Scaling behavior of the longitudinal and transverse transport in quasi-one-dimensional organic conductors

DRESSEL, M., et al.

Abstract

We report on dc and microwave experiments of the low-dimensional organic conductors (TMTSF)2PF6 and (TMTSF)2ClO4 along the a, b′, and c* directions. In the normal state of (TMTSF)2PF6 below T=70K, the dc resistivity follows a power law with ρa and ρb′ proportional to T2 while ρc*∝T. Above T=100K the exponents extracted from the data for the a and c* axes are consistent with what is to be expected for a system of coupled one-dimensional chains (Luttinger liquid) and a dimensional crossover at a temperature of about 100K. The b′ axis shows anomalous exponents that could be attributed to a large crossover between these two regimes. The contactless microwave measurements of single crystals along the b′ axis reveal an anomaly between 25 and 55K which is not understood yet. The organic superconductor (TMTSF)2ClO4 is more a two-dimensional metal with an anisotropy ρa/ρb′ of approximately 2 at all temperatures. Such a low anisotropy is unexpected in view of the transfer integrals. Slight indications to one-dimensionality are found in the temperature dependent transport only above 200K. Even along the least [...]
Scaling behavior of the longitudinal and transverse transport in quasi-one-dimensional organic conductors

M. Dressel, K. Petukhov, B. Salameh, and P. Zornoza
1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
T. Giamarchi
DPMC, University of Geneva, 24 quai Ernest-ANsermet, CH-1211 Geneva, Switzerland
(Received 13 September 2004; published 4 February 2005)

We report on dc and microwave experiments of the low-dimensional organic conductors (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$ClO$_4$ along the a, b', and c' directions. In the normal state of (TMTSF)$_2$PF$_6$ below $T=70$ K, the dc resistivity follows a power law with ρ_{ab} and $\rho_{b'}$, proportional to T^2 while $\rho_{c'} \propto T$. Above $T=100$ K the exponents extracted from the data for the a and c' axes are consistent with what is to be expected for a system of coupled one-dimensional chains (Luttinger liquid) and a dimensional crossover at a temperature of about 100 K. The b' axis shows anomalous exponents that could be attributed to a large crossover between these two regimes. The contactless microwave measurements of single crystals along the b' axis reveal an anomaly between 25 and 55 K which is not understood yet. The organic superconductor (TMTSF)$_2$ClO$_4$ is more a two-dimensional metal with an anisotropy $\rho_{ab}/\rho_{c'}$ of approximately 2 at all temperatures. Such a low anisotropy is unexpected in view of the transfer integrals. Slight indications to one-dimensionality are found in the temperature dependent transport only above 200 K. Even along the least conducting c' direction no region with semiconducting behavior is revealed up to room temperature.

DOI: 10.1103/PhysRevB.71.075104 PACS number(s): 71.10.Hf, 71.10.Pm, 74.70.Kn, 71.27.+a

I. INTRODUCTION

The properties of quasi-one-dimensional conductors are of particular interest from a theoretical point of view, because in one dimension electron-electron interactions lead to a break-down of the Fermi-liquid picture established half a century ago by Lev Landau. A description by a Tomonaga-Luttinger liquid seems to be more appropriate implying a number of very distinct features such as spin-charge separation and power laws in certain quantities. While the theory of one-dimensional electronic systems was put forward by numerous contributions over the last few decades, the experimental realization has only been tackled recently. Attempts in the field of semiconductor quantum wires, edge states, and stripe phases in the quantum Hall effect, carbon nanotubes, and rows of metal atoms on vicinal surfaces have been successful to some degree. In particular the quasi-one-dimensional organic conductors of the Bechgaard family serve as model systems to test the theoretical predictions. These compounds are charge transfer salts consisting of stacks of the planar organic molecules tetramethyltetraselenafulvalene (TMTSF) along the a axis which are separated in c direction by monovalent anions such as PF$_6^-$, AsF$_6^-$, ReO$_4^-$, or ClO$_4^-$. In the b direction the distance of the stacks is comparable to the van der Waals radii. Most prominent findings are the reduced density of states at the Fermi energy as indicated by photoemission spectroscopy. The c-axis transport investigated by pressure-dependent dc resistivity, the scaling behavior in the optical conductivity, the Hall effect, and finally indications of spin-charge separation by the similarity in the spin dynamics and thermal conductivity for TMTSF and TMTTF salts although the electronic transport is very different; for a review see Ref. 22.

