Direct Top-Quark Width Measurement at CDF

CDF Collaboration

CLARK, Allan Geoffrey (Collab.), et al.

Abstract

We present a measurement of the top-quark width in the lepton+jets decay channel of $t\bar{t}$ events produced in pp collisions at Fermilab's Tevatron collider and collected by the CDF II detector. From a data sample corresponding to 4.3 fb$^{-1}$ of integrated luminosity, we identify 756 candidate events. The top-quark mass and the mass of the hadronically decaying W boson that comes from the top-quark decay are reconstructed for each event and compared with templates of different top-quark widths (Γ_t) and deviations from nominal jet energy scale (ΔJES) to perform a simultaneous fit for both parameters, where ΔJES is used for the in situ calibration of the jet energy scale. By applying a Feldman-Cousins approach, we establish an upper limit at 95% confidence level (CL) of Γ_t.

Reference

DOI: 10.1103/PhysRevLett.105.232003

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3University of Athens, 157 71 Athens, Greece
4Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5Baylor University, Waco, Texas 76798, USA
6Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
7University of Bologna, I-40127 Bologna, Italy
8Brandeis University, Waltham, Massachusetts 02254, USA
9University of California, Davis, Davis, California 95616, USA
10University of California, Los Angeles, Los Angeles, California 90024, USA
11Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
12Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
13Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
14Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 401 01 Kosice, Slovakia
15Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
16Duke University, Durham, North Carolina 27708, USA
17Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
18University of Florida, Gainesville, Florida 32611, USA
19Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
20University of Geneva, CH-1211 Geneva 4, Switzerland
21Glasgow University, Glasgow G12 8QQ, United Kingdom
22Harvard University, Cambridge, Massachusetts 02138, USA
23Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
24University of Illinois, Urbana, Illinois 61801, USA
25The Johns Hopkins University, Baltimore, Maryland 21218, USA
26Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
27Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
28Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
29University of Liverpool, Liverpool L69 7ZE, United Kingdom
30University College London, London WC1E 6BT, United Kingdom
31Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
32Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
33Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
The top quark is the heaviest known elementary particle, whose large mass results in the largest decay width and hence the shortest lifetime of the quarks in the standard model (SM). A precise measurement of the top-quark width in the lepton + jets decay channel of $t\bar{t}$ events produced in $p\bar{p}$ collisions at Fermilab’s Tevatron collider and collected by the CDF II detector. From a data sample corresponding to 4.3 fb$^{-1}$ of integrated luminosity, we identify 756 candidate events. The top-quark mass and the mass of the hadronically decaying W boson that comes from the top-quark decay are reconstructed for each event and compared with templates of different top-quark widths (Γ_t) and deviations from nominal jet energy scale (Δ_{JES}) to perform a simultaneous fit for both parameters, where Δ_{JES} is used for the in situ calibration of the jet energy scale. By applying a Feldman-Cousins approach, we establish an upper limit at 95% confidence level (CL) of $\Gamma_t < 4.4$ GeV for a top-quark mass of 172.5 GeV/c2, which are consistent with the standard model prediction.

DOI: 10.1103/PhysRevLett.105.232003

PACS numbers: 14.65.Ha, 12.15.Ff, 13.85.Qk

The top quark is the heaviest known elementary particle, whose large mass results in the largest decay width and hence the shortest lifetime of the quarks in the standard model (SM). A precise measurement of the top-quark width in the lepton + jets decay channel of $t\bar{t}$ events produced in $p\bar{p}$ collisions at Fermilab’s Tevatron collider and collected by the CDF II detector. From a data sample corresponding to 4.3 fb$^{-1}$ of integrated luminosity, we identify 756 candidate events. The top-quark mass and the mass of the hadronically decaying W boson that comes from the top-quark decay are reconstructed for each event and compared with templates of different top-quark widths (Γ_t) and deviations from nominal jet energy scale (Δ_{JES}) to perform a simultaneous fit for both parameters, where Δ_{JES} is used for the in situ calibration of the jet energy scale. By applying a Feldman-Cousins approach, we establish an upper limit at 95% confidence level (CL) of $\Gamma_t < 4.4$ GeV for a top-quark mass of 172.5 GeV/c2, which are consistent with the standard model prediction.

