) (I_q \otimes vec [I_p]) \right] \right) vec \left[C_i' \right] \) and \(vec \left[\left\{ W_{p,q} \left(C_i' \otimes I_p \right) \right\}' \right] = W_{pq,p,K} vec \left[W_{p,q} \left(C_i' \otimes I_p \right) \right] \).

By combining a) and b) the conclusion follows.
A.2.6 Proof of Proposition 3

a) Consistency of $\hat{\nu}$. By definition of $\hat{\nu}$, we have: $\hat{\nu} - \nu = \hat{Q}_{\beta_3}^{-1} \frac{1}{n} \sum_i \beta_{3,i} \hat{w}_i \left(\hat{\beta}_{1,i} - \beta_{3,i} \nu \right)$. From Equation (12) and MN Theorem 2 p. 35, we get $\beta_{3,i} \nu = vec[n' \beta_{3,i}^3] = (I_d_1 \otimes \nu') vec[\beta_{3,i}^3] = (I_d_1 \otimes \nu') J_a \beta_{3,i}$. Moreover, by using matrices E_1 and E_2, we obtain $\beta_{1,i} - \beta_{3,i} \nu = [E_1' - (I_d_1 \otimes \nu') J_a E_2] \beta_i = C_\nu \beta_i = C_\nu \left(\hat{\beta}_i - \beta_i \right)$, from Equation (11). It follows that

$$\hat{\nu} - \nu = \hat{Q}_{\beta_3}^{-1} \frac{1}{n} \sum_i \beta_{3,i} \hat{w}_i \left(\hat{\beta}_i - \beta_i \right).$$ (26)

The consistency of $\hat{\nu}$ follows from the next Lemma, which is proved in Section A.2.6 c) below. The notation $I_{n,T} = O_{p,\log}(n,T)$ means that $I_{n,T}/a_{n,T}$ is bounded in probability by some power of the logarithmic term $\log(T)$ as $n, T \to \infty$.

Lemma 2 Under Assumptions A.1 b), SC.1-SC.2, B.1, B.4 and B.5, we have:

(i) $\sup_i \| \text{vec} \left(\hat{\Lambda}' - \Lambda' \right) \| = O_{p,\log} \left(T^{-\eta/2} \right)$; (ii) $\sup_i \| w_i \| = O(1)$; (iii) $\frac{1}{n} \sum_i \| \hat{w}_i - w_i \| = o_p(1)$; (iv) $\hat{Q}_{\beta_3} - Q_{\beta_3} = o_p(1)$, when $n, T \to \infty$ such that $n = O \left(T^{\bar{\gamma}} \right)$ for $\bar{\gamma} > 0$.

b) Consistency of $\hat{\Lambda}$. By definition of $\hat{\Lambda}$, we deduce $\| \text{vec} \left(\hat{\Lambda}' - \Lambda' \right) \| \leq \| \hat{\nu} - \nu \| + \| \text{vec} \left(\hat{F}' - F' \right) \|$. By part a), $\| \hat{\nu} - \nu \| = o_p \left(1 \right)$. By the LLN and Assumptions B.1a), B.4a) and B.6, we have $\frac{1}{T} \sum_t Z_{t-1} Z_{t-1}' = O_p(1)$ and $\frac{1}{T} \sum_t u_t Z_{t-1} = o_p(1)$. Then, by Slustky theorem, we get that $\| \text{vec} \left(\hat{F}' - F' \right) \| = o_p(1)$. The result follows.

c) Proof of Lemma 2: (i) We use $\hat{\beta}_i - \beta_i = \frac{t_i \tau_i}{\sqrt{T} \hat{Q}_{x,i}^{-1} Y_{i,T}}$ and $1_t^{(2)} \tau_i \leq \chi_{2,T}$. Moreover, from the definition of condition number CN, $\| \hat{Q}_{x,i}^{-1} \|^2 = Tr \left(\hat{Q}_{x,i} - \sum_{k=1}^{d} \lambda_{k,i}^2 \right) \leq dCN \left(\hat{Q}_{x,i} \right)^4$, where the $\lambda_{k,i}$ are the eigenvalues of matrix $\hat{Q}_{x,i}$ and we use $\text{eig}_{\text{max}} \left(\hat{Q}_{x,i} \right) \geq 1$, which implies $1_t^{(2)} \| \hat{Q}_{x,i}^{-1} \| \leq C_1^{2,T}$. Thus, $\sup_i \| \hat{\beta}_i - \beta_i \| = O_{p,\log} \left(T^{-1/2} \sup_t \| Y_{i,T} \| \right)$ from Assumption B.5. Now let $\delta_T := T^{-\eta/2} (\log T)^{(1+\bar{\gamma})/(2C_2)}$, $\eta, C_2 > 0$ are as in Assumption B.1 and $\bar{\gamma} > 0$ is such that $n = O(\bar{\gamma})$. We have:

$$P \left[T^{-1/2} \sup_i \| Y_{i,T} \| \geq \delta_T \right] \leq n \sup_{\gamma \in [0,1]} P \left[\frac{1}{T} \sum_t I_t(\gamma) x_t(\gamma) \varepsilon_i(\gamma) \right] \geq \delta_T \right] \leq n \left(C_1 T \exp \left\{ -C_2 \delta_T^2 T^\eta \right\} + C_3 \delta_T^{-1} \exp \left\{ -C_4 T^\eta \right\} \right) = O(1),$$
from Assumption B.1 c). Part (i) follows. By using \(w_i = (\text{diag}[v_i])^{-1} \), \(\tau_i \geq 1 \) and \(e_{\text{ig},i}(S_{ii}) \geq M^{-1} e_{\text{ig},i}(Q_x; i) \geq M^{-1} \inf_{\gamma \in [0,1]} e_{\text{ig},i}(E[x_\gamma x_\gamma(\gamma)]) > 0 \) from Assumptions A.1 b) and B.4 d), part (ii) follows. Part (iii) is proved in the supplementary materials by using Assumptions B.1, B.4 and B.5. Finally, part (iv) follows from \(\hat{Q}_{\beta_3} - Q_{\beta_3} = \frac{1}{n} \sum_i (\hat{\beta}_{3,i} \hat{w}_i \beta_{3,i} - \beta_{3,i} w_i \beta_{3,i}) + \frac{1}{n} \sum_i \beta_{3,i} w_i \beta_{3,i} - Q_{\beta_3} \), by using parts (i)-(iii) and the LLN.

A.2.7 Proof of Proposition 4

a) Asymptotic normality of \(\hat{\nu} \). From Equation (26) and by using \(\sqrt{T} (\hat{\beta}_i - \beta_i) = \tau_i, T \hat{Q}_{x; i}^{-1} Y_{T, i} \), we get

\[
\sqrt{nT} (\hat{\nu} - \nu) = \hat{Q}_{\beta_3}^{-1} \frac{1}{\sqrt{nT}} \sum_i \tau_i, T \hat{Q}_{x; i}^{-1} \hat{\nu}_i C_\nu Y_{T, i} = \hat{Q}_{\beta_3}^{-1} \frac{1}{\sqrt{nT}} \sum_i \tau_i, T \beta_{3, i} \hat{\nu}_i C_\nu \hat{Q}_{x; i}^{-1} Y_{T, i} + \hat{Q}_{\beta_3}^{-1} \frac{1}{\sqrt{nT}} \sum_i \tau_i, T (\beta_{3, i} - \beta_{3, i})' \hat{\nu}_i C_\nu \hat{Q}_{x; i}^{-1} Y_{T, i} =: \hat{Q}_{\beta_3}^{-1} I_{11} + I_{12}.
\]

To rewrite \(I_{12} \), we use the following lemma.