Real materials always have a finite coupling between the chains, no matter how anisotropic they are. The question arises whether the Luttinger-liquid effects can be observed in quasi-one-dimensional systems. The general expectation is that these compounds cross over from Luttinger-liquid behavior to a coherent behavior as the temperature or frequency is lowered; the details, however, are still under debate. For a quasi-one-dimensional system with coupling $t_{c}<t_{b'}<t_{a'}$ the effective dimensionality depends on the energy range of interest: at low temperatures ($k_B T < t_a$) the system is three dimensional and only at elevated temperatures ($k_B T > t_b$) or high frequencies ($\hbar \omega > t_b$) are one-dimensional properties expected. In the case of the Bechgaard salts, for instance, the transfer integrals are approximately $t_a^2/t_b^2/t_c = 250$ meV; 20 meV; 1 meV, so the bare crossover integral should be of the order of 200 K. Although it was initially believed based on NMR data that this scale would be renormalized by interactions down to 20 K, the more recent optical and transport measurements place this scale at about 100 K.

Only very recently were attempts undertaken to describe a system of weakly coupled Luttinger chains and actually focus on the interchain transport. From an experimental point of view, measurements of quasi-one-dimensional organic samples in the direction perpendicular to the needle axis are extremely challenging and only very few results on TMTSF salts have been published. Here we report on temperature-dependent dc and contactless microwave measurements of the electrical conductivity in all three directions of (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$ClO$_4$.

II. EXPERIMENTAL DETAILS

Single crystals of the Bechgaard salts (TMTSF)$_2 X$ are grown by electrochemical methods in an H-type glass cell...
between room temperature and 0 °C. A constant voltage of 1.5 V was applied between platinum electrodes with an area of approximately 3 cm². The current through the solution was between 9.2 and 13.4 μA. To reduce the diffusion, a sand barrier can be introduced. After several months we were able to harvest needle-shaped to flake-like single crystals of several millimeters in length and a considerable width (b’ direction) up to 2 mm. Due to the triclinic symmetry, b’ denotes the projection of the bc axis perpendicular to a, and c’ is normal to the ab plane. The dc resistivity of (TMTSF)2PF6 along the a axis was measured on needle-shaped samples with a typical dimension of 2 mm × 0.5 mm × 0.1 mm along the a, b’, and c’ axes, respectively. The results on the b’ axis conductivity were obtained on a narrow slice cut from a thick crystal perpendicular to the needle axis; the typical dimensions of so-made samples were a × b’ × c’ = 0.2 mm × 1.3 mm × 0.3 mm. Single crystals of (TMTSF)2ClO4 have about the same size in a and b’ directions (they grow even wider since they are more two-dimensional), however, the thickness (c’ axis) rarely exceeds 50 or 60 μm. Due to our advances in achieving large sample geometry, we were able to measure b’-axis resistivity with basically no influence of the a and c’ contributions and using standard four-probe technique to eliminate the contact resistances. Also for the c’-axis transport, we were able to apply four contacts, two on each side of the crystal. The contacts were made by evaporating gold pads on the crystal, then 25-μm gold wires were pasted on each pad with a small amount of silver or carbon paint. The (TMTSF)2PF6 samples were slowly cooled down to avoid cracks and ensure a thermal equilibrium. In the case of (TMTSF)2ClO4 we conducted experiments in the relaxed state using a slow cooling rate of less than 0.2 K/min. Employing a 3He cryostat, we cooled down below the superconducting transition at Tc ≈ 1.1 K. In order to reach the quenched state, the crystal were cooled down rapidly from about 50 K with a rate of more than 50 K/min and the data were subsequently recorded on warming up.