DOI: 10.1103/PhysRevLett.105.232003

PACS numbers: 14.65.Ha, 12.15.Ff, 13.85.Qk
supersymmetric scalar partner stop plus neutralinos [10,11], and flavor-changing neutral current (FCNC) top-quark decays [12]. Therefore, the direct measurement of Γ_t is a general way to constrain such processes. The first direct measurement of Γ_t was carried out with an integrated luminosity of 1 fb$^{-1}$ of CDF data in the lepton + jets channel [13] and set an upper limit on $\Gamma_t < 13.1$ GeV at 95% confidence level (CL), while the result of a recent analysis from the D0 experiment at the Tevatron quotes an indirect top-quark width measurement of $\Gamma_t = 1.99^{+0.69}_{-0.55}$ GeV [14]. In this report of the second direct measurement of Γ_t, we increase the CDF data set to 4.3 fb$^{-1}$ in the lepton + jets channel, apply a kernel density estimation (KDE) technique [15,16] to make templates, determine the jet energy scale (JES) calibration in situ, and use new methods for setting and incorporating systematic effects. We set a two-sided bound on the top-quark width at 68% CL for the first time.

CDF II [17] is a general-purpose detector located at one of the two collision points along the ring of the Tevatron accelerator. A silicon microstrip tracker and a cylindrical drift chamber in a 1.4 T magnetic field serve as a charged particle tracking system. Electromagnetic and hadronic calorimeters are used to measure the energies of electrons and jets. Outside the calorimeters lie drift chambers which can detect muons. We employ a cylindrical coordinate system for the detector where θ and ϕ are the polar and azimuthal angles, respectively, with respect to the proton beam, and pseudorapidity $\eta = -\ln \tan(\theta/2)$. Transverse energy and momentum are defined as $E_T = E \sin \theta$ and $p_T = p \sin \theta$, respectively, where E and p are energy and momentum.

Top quarks decay almost exclusively to a W boson and a b quark through the weak interaction in the SM. We identify $t\bar{t}$ events in the lepton + jets channel, where one W boson decays to a charged lepton and neutrino, and the other W boson decays to two quarks. The $t\bar{t}$ candidate events used in this analysis are collected by triggers that identify at least one high-p_T lepton. Offline these events are selected by requiring a high-E_T electron or high-p_T muon (E_T or $p_T > 20$ GeV), large missing transverse energy E_T ($E_T > 20$ GeV) due to the undetected neutrino from the leptonic W decay, and at least four hadronic jets. Jets are reconstructed with the JETCLU [18] cone algorithm using a cone radius of $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$. To determine if a jet comes from a b quark, the SECVTX [19] algorithm, which makes use of the transverse decay length of a b quark inside a jet (b tag), is applied. At least one jet must be identified as b tagged. We divide the candidate events into those with one b-tagged jet and those with two or more b-tagged jets in order to improve the usage of statistical information, since these two kinds of events have different signal-to-background ratios. When an event has one b-tagged jet (b jet), we require this event to have exactly four jets each with $E_T > 20$ GeV; when an event contains two or more b jets, three jets are required to have $E_T > 20$ GeV, the fourth must have $E_T > 12$ GeV, and the event is allowed to have extra jets. More details about event selection criteria can be found in Ref. [20].