Lemma 3 Let \(A \) be a \(m \times n \) matrix and \(b \) be a \(n \times 1 \) vector. Then, \(Ab = (\text{vec} [I_n] \otimes I_m) \text{vec} [\text{vec} [A] b'] \).

By Lemma 3, Equation (12), and \(\sqrt{T} \text{vec} \left[(\beta_{3, i} - \beta_{3, i})' \right] = \tau_i, T J_a E_2 \hat{Q}_{x; i}^{-1} Y_{T, i} \), we have

\[
I_{12} = \hat{Q}_{\beta_3}^{-1} \frac{1}{\sqrt{nT}} \sum_i \tau_i, T \left(\text{vec} [I_4] \otimes I_{K_P} \right) \text{vec} \left[J_a E_2 \hat{Q}_{x; i}^{-1} Y_{T, i} Y_{T, i}' \hat{Q}_{x; i}^{-1} C_\nu \hat{\nu}_i \right] = \hat{Q}_{\beta_3}^{-1} \frac{1}{\sqrt{nT}} \sum_i \tau_i, T J_b \text{vec} \left[E_2 \hat{Q}_{x; i}^{-1} Y_{T, i} Y_{T, i}' \hat{Q}_{x; i}^{-1} C_\nu \hat{\nu}_i \right] = \frac{n}{T} \hat{B}_\nu + \frac{1}{\sqrt{T}} \hat{Q}_{\beta_3}^{-1} I_{13},
\]

where

\[
I_{13} := \frac{1}{\sqrt{nT}} \sum_i \tau_i, T J_b \text{vec} \left[E_2 \left(\hat{Q}_{x; i}^{-1} Y_{T, i} Y_{T, i}' \hat{Q}_{x; i}^{-1} C_\nu - \tau_i, T \hat{Q}_{x; i}^{-1} \hat{\nu}_i \hat{Q}_{x; i}^{-1} C_\nu \right) \hat{\nu}_i \right].
\]

We get:

\[
\sqrt{nT} \left(\hat{\nu} - \frac{1}{T} \hat{B}_\nu - \nu \right) = \hat{Q}_{\beta_3}^{-1} I_{11} + \frac{1}{\sqrt{T}} \hat{Q}_{\beta_3}^{-1} I_{13},
\]

(27)

Let us first show that \(\hat{Q}_{\beta_3}^{-1} I_{11} \) in (27) is asymptotically normal. By MN Theorem 2 p. 35, we have

\[
I_{11} = \frac{1}{\sqrt{nT}} \sum_i \tau_i, T \left[(Y_{T, i}' \hat{Q}_{x; i}^{-1}) \otimes (\beta_{3, i} \hat{\nu}_i) \right] \text{vec} \left[C_\nu \right].
\]

We use the next Lemma, which is proved below in Subsection A.2.7 c).

Lemma 4 Under Assumptions A.1, A.3, SC.1-SC.2 and B.1, B.3-B.5, we have

\[
I_{11} = \frac{1}{\sqrt{nT}} \sum_i \tau_i \left[(Y_{T, i}' \hat{Q}_{x; i}^{-1}) \otimes (\beta_{3, i} \hat{\nu}_i) \right] \text{vec} \left[C_\nu \right] + o_p(1), \text{ when } n, T \to \infty \text{ such that } n = O(T^{\gamma}) \text{ for } \gamma > 0.
\]

61
Then, by the properties of the vec operator, we get

$$
\hat{Q}_{\beta_3}^{-1}I_{11} = \left(vec \left[C'_\nu \right] \otimes \hat{Q}_{\beta_3}^{-1} \right) \frac{1}{\sqrt{n}} \sum_i \tau_i vec \left[(Y'_{i,T}Q_{x,i}^{-1}) \otimes (\beta'_3 w_i) \right] + o_p(1).
$$

Moreover, by using the equality

$$
vec \left[(Y'_{i,T}Q_{x,i}^{-1}) \otimes (\beta'_3 w_i) \right] = (Q_{x,i}^{-1}Y_{i,T}) \otimes vec [\beta'_3 w_i]
$$

(see MN Theorem 10 p. 55), we get

$$
\hat{Q}_{\beta_3}^{-1}I_{11} = \left(vec \left[C'_\nu \right] \otimes \hat{Q}_{\beta_3}^{-1} \right) \frac{1}{\sqrt{n}} \sum_i \tau_i \left[(Q_{x,i}^{-1}Y_{i,T}) \otimes v_{3,i} \right] + o_p(1).
$$

Then

$$
\hat{Q}_{\beta_3}^{-1}I_{11} \Rightarrow N (0, \Sigma_{\nu})
$$

follows from Assumptions A.2 a) and Lemma 2 (iv). Let us now consider the second term in (27), and show $\frac{1}{\sqrt{T}}I_{13} = o_p(1)$. We have using MN Theorem 2 p. 35:

$$
I_{13} = \frac{1}{\sqrt{n}} \sum_i \tau^2_{i,T}J_b \left(\hat{w}_i \otimes \left[E'_2 \hat{Q}^{-1}_{x,i} \left(Y_{i,T}Y'_{i,T} - S_{\nu,i,T} \right) \hat{Q}^{-1}_{x,i} \right] \right) vec[C_{\nu}]
$$

$$
- \frac{1}{\sqrt{n}} \sum_i \tau^2_{i,T}J_b \left(\hat{w}_i \otimes \left[E'_2 \hat{Q}^{-1}_{x,i} \left(\tau^{-1}_{i,T} S_{\nu,i,T} - S_{\nu,i,T} \right) \hat{Q}^{-1}_{x,i} \right] \right) vec[C_{\nu}]
$$

$$
- \frac{1}{\sqrt{n}} \sum_i \tau_i J_b \left(\hat{w}_i \otimes \left[E'_2 \hat{Q}^{-1}_{x,i} \left(\hat{S}_{\nu,i} - \hat{S}_{\nu,i} \right) \hat{Q}^{-1}_{x,i} \right] \right) vec[C_{\nu}]
$$

$$
- \frac{1}{\sqrt{n}} \sum_i \tau_i J_b \left(\hat{w}_i \otimes \left[E'_2 \hat{Q}^{-1}_{x,i} \hat{S}_{\nu,i} \hat{Q}^{-1}_{x,i} \right] \right) vec[C_{\nu} - C_{\nu}],
$$

where $\hat{S}_{\nu,i} = \frac{1}{T_i} \sum_x \sigma_{i,t} I_{i,t} x_{i,t} x'_{i,t}$ and $S_{\nu,i,T} = \frac{1}{T} \sum_x \sigma_{i,t} I_{i,t} x_{i,t} x'_{i,t}$. The various terms are bounded in the next Lemma.