In addition to dc experiments we investigated the anisotropic transport of (TMTSF)2PF6 and (TMTSF)2ClO4 single crystals in all three directions at microwave frequencies. The major advantage of this method is that no contacts have to be applied. They always lead to a current injection which is not well defined; it cannot be avoided: that the contact pads required for dc experiments influence the current flow. It is not always clear which part of the bulk material actually carries the current and which part is probed for the voltage drop. Also surface currents may have a large influence in highly anisotropic conductors. In microwave experiments the dielectric response of the entire sample is integrated; admittently other factors, such as the geometry, the depolarization factor, or skin effect cause uncertainties.

For measuring the microwave conductivity in the a direction we employed naturally grown needles of typical dimensions of 1 mm × 0.2 mm × 0.2 mm, in the case of (TMTSF)2PF6 crystals, for instance. Since a needlelike geometry is also best for precise microwave measurements, we again cut a slice (a × b’ × c’ = 0.2 mm × 1.2 mm × 0.2 mm) from a thick single crystal to measure in b’ direction. In order to perform microwave experiments along the c’ axis, we carefully cut a crystal into several pieces (approximately cubes of 0.2 mm corner size) and arranged up to four as a mosaic in such a way that a needle-shaped sample of about 0.2 mm × 0.2 mm × 0.8 mm was obtained.38 In the case of (TMTSF)2ClO4 we had to assemble eleven thin pieces on top of each other to obtain a mosaic of a × b’ × c’ = 0.15 mm × 0.2 mm × 0.66 mm.39

The microwave experiments utilize three different cylindrical copper cavities which resonate in the TE011 mode at 24, 33.5, and 60 GHz. They are fed by voltage-driven Gunn oscillators via suitable waveguides and operate in the transmission mode. The coupling is about 10% and done via two holes in the sidewalls. The crystals are positioned in the maximum of the electric field placed onto a quartz substrate (0.07 mm thick) and can be rotated in situ around one axis. The samples were cooled down slowly (0.2 K per minute, to avoid microcracks) from 300 to 2 K by coupling to the liquid helium bath with the help of low-pressure He exchange gas and by utilizing a regulated heater. Temperatures as low as 0.7 K could be achieved with a special cavity attached to a 3He chamber.40 The stability is better than 10 mK. By recording the center frequency f and the halfwidth Γ of the resonance curve as a function of temperature and comparing them to the corresponding parameters of an empty cavity (f0 and Γ0), the complex electrodynamic properties of the sample, such as the surface impedance, the conductivity, and the dielectric constant, can be determined via cavity perturbation theory; further details on microwave measurements and the data analysis are summarized in Ref. 41. The microwave experiments on (TMTSF)2ClO4 using a fast cooling rate of approximately 12 K/min (in order to prevent the tetrahedral anions to order) could not fully achieve the quenched state, but in some runs we still see slight bumps in the resistivity at the ordering temperature of TsDW ≈ 24 K. Thus we concentrate here on the relaxed state obtained by cooling with less than 0.2 K per minute; in this case the spin-density-wave state does not show up below Tsdw = 6 K.42 Since for 60 GHz no complete set of data is available and no unexpected facts are found by now, we will disregard these experiments and focus on 24 and 33.5 GHz.