Monte Carlo (MC) simulated signal samples are created for a fixed top-quark mass of 172.5 GeV/c2 by the PYTHIA version 6.216 [21] event generator and have different values of Γ_t between 0.1 GeV and 30 GeV, as well as various values of Δ_{JES}, which is the difference between the JES effects in MC simulation and data and has a range from $-3.0\sigma_c$ to $+3.0\sigma_c$, where σ_c is the CDF JES fractional uncertainty [22]. The overall rate of background events with one W boson and additional jets (W + jets), the dominant background process, is determined using data after subtracting off the rate of events coming from QCD multijet production (non-W events), and separating out a MC based estimate for electroweak processes (EWK) such as diboson (WW, WZ, ZZ) and single-top production. The fractions of W + jets events with heavy flavor quarks (Wc, Wc, Wc, Wbb events) are determined from MC simulated samples. The rate with which events with a W boson and light flavor quarks contain a misidentified b jet is determined using data samples triggered by the presence of jets.

Table I summarizes the background compositions, and the selection criteria for determining the background rates are described in Ref. [23]. Diboson backgrounds are modeled with PYTHIA version 6.216 [21] and W + jets by ALPGEN version 2.10 [24], with jet fragmentation modeled by PYTHIA version 6.325 [21]. Single-top production events are generated by MADEVENT [25] and their fragmentation is modeled with PYTHIA version 6.409 [26].

We use a template method to extract Γ_t. Two observables, the reconstructed top-quark mass (m_{rec}) and the invariant mass of the two jets from the hadronically decaying W boson (m_{jj}), are built for each data event or MC simulated event (both signal and background). With the assumption that the leading (highest E_T) four jets in the detector come from the four primary quarks of $t\bar{t}$ events in the lepton + jets channel, there are 12 possible assignments of jets to quarks in each event. The neutrino transverse momentum is calculated from the imbalance of the transverse momentum of decaying products, jets and lepton, with unclustered energy taken into account, which is

<table>
<thead>
<tr>
<th></th>
<th>Single b tag</th>
<th>Double b tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>W + jets</td>
<td>85.6 ± 21.8</td>
<td>9.8 ± 2.9</td>
</tr>
<tr>
<td>Non-W</td>
<td>24.5 ± 20.6</td>
<td>2.4 ± 1.8</td>
</tr>
<tr>
<td>EWK</td>
<td>10.2 ± 0.8</td>
<td>2.4 ± 0.2</td>
</tr>
<tr>
<td>Total background</td>
<td>120.2 ± 30.0</td>
<td>14.6 ± 3.4</td>
</tr>
<tr>
<td>Observed events</td>
<td>542</td>
<td>214</td>
</tr>
</tbody>
</table>
the energy in the calorimeter not associated with the lepton or one of the four leading jets. We use a \(\chi^2 \)-like kinematic fitter [27] to fit the top-quark mass for each assignment, assuming the mass equality of the top and antitop quarks, and take \(m^{\text{reco}} \) from the assignment that has the lowest \(\chi^2 \). Events with \(\chi^2 > 9.0 \) are removed from the sample to reject poorly reconstructed events. We also apply boundary cuts on \(m^{\text{reco}} \) (110 GeV/c\(^2\) < \(m^{\text{reco}} \) < 350 GeV/c\(^2\)) and \(m_{jj} \) (50 GeV/c\(^2\) < \(m_{jj} \) < 115 GeV/c\(^2\)) for single \(b \)-tag events and 50 GeV/c\(^2\) < \(m_{jj} \) < 125 GeV/c\(^2\)) for double \(b \)-tag events) and normalize the probability density functions (PDF) in these regions. The di-jet mass \(m_{jj} \) is calculated as the invariant mass of two non-\(b \)-tagged jets which provides the closest value to the world average \(W \) boson mass of 80.40 GeV/c\(^2\) [28]. The estimated number of background events and observed number of events from a data set corresponding to an integrated luminosity of 4.3 fb\(^{-1}\) after event selection, \(\chi^2 \) cut, and boundary cuts are listed in Table I. After event reconstruction, we use the MC simulated models of signal and background processes to build two-dimensional PDF's that give the probabilities for single \(b \)-tag events and \(\Gamma_t \) after event selection, \(\chi^2 \) cut, and boundary cuts are listed in Table I. After event reconstruction, we use the MC simulated models of signal and background processes to build two-dimensional PDF's that give the probabilities

![FIG. 1 (color online). (a) Probability density functions of \(m^{\text{reco}} \) from double \(b \)-tag events for MC simulated samples of different values of \(\Gamma_t \); (b) PDF's of \(m_{jj} \) from double \(b \)-tag events for MC simulated samples of different values of \(\Delta_{\text{JES}} \).