Lemma 5 Under Assumptions A.1, A.3, SC.1-SC.2, B.1-B.5, (i) $I_{131} = O_p(1) + O_{p,\log} \left(\frac{\sqrt{n}}{T} \right)$,

(ii) $I_{132} = O_{p,\log} \left(\frac{1}{\sqrt{T}} + \frac{\sqrt{n}}{\sqrt{T}} \right)$, (iii) $I_{133} = O_{p,\log} \left(\frac{\sqrt{n}}{T} \right)$, (iv) $I_{134} = O_{p,\log} \left(\sqrt{n} \right)$ and

(v) $C_{\nu} - C_{\nu} = O_{p,\log} \left(\frac{1}{\sqrt{nT}} + \frac{1}{T} \right)$, when $n, T \to \infty$ such that $n = O (T^\gamma)$ for $\gamma > 0$.

From Equation (28) and Lemma 5 we get $\frac{1}{\sqrt{T}}I_{13} = o_p(1) + O_{p,\log} \left(\frac{\sqrt{n}}{T \sqrt{T}} \right)$. From $n = O(T^\gamma)$ with $\gamma < 3$, we get $\frac{1}{\sqrt{T}}I_{13} = o_p(1)$ and the conclusion follows.

b) Asymptotic normality of $vec \left(\hat{\Lambda}' \right)$. We have $\sqrt{T}vec \left[\hat{\Lambda}' - \Lambda' \right] = \sqrt{T}vec \left[\hat{F}' - F' \right] + \sqrt{T} \left(\hat{\nu} - \nu \right)$. By using

$$
\sqrt{T}vec \left[\hat{F}' - F' \right] = \left[I_{\gamma} \otimes \left(\frac{1}{T} \sum Z_{t-1} Z'_{t-1} \right)^{-1} \right] \frac{1}{\sqrt{T}} \sum u_t \otimes Z_{t-1} \text{ and } \sqrt{T} \left(\hat{\nu} - \nu \right) =
$$

62
\[O_p \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{T}} \right) = o_p(1), \text{ the conclusion follows from Assumption A.2b).} \]

c) **Proof of Lemma 4:** Write:

\[
I_{11} = \frac{1}{\sqrt{n}} \sum_i \tau_{i,T} \left[(Y'_{i,T}Q^{-1}_{x,i}) \otimes (\beta'_{3,i} \hat{\nu}_i) \right] vec [C'_{\nu}]
+ \frac{1}{\sqrt{n}} \sum_i \tau_{i,T} \left[(Y'_{i,T}(\hat{Q}_{x,i}^{-1} - Q_{x,i}^{-1})) \otimes (\beta'_{3,i} \hat{\nu}_i) \right] vec [C'_{\nu}] =: I_{111} vec [C'_{\nu}] + I_{112} vec [C'_{\nu}].
\]

Let us decompose \(I_{111} \) as:

\[
I_{111} = \frac{1}{\sqrt{n}} \sum_i \tau_{i,T} \left[(Y'_{i,T}Q^{-1}_{x,i}) \otimes (\beta'_{3,i} \hat{\nu}_i) \right]
+ \frac{1}{\sqrt{n}} \sum_i (1 - 1) \tau_{i,T} \left[(Y'_{i,T}Q^{-1}_{x,i}) \otimes (\beta'_{3,i} \hat{\nu}_i) \right]
+ \frac{1}{\sqrt{n}} \sum_i (1 - 1) \tau_{i,T} \left[(Y'_{i,T}Q^{-1}_{x,i}) \otimes (\beta'_{3,i}((\text{diag}[\hat{\nu}_i])^{-1} - (\text{diag}[\nu_i])^{-1})) \right]
=: I_{1111} + I_{1112} + I_{1113} + I_{1114}.
\]

Similarly, for \(I_{112} \), we have:

\[
I_{112} = \frac{1}{\sqrt{n}} \sum_i \tau_{i,T} \left[(Y'_{i,T}(\hat{Q}_{x,i}^{-1} - Q_{x,i}^{-1})) \otimes (\beta'_{3,i}((\text{diag}[\hat{\nu}_i])^{-1} - (\text{diag}[\nu_i])^{-1})) \right]
+ \frac{1}{\sqrt{n}} \sum_i (1 - 1) \tau_{i,T} \left[(Y'_{i,T}(\hat{Q}_{x,i}^{-1} - Q_{x,i}^{-1})) \otimes (\beta'_{3,i}((\text{diag}[\hat{\nu}_i])^{-1} - (\text{diag}[\nu_i])^{-1})) \right]
=: I_{1121} + I_{1122}.
\]

The conclusion follows by proving that terms \(I_{1112}, I_{1113}, I_{1114}, I_{1121} \) and \(I_{1122} \) are \(o_p(1) \).

Proof that \(I_{1112} = o_p(1) \). We use the next Lemma.

Lemma 6 Under Assumptions SC.1-SC.2, B.1 b), d) and B.4 a), c): \(P \left[1^X_i = 0 \right] = O(T^{-\tilde{b}}), \) for any \(\tilde{b} > 0.\)

In Lemma 6, the unconditional probability \(P \left[1^X_i = 0 \right] \) is independent of \(i \) since the indices \((\gamma_i) \) are i.i.d.

By using the bound \(\|I_{1122}\| \leq \frac{C}{\sqrt{n}} \sum_i (1 - 1)^\gamma \|Y_{i,T}\| \) from Assumptions B.4 b), c) and d) and Lemma 2 (ii), the bound \(\sup_i E[\|Y_{i,T}\|; x_T(\gamma_i), I_T(\gamma_i), \{\gamma_i\}] \leq C \) from Assumptions A.1 a) and b), and Lemma 6, it follows \(I_{1112} = O_p(\sqrt{nT^{-\tilde{b}}}), \) for any \(\tilde{b} > 0.\) Since \(n = O(T^{\gamma}), \) with \(\gamma > 0, \) we get \(I_{1112} = o_p(1).\)
Proof that $I_{1113} = o_p(1)$. From Assumptions A.1 a) and B.4 a)-d), we deduce that

$$E \left[\|I_{1113}\|^2 | \{x_T(\gamma_i), I_T(\gamma_i), \gamma_i \} \right] \leq \frac{C}{nT} \sum_{i,j} \sum_t 1_t^e \chi_{j,T} |\tau_{i,T} - \tau_i||\tau_{j,T} - \tau_j||\sigma_{i,j,t}|.$$

By Cauchy-Schwarz inequality and Assumption A.1 c), we get $E \left[\|I_{1113}\|^2 | \{\gamma_i \} \right] \leq C M \sup_{\gamma \in [0,1]} E \left[\chi_{i,T}^2 |\tau_{i,T} - \tau_i|^4 |\gamma_i = \gamma \right]^{1/2}$. By using $\tau_{i,T} - \tau_i = -\tau_{i,T} \sum_{t} \left(I_{i,t} - E[I_{i,t} | \gamma_i] \right)$ and $1_t^e \chi_{i,T} \leq \chi_{2,T}$, we deduce that

$$\sup_{\gamma \in [0,1]} E \left[\chi_{i,T}^2 |\tau_{i,T} - \tau_i|^4 |\gamma_i = \gamma \right] \leq C \chi_{2,T} E \left[\frac{1}{T} \sum_t (I_t(\gamma) - E[I_t(\gamma)]) \right]^4 = o(1)$$

from Assumption B.5 and the next Lemma.