III. RESULTS AND ANALYSIS

A. (TMTSF)2PF6

1. dc resistivity

The temperature-dependent dc resistivity for all three directions is displayed in Fig. 1. The a-axis transport of (TMTSF)2PF6 is metallic above TsDW = 12 K with a change in slope around 100 K. At high temperatures it can be fitted to a ρa(T) ~ T 1.3 power law, while for T < 70 K the a-axis resistivity follows the law ρa = AT2, as can be nicely seen in the inset of Fig. 2. For our samples, values of ρa = 1.1 × 10−4 Ω cm and A = 0.2 μΩ cm K−2 are found; the low residual resistivity ρ together with a large resistivity ratio ρ200 K/ρ70 K indicate a very high crystal quality. The behavior agrees well with previously published data.16,31,33,43,44

To our knowledge, there are only two reports31,33 on dc measurements of the b’-axis conductivity of (TMTSF)2PF6.
crystals; as a matter of fact both strongly contradict each other. Our findings are in very good agreement with the recent report of Mihály et al.19 where the Montgomery method was employed. As plotted in Fig. 2, the resistivity in the intermediate \(b' \) direction shows a metal-like behavior; \(\rho_{b'}(T) \) decreases almost as steeply as \(\rho_c(T) \). The kink in \(\rho_{b'}(T) \) shows up at somewhat higher temperatures; it follows the dependence \(\rho_{b'}(T) \propto T^{0.84} \) between 300 and 200 K and changes to the \(T^{1.63} \) power law upon further cooling down to 60 K. Below that temperature it can be perfectly described by a quadratic temperature dependence: \(\rho_{b'}(T) \propto T^2 \) as already found for the \(a \) axis (see inset of Fig. 2). In Fig. 3 the ratio of \(\rho_{b'}/\rho_a \) is plotted as a function of temperature for both compounds. For \((\text{TMTSF})_2\text{PF}_6\) the ratio is basically constant at higher temperatures above 50 K. For the least conducting direction, \(\rho_{c'}(T) \) increases by about a factor of 1.5 when going from room temperature down to 90 K (Fig. 2). Although no clear power law is found, the behavior above 100 K may be approximated by \(\rho_{c'}(T) \propto T^{0.2} \). Below 90 K, \(\rho_{c'}(T) \) falls rapidly before turning upwards again below 15 K due to the spin-density-wave transition. In the temperature range between 35 and 65 K it follows a metallic behavior with \(\rho_{c'}(T) \propto T \). Our findings in the \(c' \) direction are consistent with previous results.16,19,31 The anisotropy ratio \(\rho_{c'}/\rho_a \) (depicted in the inset of Fig. 3) increases continuously by a factor of 100 as the temperature is lowered to \(T_{\text{SDW}} \) and finally reaches almost \(10^5 \). Again fluctuation effects are seen above the transition.

In order to be able to directly compare our results \(\rho(T) \) recorded at ambient pressure with the theoretical models for constant-volume \(\rho^{(V)}(T) \) dependence, we converted our experimental data utilizing a procedure as it was previously suggested for \((\text{TMTSF})_2\text{X}\) and \((\text{TMTTF})_2\text{X}\) salts.13,35 The ambient-pressure unit cell at 16 K was taken as reference unit cell; when the temperature \(T \) increases, a certain pressure \(p \) (depending on the thermal expansion and the compressibility) must be applied (at a given \(T \)) in order to restore the reference volume. Since in the metallic phase \(\rho_a \) varies by 10% per 1 kbar (Refs. 16 and 19) for all \(T \) values above 50 K, the measured resistivity \(\rho_a \) is then converted into a constant-volume value \(\rho_a^{(V)} \) using the expression \(\rho_a^{(V)} = \rho_a / (1 + p \cdot 0.1 \text{ kbar}^{-1}) \).45 The analogous procedure using 10% kbar\(^{-1}\) and the appropriate thermal expansion can be applied for the perpendicular direction in order to get \(\rho_{c'}^{(V)} \). It is not clear whether this is also a legitimate procedure with respect to the...
which we expect the Hagen-Rubens limit measurements are performed at microwave frequencies for the constant-volume resistivity follows the power law power laws, as can be seen from Fig. 4. Along the chain axis, the temperature behavior of the dc resistivity yields reduced constant-volume corrections has the consequence that the constant-pressure to constant-volume temperature dependence of the resistivity does not deviate from the quadratic law observed under con-

constant-volume resistivity does not follow a single power law. Nevertheless, the slope may be approximated by \(\rho_s^V(T) \propto T^{0.24} \) and by \(\rho_{s}^{V}(T) \propto T^{0.65} \) in the temperature ranges \(200 \text{ K} < T < 300 \text{ K} \) and \(150 \text{ K} < T < 200 \text{ K} \), respectively.