The ordering parameter for MC simulated samples that appears in Ref. [31] is defined here as \(\Delta \chi^2 = \chi^2_{\text{input}} - \chi^2_{\text{min}} \) where \(\chi^2 = -2\log(\mathcal{L}) \) (different from the \(\chi^2 \) mention in event reconstruction), \(\chi^2_{\text{min}} \) is the minimal \(\chi^2 \) value and \(\chi^2_{\text{input}} \) is the \(\chi^2 \) at the real value of parameters \(\Gamma_t \) and \(\Delta_{\text{JES}} \). We project the likelihood function \(\mathcal{L} \) onto the \(\Gamma_t \) axis [32]. For each value of \(\Gamma_t \), we run 6000 pseudoexperiments that generate a distribution of \(\Delta \chi^2 \) from which we calculate a critical value \(\Delta \chi^2 \) so that 95% of the pseudoexperiments have a \(\Delta \chi^2 \) falling in the interval \([0, \Delta \chi^2]\). With MC simulated samples of 21 different top widths \(\Gamma_t \) we get a profile of \(\Delta \chi^2(\Gamma_t) \). When analyzing the data we obtain \(\Delta \chi^2(\Gamma_t|\text{data}) = -2 \log(\mathcal{L}) + 2 \log(\mathcal{L}_0) \), where \(\mathcal{L}_0 \) is the maximum likelihood value of data fitting, then \(\Delta \chi^2(\Gamma_t|\text{data}) \) is compared with \(\Delta \chi^2(\Gamma_t) \) and the accepted interval of \(\Gamma_t \) is all points such that \(\Delta \chi^2(\Gamma_t|\text{data}) < \Delta \chi^2(\Gamma_t) \). From the above method we obtain a purely statistical upper limit on \(\Gamma_t \) at 95% CL, \(\Gamma_t < 6.7 \) GeV and a two-sided limit of 0.5 GeV < \(\Gamma_t < 3.9 \) GeV at 68% CL.

We examine systematic effects by comparing MC simulated experiments in which we float parameters within their uncertainties. As seen from Table II, the dominant systematic effects come from jet energy resolution and color reconnection (CR) [33,34], which is a rearrangement of the underlying color structure of an event from its simplest configuration. For the jet energy resolution effect, we compare jet energy resolution between data and MC simulated samples using one photon + one jet events and smear jet energy with the difference between data and MC simulated samples. We study the effect of CR by using PYTHIA version 6.4 with different tunes (with and without CR) and evaluate the difference. The systematic effect due to JES is very small because we perform an \textit{in situ} JES calibration.

Other smaller systematic effects include those due to the MC generator, the parton distribution functions, and multiple hadron interactions, details of which can be found in

<table>
<thead>
<tr>
<th>Systematic Sources</th>
<th>(\Delta \Gamma_{\text{top}}) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy resolution</td>
<td>1.1</td>
</tr>
<tr>
<td>Color Reconnection</td>
<td>0.9</td>
</tr>
<tr>
<td>Generator</td>
<td>0.4</td>
</tr>
<tr>
<td>Residual JES</td>
<td>0.3</td>
</tr>
<tr>
<td>Parton distribution functions</td>
<td>0.3</td>
</tr>
<tr>
<td>Multiple Hadron Interaction</td>
<td>0.3</td>
</tr>
<tr>
<td>Gluon-gluon fraction</td>
<td>0.3</td>
</tr>
<tr>
<td>Initial and/or final state radiation</td>
<td>0.2</td>
</tr>
<tr>
<td>Lepton energy scale</td>
<td>0.2</td>
</tr>
<tr>
<td>(b)-jet energy</td>
<td>0.2</td>
</tr>
<tr>
<td>Background shape</td>
<td>0.1</td>
</tr>
<tr>
<td>Total systematic effect</td>
<td>1.6</td>
</tr>
</tbody>
</table>
an upper limit of function we apply the Feldman-Cousins approach and find