Lemma 7 Under Assumption B.1 d): $\sup_{\gamma \in [0,1]} E \left[\frac{1}{T} \sum_t (I_t(\gamma) - E[I_t(\gamma)]) \right]^4 = O(T^{-c})$, for some $c > 0$.

Then, $I_{1113} = o_p(1)$.

Proof that $I_{1114} = o_p(1)$. From the properties of diagonal matrices

$$\text{diag}[\hat{v}_i]^{-1} - \text{diag}[v_i]^{-1} = -\text{diag}[v_i]^{-2} \text{diag}[\hat{v}_i - v_i] + \text{diag}[\hat{v}_i]^{-1} \text{diag}[v_i]^{-2} \left(\text{diag}[\hat{v}_i - v_i] \right)^2,$$

we get:

$$I_{1114} = -\frac{1}{\sqrt{n}} \sum_i 1_t^e \chi_{i,T} \left[(Y_t^e Q_{x,i}^{-1}) \otimes (\beta_{3,i} \text{diag}[v_i]^{-2} \text{diag}[\hat{v}_i - v_i]) \right]$$

$$+ \frac{1}{\sqrt{n}} \sum_i 1_t^e \chi_{i,T} \left[(Y_t^e Q_{x,i}^{-1}) \otimes (\beta_{3,i} \text{diag}[\hat{v}_i]^{-1} \text{diag}[v_i]^{-2} \left(\text{diag}[\hat{v}_i - v_i] \right)^2) \right]$$

$$=: I_{11141} + I_{11142}.$$

Let us first consider I_{11141}. We have:

$$\hat{v}_i - v_i = \tau_{i,T} C_{\hat{v}_i}^e \hat{Q}_{x,i}^{-1} \left(\hat{S}_{ii} - S_{ii} \right) \hat{Q}_{x,i}^{-1} C_{\hat{v}_i} + 2 \tau_{i,T} (C_{\hat{v}_i} - C_{\nu}) \hat{Q}_{x,i}^{-1} S_{ii} \hat{Q}_{x,i}^{-1} C_{\nu}$$

$$+ \tau_{i,T} (C_{\nu} - C_{\nu}) \hat{Q}_{x,i}^{-1} S_{ii} \hat{Q}_{x,i}^{-1} (C_{\nu} - C_{\nu}) + 2 \tau_{i,T} C_{\nu} \left(\hat{Q}_{x,i}^{-1} - Q_{x,i}^{-1} \right) S_{ii} \hat{Q}_{x,i}^{-1} C_{\nu}$$

$$+ \tau_{i,T} C_{\nu} \left(\hat{Q}_{x,i}^{-1} - Q_{x,i}^{-1} \right) S_{ii} \left(\hat{Q}_{x,i}^{-1} - Q_{x,i}^{-1} \right) C_{\nu} + (\tau_{i,T} - \tau_i) C_{\nu} \hat{Q}_{x,i}^{-1} S_{ii} \hat{Q}_{x,i}^{-1} C_{\nu}. \quad (29)$$

The contributions of the first two terms to I_{11141} are:

$$I_{111411} = -\frac{1}{\sqrt{n}} \sum_i 1_t^e \chi_{i,T}^2 \left[(Y_t^e Q_{x,i}^{-1}) \otimes (\beta_{3,i} \text{diag}[v_i]^{-2} \text{diag}[C_{\hat{v}_i}^e \hat{Q}_{x,i}^{-1} \left(\hat{S}_{ii} - S_{ii} \right) \hat{Q}_{x,i}^{-1} C_{\nu}]) \right],$$

$$I_{111412} = -\frac{2}{\sqrt{n}} \sum_i 1_t^e \chi_{i,T}^2 \left[(Y_t^e Q_{x,i}^{-1}) \otimes (\beta_{3,i} \text{diag}[v_i]^{-2} \text{diag}[(C_{\nu} - C_{\nu}) \hat{Q}_{x,i}^{-1} S_{ii} \hat{Q}_{x,i}^{-1} C_{\nu}]) \right].$$
We first show $I_{111412} = o_p(1)$. For this purpose, it is enough to show that $C_{q_1} - C_r = O_p(T^{-c})$, for some $c > 0$, and $\frac{1}{\sqrt{n}}\sum_i 1_i^X \tau_{i,T}^2 \left(\hat{Q}_x, i, \hat{Q}_x, i \right) \left(\hat{S}_{ii} - S_{ii} \right) \left(\hat{Q}_x, i, \hat{Q}_x, i \right)_{k,l} (\beta_{3,i} \text{diag}[v_i]^{-2})_{m,p} (Q_{x,i}^{-1}Y_{i,T}) q = O_p \left(\chi_1^4, T \chi_2^2, T \right)$, for any k, l, m, p, q. The first statement follows from the proof of Proposition 3 but with known weights equal to 1. To prove the second statement, we use bounds $1_i^X \tau_{i,T} \leq \chi_2, T, 1_i^X \| \hat{Q}_x, i \| \leq C \chi_1, T$ and $\| Q_{x,i}^{-1} \| \leq C$ and Assumption A.1 c). Let us now prove that $I_{111411} = o_p(1)$. For this purpose, it is enough to show that

$$J_1 := \frac{1}{\sqrt{n}} \sum_i 1_i^X \tau_{i,T}^2 \left(\hat{Q}_x, i \left(\hat{S}_{ii} - S_{ii} \right) \hat{Q}_x, i \right)_{k,l} (\beta_{3,i} \text{diag}[v_i]^{-2})_{m,p} (Q_{x,i}^{-1}Y_{i,T}) q = o_p(1),$$

for any k, l, m, p, q. By using $\hat{\beta}_i - \beta_i = \frac{T_i^T}{\sqrt{T}} x_i^T \hat{Q}_x, i Y_{i,T}$, we get:

$$\hat{S}_{ii} - S_{ii} = \frac{1}{T_i} \sum_t I_{i,t} \left(\varepsilon_{i,t}^2 x_i x_{i,t}^T - S_{ii} \right) + \frac{1}{T_i} \sum_t I_{i,t} \left(\varepsilon_{i,t}^2 - \varepsilon_{i,t}^2 \right) x_i x_{i,t}^T$$

$$\frac{\tau_{i,T}}{\sqrt{T}} W_{1,i,T} + \frac{\tau_{i,T}}{\sqrt{T}} W_{2,i,T} - \frac{2 \varepsilon_{i,t}^2}{T} W_{3,i,T} \hat{Q}_x, i Y_{i,T} + \frac{\tau_{i,T}}{T} \hat{Q}_x, i Y_{i,T} Y_{i,T} \hat{Q}_x, i (31)$$

where $W_{1,i,T} := \frac{1}{\sqrt{T}} \sum_t I_{i,t} x_i x_{i,t}^T \eta_{i,t}, \eta_{i,t} = \varepsilon_{i,t}^2 - \sigma_{ii,t}, W_{2,i,T} := \frac{1}{\sqrt{T}} \sum_t I_{i,t} \zeta_{i,t}, \zeta_{i,t} := \sigma_{ii,t} x_i^2 - S_{ii}, W_{3,i,T} := \frac{1}{\sqrt{T}} \sum_t I_{i,t} \varepsilon_{i,t} x_i x_{i,t}^T$ and x_i, t, v_i and $Y_{i,T}$ are now treated as scalars to ease notation. Then:

$$J_1 = \frac{1}{\sqrt{n} T} \sum_i 1_i^X v_i^{-2} \tau_{i,T}^3 \hat{Q}_x, i, \hat{Q}_x, i^2 W_{1,i,T} \beta_{3,i} Q_{x,i}^{-1} Y_{i,T} + \frac{1}{\sqrt{n} T} \sum_i 1_i^X v_i^{-2} \tau_{i,T}^3 \hat{Q}_x, i, \hat{Q}_x, i^2 W_{2,i,T} \beta_{3,i} Q_{x,i}^{-1} Y_{i,T}^2$$

$$+ \frac{1}{\sqrt{n} T} \sum_i 1_i^X v_i^{-2} \tau_{i,T}^3 \hat{Q}_x, i, \hat{Q}_x, i^2 Y_{i,T}^2 =: J_{11} + J_{12} + J_{13} + J_{14}.$$

Let us consider J_{11}. We have:

$$E \left[J_{11} \{ x_T (\gamma_i), I_{T} (\gamma_i), \gamma_i \} \right] = \frac{1}{\sqrt{n} T^2} \sum_i \sum_i 1_i^X v_i^{-2} \tau_{i,T}^3 \hat{Q}_x, i, \hat{Q}_x, i^2 Q_{x,i}^{-1} \beta_{3,i} I_{i,s} x_i x_{i,s}^T E \left[\varepsilon_{i,t}^2 \varepsilon_{i,s} \right] Y_{T, \gamma_i} = 0,$$

from Assumption A.3. Moreover, from Assumption B.4:

$$\frac{C}{n T^2} \sum_{i,j} \sum_{t_1, t_2, t_3, t_4} 1_i^X 1_j^X \tau_{i,T}^3 \tau_{j,T}^3 \| Q_{x,i}^{-1} \|^2 \| \hat{Q}_{x,j} \| \| \hat{Q}_{x,j} \|^2$$

$$\left| \text{Cov} (\eta_{i,t_1} x_{i,t_2}, \eta_{j,t_3} x_{j,t_4}, Y_{T, \gamma_i}) \right|.$$
By using $1^\chi \|\hat{Q}_{x,i}^{-1}\| \leq C\chi_{1,T}^2$, $1^\chi \tau_{i,T} \leq \chi_{2,T}$, the Law of Iterated Expectations and Assumptions B.3 c) and B.5, we get $E[J_{11}] = 0$ and $V[J_{11}] = o(1)$. Thus $J_{11} = o_p(1)$. By similar arguments and using Assumptions A.1 c), B.3 c) and B.4, we get $J_{12} = o_p(1)$, $J_{13} = o_p(1)$ and $J_{14} = o_p(1)$. Hence the bound in Equation (30) follows, and $I_{111411} = o_p(1)$. Paralleling the detailed arguments provided above, we can show that all other remaining terms making I_{1114} are also $o_p(1)$.

Proof that $I_{1121} = o_p(1)$: From:

$$
\hat{Q}_{x,i}^{-1} - Q_{x,i}^{-1} = -\hat{Q}_{x,i}^{-1} \left(\frac{1}{T_i} \sum_t I_{i,t} x_{i,t} x'_{i,t} - Q_{x,i} \right) Q_{x,i}^{-1} = -\tau_{i,T} \hat{Q}_{x,i}^{-1} W_{i,T} Q_{x,i}^{-1},
$$

(32)

where $W_{i,T} := \frac{1}{T} \sum_t I_{i,t} (x_{i,t} x'_{i,t} - Q_{x,i})$, we can write:

$$
I_{1121} = -\frac{1}{\sqrt{n}} \sum_i 1^\chi \tau_{i,T} \left[(Y_{i,T} Q_{x,i}^{-1} W_{i,T} Q_{x,i}^{-1}) \otimes (\beta'_{3,i} \text{diag}[v_i]^{-1}) \right].
$$

From Assumption B.4, $1^\chi \|\hat{Q}_{x,i}^{-1}\| \leq C\chi_{1,T}^2$ and $1^\chi \tau_{i,T} \leq \chi_{2,T}$, we have:

$$
E \left[\|I_{1121}\|^2 | \{x_T(\gamma_i), I_T(\gamma_i), \gamma_i\} \right] \leq \frac{C\chi_{1,T}^2 \chi_{2,T}^2}{nT} \sum_{i,j} |\sigma_{ij,t}| \|W_{i,T}\| \|W_{j,T}\|.
$$

Then, from Cauchy-Schwarz inequality, we get $E \left[\|I_{1121}\|^2 | \{\gamma_i\} \right] \leq C\chi_{1,T}^2 \chi_{2,T}^2 \frac{1}{nT} \sum_{i,j} E[\sigma_{ij,t}^2 | \gamma_i, \gamma_j]^{1/2}$

$$
\sup_i E \left[\|W_{i,T}\|^4 | \gamma_i \right]^{1/2},
$$

where

$$
\sup_i E \left[\|W_{i,T}\|^4 | \gamma_i \right] \leq \sup_{\gamma \in [0,1]} E \left[\left(\frac{1}{T} \sum_t I_t(\gamma) x_t(\gamma) x'_t(\gamma) - E[x_t(\gamma) x'_t(\gamma)] \right)^4 \right] = O(T^{-c})
$$

from Assumption B.1 b). Then, from Assumptions A.1 c) and B.5 it follows $E[\|I_{1121}\|^2] = o(1)$ and thus $I_{1121} = o_p(1)$.

Proof that $I_{1122} = o_p(1)$: The statement follows by combining arguments similar as for I_{1114} and I_{1121}.

A.2.8 Proof of Proposition 5

From Proposition 4, we have to show that $\tilde{\Sigma}_\nu - \Sigma_\nu = o_p(1)$. By $\Sigma_\nu = \left(\text{vec} \left[C'_\nu \otimes Q_{\beta_3}^{-1} \right] \right) S_{v_3} \left(\text{vec} \left[C'_\nu \otimes Q_{\beta_3}^{-1} \right] \right)$ and $\tilde{\Sigma}_\nu = \left(\text{vec} \left[C'_\nu \otimes \hat{Q}_{\beta_3}^{-1} \right] \right) \tilde{S}_{v_3} \left(\text{vec} \left[C'_\nu \otimes \hat{Q}_{\beta_3}^{-1} \right] \right)$, where $S_{v_3} = \frac{1}{n} \sum_{i,j} \frac{\tau_i \tau_j T_i T_j}{\tau_i, T} [\tilde{S}_{Q,i,j} \otimes \hat{v}_i \hat{v}_j]$, and
the consistency of \(\hat{\beta} \) and \(\hat{Q}_{\beta_3} \), the statement follows if \(\hat{S}_{v_3} - S_{v_3} = o_p(1) \). The leading terms in \(\hat{S}_{v_3} - S_{v_3} \) are given by

\[
I_3 := \frac{1}{n} \sum_{i,j} \frac{\tau_{ij}}{\tau_{ij}} (\hat{S}_{Q,ij} - S_{Q,ij}) \otimes v_{3,i} v'_{3,j} \text{ and } I_4 := \frac{1}{n} \sum_{i,j} \tau_{ij} (\tau_{ij,T}^{-1} - \tau_{ij}^{-1}) S_{Q,ij} \otimes v_{3,i} v'_{3,j},
\]

while the other ones can be shown to be \(o_p(1) \) by arguments similar to the proofs of Propositions 3 and 4.