2. Microwave experiments

Since \((\text{TMTSF})_2\text{PF}_6\) is highly conducting along the \(a \) direction, the data analysis is done in terms of the surface resistance \(R_s \) and the surface reactance \(X_s \), assuming that the skin depth is much smaller than the sample dimension.\(^{41}\) Our measurements are performed at microwave frequencies for which we expect the Hagen-Rubens limit (\(\sigma \tau \ll 1 \)) to be appropriate for our analysis; this was also the case in previous investigations.\(^{47}\) Indeed, the temperature dependence of the relative change of the halfwidth \(\Delta \Gamma/2f_0 = R_s \) and the center frequency \(-\Delta f/f_0 = X_s + C \) have the same profile over the wide temperature range, as depicted in Fig. 5(a). This is a strong proof that along the \(a \) direction the organic conductor \((\text{TMTSF})_2\text{PF}_6\) is in the Hagen-Rubens limit at microwave frequencies, and the surface resistance \(R_s \) and the surface reactance \(X_s \) (given in units of the free space impedance \(Z_0 = 4\pi/c = 377 \text{ \Omega} \)) have equal absolute values within an additive constant \(C \) introduced when the cavity is disassembled in order to mount the sample. Below \(12 \text{ K} \) the metallic behavior vanishes since \((\text{TMTSF})_2\text{PF}_6\) enters the spin-density-wave state. From the surface impedance the calculation of the complex conductivity \(\sigma_1 + i\sigma_2 \) is straightforward.\(^{48}\)

\[\rho_s^V(T) \propto T^{0.24} \]

\[\rho_{s}^{V}(T) \propto T^{0.65} \]

\[R_s \]

\[X_s \]

\[Z_0 = 4\pi/c = 377 \text{ \Omega} \]

\[\sigma_1 + i\sigma_2 \]
The skin-depth regime along the 0.1 mm at 33.5 GHz. Thus we expect the system to be in the skin-depth regime along the 0.1 mm at 33.5 GHz. Therefore the data on frequency shift and change of linewidth taken along the c^* direction of (TMTSF)$_2$PF$_6$ were analyzed according to the depolarization regime. The results obtained on the mosaic assembled from two, three, and four cubes coincide perfectly except for the temperature range between 15 and 40 K, where the large sample volume with high losses caused an overload of the cavity and we could only use the data of the two-block mosaics. The overall temperature behavior of the c^*-axis microwave conductivity of (TMTSF)$_2$PF$_6$ shown in Fig. 6 is in good agreement with the dc conductivity data along this direction, except for the temperature region above 80 K, where a slightly semiconducting behavior was observed in the dc results, while the 33 GHz conductivity is almost temperature independent in this temperature region.

Following the measurement procedure and data analysis described above for our 33.5 GHz experiments, we conducted microwave cavity perturbation measurements also for 24 GHz. The results plotted in Fig. 6 confirm our findings in any regard; which is not surprising, since the measurement frequencies are too close to expect a significant frequency dependence. The only point to be noticed is the slightly reduced ratio $\rho(15\text{ K})/\rho(300\text{ K})$ along the b' direction when going to 33.5 GHz.