\[t < 7.6 \text{ GeV} \] at 95\% CL assuming a top-quark mass

\[M_{\text{top}} = 172.5 \text{ GeV/c}^2 \], which is consistent with the standard model. We also quote 0.3 GeV < \Gamma_t < 4.4 \text{ GeV} at 68\% CL, which corresponds to a lifetime of \(1.5 \times 10^{-25} \text{ s} < \tau_t < 2.2 \times 10^{-24} \text{ s} \). For a typical quark hadronization time scale of \(3.3 \times 10^{-24} \text{ s} \) (corresponding to 200 MeV) \[38,39 \], our result supports top-quark decay before hadronization.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

Ref. [5,35]. The total change of measured \(\Gamma_t \) due to these systematic effects is 1.6 GeV. We studied the dominant systematic uncertainties by varying top-quark width, and found no significant dependence of systematic effects on different top-quark widths.

To incorporate systematic effects into the limit(s) on \(\Gamma_t \), we use a convolution method for folding systematic effects into the likelihood function \[36,37 \]. We convolve the likelihood function with a Gaussian PDF that has a width equal to 1.6 GeV and is centered at 0. With this new likelihood function we apply the Feldman-Cousins approach and find an upper limit of \(\Gamma_t < 7.6 \text{ GeV} \) at 95\% CL. Using the same approach we are also able to set a two-sided bound for \(\Gamma_t \) at 68\% CL: 0.3 GeV < \Gamma_t < 4.4 \text{ GeV} . Figure 2(a) shows the data fit from the two-dimensional likelihood function with the statistical uncertainty. The overlap of the \(\Delta \chi^2(\Gamma_t) \) profile and the one-dimensional data fit that comes from the projection of the two-dimensional likelihood function is shown in Fig. 2(b), on which the point(s) of interception gives the limit(s) of \(\Gamma_t \).

In conclusion, a top-quark width measurement in the lepton + jets channel is presented. Using a data set corresponding to an integrated luminosity of 4.3 fb\(^{-1}\) collected by CDF and an in situ JES calibration, we set an upper limit

\[\Gamma_t < 7.6 \text{ GeV} \] at 95\% CL assuming a top-quark mass

\[M_{\text{top}} = 172.5 \text{ GeV/c}^2 \], which is consistent with the standard model. We also quote 0.3 GeV < \Gamma_t < 4.4 \text{ GeV} at 68\% CL, which corresponds to a lifetime of \(1.5 \times 10^{-25} \text{ s} < \tau_t < 2.2 \times 10^{-24} \text{ s} \). For a typical quark hadronization time scale of \(3.3 \times 10^{-24} \text{ s} \) (corresponding to 200 MeV) \[38,39 \], our result supports top-quark decay before hadronization.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

Ref. [5,35]. The total change of measured \(\Gamma_t \) due to these systematic effects is 1.6 GeV. We studied the dominant systematic uncertainties by varying top-quark width, and found no significant dependence of systematic effects on different top-quark widths.