Proof of \(I_3 = o_p(1) \). From \(\tau_i \leq M, \tau_{ij} \geq 1, \|v_{3,i}\| \leq M \) and \(\|Q_{x,3}\| \leq M \), \(I_3 = o_p(1) \) follows if we show: \(\frac{1}{n} \sum_{i,j} \|\hat{S}_{ij} - S_{ij}\| = o_p(1) \). For this purpose, we introduce the following Lemmas 8 and 9 that extend results in Bickel and Levina (2008) from the i.i.d. case to the time series case including random individual effects.

Lemma 8 Let \(\psi_{n,T} := \max_{ij} \|\hat{S}_{ij} - S_{ij}\| \), and \(\Psi_{n,T}(\xi) := \max_{ij} P \left[\|\hat{S}_{ij} - S_{ij}\| \geq \xi \right] \), for \(\xi > 0 \). Under Assumptions SC.1, SC.2, A.4, \(\frac{1}{n} \sum_{ij} \|\hat{S}_{ij} - S_{ij}\| = O_p(\psi_{n,T} n^{-\tilde{q}}) = O_p(1) \), for any \(\nu \in (0,1) \).

Lemma 9 Under Assumptions SC.1, SC.2, B.1, B.4 and B.5, if \(\kappa = M \sqrt{\frac{\log n}{T \eta}} \) with \(M \) large, then \(n^2 \psi_{n,T}(1 - v) = O(1) \), for any \(v \in (0,1) \), and \(\psi_{n,T} = O_p\left(\sqrt{\frac{\log n}{T \eta}}\right) \), when \(n, T \to \infty \) such that \(n = O(T^{\gamma}) \) for \(\gamma > 0 \).

In Lemma 8, the probability \(P \left[\|\hat{S}_{ij} - S_{ij}\| \geq \xi \right] \) is the same for all pairs \((i, j)\) with \(i = j \), and for all pairs with \(i \neq j \), since this probability is marginal w.r.t. the individual random effects. From Lemmas 8 and 9, it follows \(\frac{1}{n} \sum_{ij} \|\hat{S}_{ij} - S_{ij}\| = O_p(\psi_{n,T} n^{-\tilde{q}}) = o_p(1) \), since \(n = O(T^{\gamma}) \) with \(\gamma < \frac{1}{2} - \frac{\eta}{2\delta} \).

Proof of \(I_4 = o_p(1) \). From \(\tau_i \leq M, \|Q_{x,3}\| \leq M \), and \(\|v_{3,i}\| \leq M \), we have \(E[\|I_4\| | \{\gamma_i\}] \leq C \sup_{i,j} E[|\tau_{ij,T}^{-1} - \tau_{ij}^{-1}| \gamma_i, \gamma_j] \frac{1}{n} \sum_{i,j} \|S_{ij}\| \). By using the inequalities \(\sup_{i,j} E[|\tau_{ij,T}^{-1} - \tau_{ij}^{-1}| \gamma_i, \gamma_j] \leq C E[|\sigma_{ij,T}| | \gamma_i, \gamma_j] \), from Assumptions A.1 c) and B.1 d) we get \(E[\|I_4\|] = o(1) \), which implies \(I_4 = o_p(1) \).

A.2.9 Proof of Proposition 6

By definition of \(\hat{Q}_c \), we get the following result:
Lemma 10 Under \mathcal{H}_0 and Assumptions APR.1-APR.5, SC.1-SC.2, FS.1-FS.2, A.1-A.3 and B.1-B.5, we have

$$
\hat{Q}_e = \frac{1}{n} \sum_i \left(\hat{\beta}_i - \beta_i \right)' C_\nu \tilde{w}_i C_\nu' \left(\hat{\beta}_i - \beta_i \right) + O_p(\text{log} \left(\frac{1}{nT} + \frac{1}{T^2} \right)), \text{ when } n, T \to \infty \text{ such that } n = O(T^\gamma)
$$

for $\gamma > 0$.

From $\sqrt{T} \left(\hat{\beta}_i - \beta_i \right) = \tau_{i,T} \hat{Q}_{x,i}^{-1} Y_{i,T}$ and the properties of the trace, we have $(\hat{\beta}_i - \beta_i)' C_\nu \tilde{w}_i C_\nu' (\hat{\beta}_i - \beta_i) = T^{-1} \tau_{i,T}^2 \text{tr} \left[C_\nu' \hat{Q}_{x,i}^{-1} Y_{i,T} Y_{i,T}' \hat{Q}_{x,i}^{-1} C_\nu \tilde{w}_i \right]$. Then, by using that $\tau_{i,T} \text{tr} \left[C_\nu' \hat{Q}_{x,i}^{-1} \hat{S}_{ii} \hat{Q}_{x,i}^{-1} C_\nu \tilde{w}_i \right] = 1^i d_1$, Lemma 6, and $n = O(T^\gamma)$ with $\gamma < 2$, we get $\hat{\xi}_{nT} = \frac{1}{\sqrt{n}} \sum_i \tau_{i,T}^2 \text{tr} \left[C_\nu' \hat{Q}_{x,i}^{-1} (Y_{i,T} Y_{i,T}' - \tau_{i,T}^{-1} \hat{S}_{ii}) \hat{Q}_{x,i}^{-1} C_\nu \tilde{w}_i \right] + o_p(1)$.

Similarly, as in Equation (28), let us decompose $\hat{\xi}_{nT}$ as:

$$
\hat{\xi}_{nT} = \frac{1}{\sqrt{n}} \sum_i \tau_{i,T}^2 \text{tr} \left[C_\nu' \hat{Q}_{x,i}^{-1} (Y_{i,T} Y_{i,T}' - \tau_{i,T}^{-1} S_{ii}) \hat{Q}_{x,i}^{-1} C_\nu \tilde{w}_i \right]
$$

By similar results as in Lemma 5 (i)-(iii), and the condition $n = O(T^\gamma)$ with $\gamma < 2$, we get $\hat{\xi}_{nT} = \frac{1}{\sqrt{n}} \sum_i \tau_{i,T}^2 \text{tr} \left[C_\nu' \hat{Q}_{x,i}^{-1} (Y_{i,T} Y_{i,T}' - S_{ii}) \hat{Q}_{x,i}^{-1} C_\nu \tilde{w}_i \right] + o_p(1)$. Now, from the properties $tr(ABCD)