B. (TMTSF)$_2$ClO$_4$

1. dc resistivity

In Fig. 8 the temperature dependence of the dc transport of (TMTSF)$_2$ClO$_4$ is plotted for all three directions in the relaxed and the quenched state; no results of all three orientations have previously been published by other groups. Murata et al. give a room-temperature anisotropy ratio of $\rho_a: \rho_{c^*}: \rho_{b'} = 1:23:900$; their absolute values are in agreement with our findings. A temperature dependence of the a and c^* direction similar to our results was reported by Forró et al. Surprisingly we observe a very low anisotropy performed on mosaics. By now it is not clear whether the slight shift to lower temperatures with increasing frequency is significant or not. The Sherbrooke group reports some sample dependence as far as the detailed shape is concerned.

The dc experiments performed along the c^* axis of (TMTSF)$_2$PF$_6$ yield room-temperature values around $\rho_{c^*} = 50\text{ ohm cm}$, leading to a skin depth much larger than the sample size. Therefore the data on frequency shift and change of linewidth taken along the c^* direction of (TMTSF)$_2$PF$_6$ were analyzed according to the depolarization regime. The results obtained on the mosaic assembled from two, three, and four cubes coincide perfectly except for the temperature range between 15 and 40 K, where the large sample volume with high losses caused an overload of the cavity and we could only use the data of the two-block mosaics. The overall temperature behavior of the c^*-axis microwave conductivity of (TMTSF)$_2$PF$_6$ shown in Fig. 6 is in good agreement with the dc conductivity data along this direction, except for the temperature region above 80 K, where a slightly semiconducting behavior was observed in the dc results, while the 33 GHz conductivity is almost temperature independent in this temperature region.

FIG. 6. Temperature dependence of the microwave resistivity of (TMTSF)$_2$PF$_6$ along the a, b', and c^* crystallographic axes, measured at 24 and 33.5 GHz.

\[
\sigma_1 = \frac{f_0 R_x X S}{R_S^2 + X S^2} \quad \text{and} \quad \sigma_2 = \frac{f_0 (X S^2 - R_S^2)}{2(X S^2 + R_S^2)}.
\]
temperature, following approximately linear and even sub-linear behavior is found in the relaxed slope of $\rho_s(T)$, a significant change in slope by a factor of 50 with decreasing temperature for $T > 150$ K, the crystal enters the spin-density wave state. The open dots correspond to the slow cooled phase which remains metallic and becomes superconducting at $T_c = 1.1$ K.

ρ_b/ρ_a, even at room temperature (Fig. 3). Depending on the cooling rate, a clear difference in the low-temperature resistivity $\rho_a(T)$, $\rho_b(T)$, and $\rho_c(T)$ is found below the anion ordering temperature $T_{AO} = 24$ K. If cooled down slowly with a rate of approximately 0.2 K/min, the relaxed state is reached for which the metallic conductivity continues until the superconducting state is entered at $T_c = 1.1$ K. In all three directions, a significant change in slope $\rho(T)$ can be detected around T_{AO}, with only little change in the b' direction. Interestingly, while the resistivity ratio ρ_b/ρ_a increased strongly by a factor of 50 with decreasing temperature for (TMTSF)$_2$PF$_6$ (Fig. 3), in the case of (TMTSF)$_2$ClO$_4$ the anisotropy remains constant down to about 150 K and becomes smaller at lower temperatures.

Along the chains, the resistivity follows a $\rho_b(T) \propto T^{4.5}$ law in the temperature range 25 K $< T < 180$ K; below 15 K a linear and even sub-linear behavior is found in the relaxed state. Above 200 K the resistivity increases more slowly with temperature, following approximately $T^{0.43}$. The transverse resistivity $\rho_{b'}(T)$ depends linearly on temperature above 70 K; in the intermediate range (20 K $< T < 70$ K) a $T^{1.25}$ behavior is observed; the low-temperature resistivity ($T < 10$ K) can be approximated by $\rho_{b'}(T) \propto T^{0.4}$. A similar slope of $\rho_c(T) \propto T^{0.5}$ observed for the least-conducting direction; above T_{AO} up to 50 K, the resistivity follows a $T^{1.47}$ power law, which increases to $T^{1.85}$ for 50 K $< T < 150$ K. Similar to the a direction, above 200 K $\rho_c(T)$ exhibits a very slow temperature dependence of $T^{0.34}$.