To incorporate systematic effects into the limit(s) on \(\Gamma_t \), we use a convolution method for folding systematic effects into the likelihood function \[36,37 \]. We convolve the likelihood function with a Gaussian PDF that has a width equal to 1.6 GeV and is centered at 0. With this new likelihood function we apply the Feldman-Cousins approach and find an upper limit of \(\Gamma_t < 7.6 \text{ GeV} \) at 95\% CL. Using the same approach we are also able to set a two-sided bound for \(\Gamma_t \) at 68\% CL: 0.3 GeV < \Gamma_t < 4.4 \text{ GeV} . Figure 2(a) shows the data fit from the two-dimensional likelihood function with the statistical uncertainty. The overlap of the \(\Delta \chi^2(\Gamma_t) \) profile and the one-dimensional data fit that comes from the projection of the two-dimensional likelihood function is shown in Fig. 2(b), on which the point(s) of interception gives the limit(s) of \(\Gamma_t \).

In conclusion, a top-quark width measurement in the lepton + jets channel is presented. Using a data set corresponding to an integrated luminosity of 4.3 fb\(^{-1}\) collected by CDF and an in situ JES calibration, we set an upper limit

\[\Gamma_t < 7.6 \text{ GeV} \] at 95\% CL assuming a top-quark mass

\[M_{\text{top}} = 172.5 \text{ GeV/c}^2 \], which is consistent with the standard model. We also quote 0.3 GeV < \Gamma_t < 4.4 \text{ GeV} at 68\% CL, which corresponds to a lifetime of \(1.5 \times 10^{-25} \text{ s} < \tau_t < 2.2 \times 10^{-24} \text{ s} \). For a typical quark hadronization time scale of \(3.3 \times 10^{-24} \text{ s} \) (corresponding to 200 MeV) \[38,39 \], our result supports top-quark decay before hadronization.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

Ref. [5,35]. The total change of measured \(\Gamma_t \) due to these systematic effects is 1.6 GeV. We studied the dominant systematic uncertainties by varying top-quark width, and found no significant dependence of systematic effects on different top-quark widths.

To incorporate systematic effects into the limit(s) on \(\Gamma_t \), we use a convolution method for folding systematic effects into the likelihood function \[36,37 \]. We convolve the likelihood function with a Gaussian PDF that has a width equal to 1.6 GeV and is centered at 0. With this new likelihood function we apply the Feldman-Cousins approach and find an upper limit of \(\Gamma_t < 7.6 \text{ GeV} \) at 95\% CL. Using the same approach we are also able to set a two-sided bound for \(\Gamma_t \) at 68\% CL: 0.3 GeV < \Gamma_t < 4.4 \text{ GeV} . Figure 2(a) shows the data fit from the two-dimensional likelihood function with the statistical uncertainty. The overlap of the \(\Delta \chi^2(\Gamma_t) \) profile and the one-dimensional data fit that comes from the projection of the two-dimensional likelihood function is shown in Fig. 2(b), on which the point(s) of interception gives the limit(s) of \(\Gamma_t \).

In conclusion, a top-quark width measurement in the lepton + jets channel is presented. Using a data set corresponding to an integrated luminosity of 4.3 fb\(^{-1}\) collected by CDF and an in situ JES calibration, we set an upper limit

\[\Gamma_t < 7.6 \text{ GeV} \] at 95\% CL assuming a top-quark mass

\[M_{\text{top}} = 172.5 \text{ GeV/c}^2 \], which is consistent with the standard model. We also quote 0.3 GeV < \Gamma_t < 4.4 \text{ GeV} at 68\% CL, which corresponds to a lifetime of \(1.5 \times 10^{-25} \text{ s} < \tau_t < 2.2 \times 10^{-24} \text{ s} \). For a typical quark hadronization time scale of \(3.3 \times 10^{-24} \text{ s} \) (corresponding to 200 MeV) \[38,39 \], our result supports top-quark decay before hadronization.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.
Visitor from Yarmouk University, Irbid 211-63, Jordan.
On leave from J. Stefan Institute, Ljubljana, Slovenia.

V. M. Abazov et al. (D0 Collaboration), arXiv:1009.5686v1.