= \text{vec} \left[D' \right] (C' \otimes A) \text{vec} \left[B \right]$ (MN Theorem 3, p. 35) and $\text{vec} \left[ABC \right] = (C' \otimes A) \text{vec} \left[B \right]$ for conformable matrices, we have:

$$
\text{tr} \left[C_\nu' \hat{Q}_{x,i}^{-1} (Y_{i,T} Y_{i,T}' - S_{ii}) \hat{Q}_{x,i}^{-1} C_\nu \tilde{w}_i \right] = \text{vec} \left[w_i \right]' (C_\nu' \otimes C_\nu') \text{vec} \left[Q_{x,i}^{-1} (Y_{i,T} Y_{i,T}' - S_{ii}) \right] Q_{x,i}^{-1}
$$

$$
= \text{vec} \left[w_i \right]' (C_\nu' \otimes C_\nu') \left(Q_{x,i}^{-1} \otimes Q_{x,i}^{-1} \right) \text{vec} \left[Y_{i,T} Y_{i,T}' - S_{ii} \right]
$$

$$
= \text{vec} \left[w_i \right]' (C_\nu' \otimes C_\nu') \left(Q_{x,i}^{-1} \otimes Q_{x,i}^{-1} \right) (Y_{i,T} \otimes Y_{i,T} - \text{vec} [S_{ii}])
$$

$$
= \text{vec} \left[C_\nu' \otimes C_\nu' \right]' \left(\left[(Q_{x,i}^{-1} \otimes Q_{x,i}^{-1}) (Y_{i,T} \otimes Y_{i,T} - \text{vec} [S_{ii}]) \right] \otimes \text{vec} [w_i] \right).
$$

Thus, we get $\hat{\xi}_{nT} = \text{vec} \left[C_\nu' \otimes C_\nu' \right]' \frac{1}{\sqrt{n}} \sum_i \tau_{i,T}^2 \left(\left[(Q_{x,i}^{-1} \otimes Q_{x,i}^{-1}) (Y_{i,T} \otimes Y_{i,T} - \text{vec} [S_{ii}]) \right] \otimes \text{vec} [w_i] \right)$. From Assumption A.5, we get $\hat{\xi}_{nT} \Rightarrow N(0, \Sigma_\xi)$, where $\Sigma_\xi = \text{vec} \left[C_\nu' \otimes C_\nu' \right]' \Omega \text{vec} \left[C_\nu' \otimes C_\nu' \right]$. Now, by using
that \(\text{tr}(ABCD) = \text{vec} [D]' (A \otimes C') \text{vec} [B'] \), we have:

\[
\text{vec} [C'_\nu \otimes C'_\nu]' ((S_{Q,ij} \otimes S_{Q,ij}) \otimes \text{vec}[w_i]\text{vec}[w_j]) \text{vec} [C'_\nu \otimes C'_\nu] = \text{vec}[w_i]' ((C'_\nu S_{Q,ij} C'_\nu) \otimes (C'_\nu S_{Q,ij} C'_\nu)) \text{vec}[w_j] = \text{tr} [(C'_\nu S_{Q,ij} C'_\nu) w_j (C'_\nu S_{Q,ij} C'_\nu) w_i]
\]

and similarly

\[
\text{vec} [C'_\nu \otimes C'_\nu]' (((S_{Q,ij} \otimes S_{Q,ij}) W_d) \otimes (\text{vec}[w_i]\text{vec}[w_j]')) \text{vec} [C'_\nu \otimes C'_\nu] = \text{tr} \left((C'_\nu Q^{-1}_{x,i} S_{x,i} Q^{-1}_{x,i} C'_\nu)w_j \left(C'_\nu Q^{-1}_{x,i} S_{x,i} Q^{-1}_{x,i} C'_\nu \right) w_i \right).
\]

Thus, we get the asymptotic variance matrix

\[
\Sigma_\xi = 2 \lim_{n \to \infty} E \left[\frac{1}{n} \sum_{i,j} \frac{\tau_1^2}{\tau_{ij}} \text{tr} \left(\left(C'_\nu Q^{-1}_{x,i} S_{x,i} Q^{-1}_{x,i} C'_\nu \right)w_j (C'_\nu Q^{-1}_{x,i} S_{x,i} Q^{-1}_{x,i} C'_\nu) w_i \right) \right].
\]

Finally, \(\tilde{\Sigma}_\xi = \Sigma_\xi + o_p(1) \) follows from \(\frac{1}{n} \sum_{i,j} \| \tilde{S}_{ij} - S_{ij} \|^2 = o_p(1) \).

A.2.10 Proof of Proposition 7

a) Asymptotic normality of \(\hat{\nu} \). By definition of \(\hat{\nu} \) and under \(\mathcal{H}_1 \), we have

\[
\hat{\nu} - \nu_\infty = \hat{Q}_{\beta_3}^{-1} \frac{1}{n} \sum_i \hat{\beta}_{3,i} \hat{w}_i C'_{\nu_\infty} \hat{\beta}_i = \hat{Q}_{\beta_3}^{-1} \frac{1}{n} \sum_i \hat{\beta}_{3,i} \hat{w}_i C'_{\nu_\infty} \hat{\beta}_i = \hat{Q}_{\beta_3}^{-1} \frac{1}{n} \sum_i \hat{\beta}_{3,i} \hat{w}_i C'_{\nu_\infty} \hat{\beta}_i + \hat{Q}_{\beta_3}^{-1} \frac{1}{n} \sum_i \hat{\beta}_{3,i} \hat{w}_i e_i \tag{33}
\]

Equation (33) is the analogue of Equation (26). Consistency of \(\hat{\nu} \) for \(\nu_\infty \) follows as in the proof of Proposition 3 and by using \(E \left[\beta_{3,i} w_i e_i \right] = 0 \). Thus, by using \(\sqrt{T} \left(\hat{\beta}_i - \beta_i \right) = \tau_{i,T} \hat{Q}_{x,i}^{-1} Y_{i,T} \), Lemma 3 and similar algebraic manipulations as in the proof of Proposition 4, we get:

\[
\sqrt{n} \left(\hat{\nu} - \frac{1}{T} \bar{B}_\nu - \nu_\infty \right) = \hat{Q}_{\beta_3}^{-1} \frac{1}{\sqrt{nT}} \sum_i \tau_{i,T} \beta_{3,i} \hat{w}_i C'_{\nu_\infty} \hat{Q}_{x,i}^{-1} Y_{i,T} + \frac{1}{T} \hat{Q}_{\beta_3}^{-1} \frac{1}{\sqrt{nT}} \sum_i \tau_{i,T} J_{6,0} \text{vec} \left[E' \left(\hat{Q}_{x,i}^{-1} Y_{i,T} \hat{Q}^{-1}_{x,i} C'_{\nu_\infty} - \tau_{i,T} \hat{Q}_{x,i}^{-1} \hat{S}_{i,T} \hat{Q}_{x,i}^{-1} C' \right) \hat{w}_i \right] + \hat{Q}_{\beta_3}^{-1} \frac{1}{\sqrt{nT}} \sum_i \beta_{3,i} w_i e_i
\]