Following the reasoning given above, we tried to transform the ambient-pressure results to values of the temperature dependent resistivity at constant volume $\rho_a^{(V)}(T)$, $\rho_b^{(V)}(T)$, and $\rho_c^{(V)}(T)$ are plotted in Fig. 9. This attempt is hampered by the lack of pressure-dependent data on the lattice parameter and the resistivity for (TMTSF)$_2$ClO$_4$; thus we had to go back and use the transformation procedure applied for (TMTSF)$_2$PF$_6$. Along the chains we find $\rho_b^{(V)}(T) \propto T^{4.38}$ from the anion ordering temperature $T_{AO} = 24$ K up to almost 200 K; the behavior is temperature independent above. The b'-axis response reveals a change in slope around 75 K for lower temperatures $\rho_b^{(V)}(T) \propto T^{1.15}$ while above the power law decreases to $T^{0.75}$.

2. Microwave experiments

As far as we know, this is the first microwave investigation performed on (TMTSF)$_2$ClO$_4$ in all three crystallographic directions. The data along the b' axis shown in Ref. 32 are based on the room-temperature anisotropy reported by Murata et al. and the Hagen-Rubens assumption. The analysis of our microwave data obtained on (TMTSF)$_2$ClO$_4$ by cavity perturbation technique follows the procedure described above for our measurements on (TMTSF)$_2$PF$_6$. Along the a and b' axes the skin depth is much smaller than the sample size due to the high conductivity and thus the analysis is done via the surface impedance [Figs. 5(c) and 5(d)]. Along the least conducting c' axis, the quasistatic depolarization regime applies.

As seen from Fig. 10, the microwave resistivity exhibits a metallic temperature dependence in all three orientations, although the absolute values are very much different. The temperature dependence of the anisotropy ratios ρ_b/ρ_a and $\rho_{b'}/\rho_a$ obtained at microwave frequencies is very similar the dc results plotted in Fig. 3. Between the a and b' axes the anisotropy is basically temperature independent and approximately $\rho_{b'}/\rho_a = 2$. The ratio to the c' direction is more than three orders of magnitude and decreases linearly by a factor of 10 when the temperature decreases below 150 K. Thus (TMTSF)$_2$ClO$_4$ resembles a two-dimensional metal much more than a one-dimensional one. These findings are supported by optical studies on (TMTSF)$_2$ClO$_4$ which reveal
that the spectral weight of the zero-energy mode is almost isotropic for the a-b plane, while for the c' direction no Drude contribution was revealed.32

Along the a and b' axes some of the samples exhibit a T^2 behavior all the way down to 30 K, with no kink observed as known from (TMTSF)$_2$PF$_6$. The c' resistivity follows a $\rho_{c'}(T) \propto T^2$ behavior for $T>30$ K with decreasing slope above 130 K. In no temperature regime a semiconducting behavior is found. The anion ordering at T_{AO}=24 K leads to a slight drop in resistivity with decreasing temperature. For the a and b' directions the resistivity in the range of lower temperatures is close to linear, but does not follow a power-law convincingly.

IV. DISCUSSION

Our results give clear evidence that neither (TMTSF)$_2$PF$_6$ nor (TMTSF)$_2$ClO$_4$ can simply be labeled a one-dimensional metal. The coupling in the b' direction between the chains has to be considered. From a theoretical point of view, the transport properties of coupled one-dimensional chains have been investigated.11,28,30 Due to the interactions the effective interchain hopping is renormalized,23 leading to a smaller crossover scale than for free electrons. A simple expression for this crossover scale is $E^* \sim t_{\perp} \sim t_{\perp}^0 \left(t_{\perp}/t_0\right)^{\alpha(1-\alpha)}$ where α is the single-particle exponent. For commensurate chains a more complex analysis is needed to determine E^* (see, e.g., Ref. 29).

