Byzantine agreement with two quantum-key-distribution setups

IBLISDIR, Sofyan, GISIN, Nicolas

Abstract

It is pointed out that two separated quantum channels and three classical authenticated channels are sufficient resources to achieve detectable broadcast.

Reference

DOI : 10.1103/PhysRevA.70.034306
Byzantine agreement with two quantum-key-distribution setups

S. Iblisdir and N. Gisin
GAP-Optique, University of Geneva, 20 rue de l’Ecole-de-Médecine, CH-1211 Geneva, Switzerland
(Received 1 July 2004; published 29 September 2004)

It is pointed out that two separated quantum channels and three classical authenticated channels are sufficient resources to achieve detectable broadcast.

DOI: 10.1103/PhysRevA.70.034306 PACS number(s): 03.67.Lx, 02.50.Le

This Brief Report is about broadcast (or Byzantine agreement), and should be considered as a follow-up of the paper [1]. In its simplest form, broadcast is a task involving three parties: a sender, S, and two receivers, R_0 and R_1. The sender holds an input value $x \in D$ (D denotes some finite domain) and is supposed to send it to the two receivers. The two receivers eventually decide on an input value in D. Amongst S, R_0, and R_1, one (and at most one) player may be an active adversary and try to stop the two other parties to agree on an input value. The other two parties are said to be honest.

A protocol achieves broadcast if (i) it guarantees that all honest players decide on the same output value $y \in D$, and/or (ii) $y=x$ whenever the sender is honest. One easily sees the difficulties involved in this task if only pairwise (classical) authenticated channels are available. For example, a cheating sender could send different bit values to R_0 and R_1. Thus R_0 and R_1 should test the honesty of S during a phase of the protocol where they exchange their input and check whether they match. But if one of the receivers is dishonest, it might happen that, during this verification phase, he sends the other receiver a value different from the input he actually got from the sender. In fact, it is known that, if the only resource available to the three players is pairwise authenticated channels, broadcast is impossible [2]. However, when quantum channels are available, a variant of the Byzantine agreement problem, namely detectable broadcast, can be achieved. A protocol is said to achieve detectable broadcast if (i) it achieves broadcast when no player is corrupted, and/or (ii) when one player is corrupted, then either the protocol achieves broadcast, or all honest players abort the protocol.

Let $|0\rangle, |1\rangle, |2\rangle$ denote an orthonormal basis of a qutrit system (a qutrit is a three-level quantum system). Detectable broadcast can be achieved if the three players share many copies of the so-called Aharonov state [1]

$$|A\rangle = \frac{1}{\sqrt{6}}(|0,1,2\rangle + |1,2,0\rangle + |2,0,1\rangle - |0,2,1\rangle - |1,0,2\rangle$$

and perform measurements on this state.

Actually, the protocol described in [1] is such that the source of Aharonov states lies at R_1’s site. Clearly, Byzantine agreement works as well if R_1 were preparing the state $|A\rangle/\langle A|$ and measuring her qutrit before sending their qutrits to players R_0 and S. Therefore, instead of using $|A\rangle$, R_1 can as well prepare randomly any of the three two-qutrit states $|A_0\rangle, |A_1\rangle, |A_2\rangle$, where $|A_0\rangle = 2^{-1/2}(1, 2 - |2,1\rangle)$ ($|A_1\rangle$ and $|A_2\rangle$ are defined likewise). It is thus clear that Byzantine agreement can be achieved using only two quantum channels distributing entangled states.

But even further simplifications can be brought: $|A_0\rangle, |A_1\rangle, |A_2\rangle$ constitute more resources than the three players actually need. An examination of the protocol described in [1] shows that to achieve broadcast, all we need is to meet the five following conditions:

1. R_0 and R_1 share an n-qutrit string $K^0 = k_1^0 \ldots k_n^0$.
2. S and R_1 share an n-qutrit string $K = k_1^s \ldots k_n^s$.
3. $\forall j = 1, \ldots, n, k_j^0 \neq k_j^s$.
4. $\forall j = 1, \ldots, n, R_0$ has no information about k_j^s other than $k_j^0 \neq k_j^s$.
5. $\forall j = 1, \ldots, n, S$ has no information about k_j^0 other than $k_j^0 \neq k_j^s$.

Figure 1 shows a setup allowing one to meet these five conditions.

These conditions can be simply satisfied as follows. R_1 uses two quantum channels to distribute private n-qutrit strings (or keys) K^0 to R_0 and K to S, by means of a quantum-key-distribution (QKD) protocol, such as the 1984 protocol of Bennett and Brassard (BB84), for example [3]. The keys K^0 and K are supposed to satisfy the above conditions. There are two ways in which R_1 could have not done her job properly: (i) the condition (4) or the condition (5) is not satisfied, or

$\text{FIG. 1. Configuration necessary to achieve broadcast. The arrows indicate the direction of the information flow, wavy lines represent quantum channels, and straight lines represent (classical) authenticated channels.}$

1Actually, quantum channels can be replaced by classical secret channels, if one allows for computational assumptions.
i.e., the keys are not secret, or (ii) the condition (3) is not satisfied.

A violation of condition (4) or condition (5) would imply that R_1 cooperates with another player to cheat the third one. This possibility is ruled out by the assumption that there is at most one cheater. A test of condition (3) can be performed by R_0 and S (with arbitrarily high statistical confidence), upon R_0 sending S a randomly chosen sample of his key. If this test fails, the protocol should abort.

Thus, either R_1 does her QKD job properly (and this fact is acknowledged by R_0 and R_1) or the protocol will abort. Assuming the first alternative, one can see, repeating all steps of the protocol described in [1], that detectable broadcast can be achieved, using the three authenticated channels, exactly as if Aharonov states had been used.

The essential reason why two QKD channels are enough to achieve broadcast is that R_1 almost never talks during the protocol described in [1]. Actually, it was already pointed out that no entanglement is necessary to achieve detectable broadcast. A scheme involving three quantum channels and QKD was proposed in [4]. The contribution of this Brief Report is to show that only two QKD channels are enough.

We thank V. Scarani, R. Thew, H. Zbinden, N. Brunner, and M. Curty for various discussions. Financial support from the Swiss NCCR and the European projects RamboQ and RESQ is gratefully acknowledged.