\[
+ \hat{Q}_{\beta_3}^{-1} \frac{1}{\sqrt{nT}} \sum_i \beta_{3,i} (\hat{w}_i - w_i) e_i + \hat{Q}_{\beta_3}^{-1} \frac{1}{\sqrt{nT}} \sum_i \tau_{i,T} \left(\text{vec} \left[I_{4,1}' \right] \otimes I_{K_p} \right) \text{vec} \left[J_d E_2 \hat{Q}_{x,i}^{-1} Y_{i,T} e_i' \hat{w}_i \right] =: I_{51} + I_{52} + I_{53} + I_{54} + I_{55}.
\]
The first two terms I_{51} and I_{52} are the analogue of the terms in the RHS of Equation (27) multiplied by $1/\sqrt{T}$. Therefore, from similar arguments as for terms I_{11} and I_{13} in the proof of Proposition 4, we get $I_{51} = o_p(1)$ and $I_{52} = o_p(1)$. From Assumption SC.2 and $E[\beta_{3,i}' w_i e_i] = 0$, we get $\frac{1}{\sqrt{n}} \sum_i \beta_{3,i}' w_i e_i \Rightarrow N \left(0, E \left[\beta_{3,i}' w_i e_i e_i' w_i \beta_{3,i} \right] \right)$ by the CLT. Thus, $I_{53} \Rightarrow N \left(0, Q_{-1}^{-1} E \left[\beta_{3,i}' w_i e_i e_i' w_i \beta_{3,i} \right] Q_{-1}^{-1} \right)$. Then, the asymptotic distribution of $\hat{\nu}$ follows if terms I_{54} and I_{55} are $o_p(1)$. We have $I_{54} = o_p(1)$ from similar arguments as for terms I_{1112} and I_{1114} in the proof of Lemma 4, and $I_{55} = o_p(1)$ from similar arguments as for term I_{11} in the proof of Proposition 4.

b) Asymptotic normality of $\hat{\lambda}$. We have $\sqrt{T} vec \left[\hat{\lambda}' - \Lambda'_\infty \right] = \sqrt{T} \left(\hat{\nu} - \nu_\infty \right) + \sqrt{T} vec \left[\hat{F}' - F' \right]$. By using $T/n = o(1)$ and $\sqrt{T}(\hat{\nu} - \nu_\infty) = O_p \left(\frac{\sqrt{T}}{n} + \frac{1}{\sqrt{T}} \right) = o_p(1)$, the conclusion follows.

c) Consistency of the test. By definition of \hat{Q}_e, we get the following result:

Lemma 11 Under \mathcal{H}_1 and Assumptions APR.1-APR.5, SC.1-SC.2, FS.1-FS.2, A.1-A.3 and B.1-B.5, we have

$$
\hat{Q}_e = \frac{1}{n} \sum_i \left(\hat{\beta}_i - \beta_i \right)' C_p w_i C_p' \left(\hat{\beta}_i - \beta_i \right) + \frac{1}{n} \sum_i \epsilon_i' w_i e_i + O_{p,log} \left(\frac{1}{n} + \frac{1}{\sqrt{nt}} + \frac{1}{\sqrt{T^3}} \right),
$$

when $n, T \to \infty$ such that $n = O(T^\gamma)$ for $\gamma > 0$.

By similar arguments as in the proof of Proposition 6 and using $\gamma < 2$, we get:

$$
\hat{\xi}_{nT} = \frac{1}{\sqrt{n}} \sum_i \epsilon_i^2 tr \left[C_p Q_{x,i}^{-1} \left(Y_i, T Y'_i, T - S_{ii,T} \right) Q_{x,i}^{-1} C_p w_i \right] + T \frac{1}{\sqrt{n}} \sum_i \epsilon_i' w_i e_i + O_{p,log} \left(\frac{T}{\sqrt{n}} + \sqrt{T} \right)
$$

$$
= T \sqrt{n} E \left[\epsilon_i' w_i e_i \right] + O_p(T).
$$

Under \mathcal{H}_1, we have $E \left[\epsilon_i' w_i e_i \right] > 0$, since w_i is positive definite $P.a.s.$, and $e_i \neq 0$ with non-zero probability. Moreover, $\hat{\Sigma}_\xi = \Sigma_\xi + o_p(1)$. Thus, $\hat{\Sigma}_\xi^{-1/2} \hat{\xi}_{nT} = T \sqrt{n} \left(\Sigma_\xi^{-1/2} E \left[\epsilon_i' w_i e_i \right] + o_p(1) \right)$.

Appendix 3: Check of assumptions under block dependence

In this appendix, we verify that the eigenvalue condition in Assumption APR.4 (ii), and the cross-sectional/time-series dependence and CLT conditions in Assumptions A.1-A.5, are satisfied under a block-dependence structure in a time-invariant and serially i.i.d. framework. Let us assume that:
The errors $\varepsilon_t(\gamma)$ are i.i.d. over time with $E[\varepsilon_t(\gamma)] = 0$ and $E[\varepsilon_t(\gamma)^3] = 0$, for all $\gamma \in [0, 1]$. For any n, there exists a partition of the interval $[0, 1]$ into $J_n \leq n$ subintervals $I_1, ..., I_{J_n}$, such that $\varepsilon_t(\gamma)$ and $\varepsilon_t(\gamma')$ are independent if γ and γ' belong to different subintervals, and $J_n \to \infty$ as $n \to \infty$.

The blocks are such that $\sum_{m=1}^{J_n} B_m^2 = O(1)$, $n^{3/2} \sum_{m=1}^{J_n} B_m^3 = o(1)$, where $B_m = \int_{I_m} dG(\gamma)$.

The factors (f_t) and the indicators $(I_t(\gamma))$, $\gamma \in [0, 1]$, are i.i.d. over time, mutually independent, and independent of the errors $\varepsilon_t(\gamma)$, $\gamma \in [0, 1]$.

There exists a constant M such that $\|f_t\| \leq M$, P-a.s.. Moreover, $\sup_{\gamma \in [0, 1]} E[|\varepsilon_t(\gamma)|^6] < \infty$, $\sup_{\gamma \in [0, 1]} \|\beta(\gamma)\| < \infty$ and $\inf_{\gamma \in [0, 1]} E[I_t(\gamma)] > 0$.

The block-dependence structure as in Assumption BD.1 is satisfied for instance when there are unobserved industry-specific factors independent among industries and over time, as in Ang, Liu, and Schwarz (2008). In empirical applications, blocks can match industrial sectors. Then, the number J_n of blocks amounts to a couple of dozens, and the number of assets n amounts to a couple of thousands. There are approximately nB_m assets in block m, when n is large. In the asymptotic analysis, Assumption BD.2 on block sizes and block number requires that the largest block size shrinks with n and that there are not too many large blocks, i.e., the partition in independent blocks is sufficiently fine grained asymptotically. Within blocks, covariances do not need to vanish asymptotically.

Lemma 12 Let Assumptions BD.1-4 on block dependence and Assumptions SC.1-SC.2 on random sampling hold. Then, Assumptions APR.4 (ii), A.1, A.2, A.3, A.4 (with any $\bar{q} \in (0, 1)$ and $\bar{\delta} \in (1/2, 1)$) and A.5 are satisfied.

The proof of Lemma 12 uses a result on almost sure convergence in Stout (1974), a large deviation theorem based on the Hoeffding inequality in Bosq (1998), and CLTs for martingale difference arrays in Davidson (1994) and White (2001).

Instead of a block structure, we can also assume that the covariance matrix is full, but with off-diagonal elements vanishing asymptotically. We could also accommodate weak serial dependence and conditioning information. In those settings, we can carry out similar checks, although at the cost of increased notational complexity.