The conductivity parallel11 to the chains σ_1 and the conductivity perpendicular28,30 to the chains σ_\perp were calculated in a system of weakly coupled Luttinger chains. It was found that the interchain hopping is responsible for the metallic character of the (TMTSF)$_2$X compounds, which would be otherwise Mott insulators. The temperature-dependent transport yields a power law for the longitudinal and transverse resistivity, respectively,

$$\rho_{c'}(T) \propto (g_{1/4})^2 T^{16K_{\rho}r-3},$$

$$\rho_{\perp}(T) \propto T^{1-2\alpha},$$

where $g_{1/4}$ is the coupling constant for the umklapp-scattering process with 1/4 filling, K_ρ is the Luttinger-liquid exponent controlling the decay of all correlation functions ($K_\rho=1$ corresponds to noninteracting electrons, and $K_\rho < 0.25$ is the condition upon which the 1/4 filled umklapp process becomes relevant), and $\alpha=1/4(K_\rho+1/K_\rho)-1/2$ is the Fermi-surface exponent. For the frequency-dependent transport the conductivity parallel and perpendicular to the chains is given by power laws

$$\sigma_1(\omega) \propto \omega^{16K_{\rho}r-5},$$

$$\sigma_\perp(\omega) \propto \omega^{2\alpha-1}.$$

Optical experiments on (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$ClO$_4$ along the chains17 yield $K_{\rho}=0.23$ in both cases. We now want to see whether we can describe the temperature-dependent longitudinal and transverse transport in both compounds consistently. In that respect (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$ClO$_4$ have to be distinguished.

A. (TMTSF)$_2$PF$_6$

Indeed (TMTSF)$_2$PF$_6$ shows a quite consistent behavior with the above theoretical description, with a crossover scale of about $E^*=100$ K. Although (TMTSF)$_2$PF$_6$ is highly anisotropic as far as the absolute values of the resistivity are concerned, the temperature dependence below $T=100$ K is the same for the a and b' directions implying a similar transport mechanism. In Fig. 3 the ratios of $\rho_{c'}/\rho_a$ are plotted as a function of temperature. Above 50 K the ratio for (TMTSF)$_2$PF$_6$ is basically constant and corresponds to the band-structure anisotropy (this does not hold for the c' direction as we will discuss below). Using $4\tau_{\rho}=1.0$ eV together with measured resistivity gives (t_{\perp}/t_0) = (250:10:1) meV, which is quite close to the anisotropy (t_{\perp}/t_0) = (250:17:0.75) meV as determined by Grant by band structure calculations.49 The increase of $\rho_{c'}/\rho_a$ below 50 K is mainly caused by the transverse resistivity in b' direction which levels off as the spin-density-wave transition at 12 K is approached. It is not clear at this point, however, whether fluctuations are solely responsible for this behavior since they are expected to dominate along the chains. ρ_{\perp}/ρ_a continuously increases by a factor of 50 when going from room temperature to T_{SDW}. Since the temperature is always larger than the tunneling integral along the c' direction, the conductivity is always incoherent along this axis and measures in fact the tunneling density of states between the planes. Below 70 K, the dc resistivity of (TMTSF)$_2$PF$_6$ follows a power law $\rho_{\perp} \propto \rho_{c'} \propto T^2$, as expected for a Fermi liquid with electron-electron scattering, and $\rho_{\perp} \propto T$. This last behavior is consistent with Eq. (4) when the planes are in a Fermi-liquid state since then $\alpha=0$. From the power law $\rho_{c'} \propto T^{0.56}$ we found above $T=100$ K the corresponding Luttinger-liquid exponent can be calculated to be $K_{\rho}=0.22$ by using Eq. (3).
and $\alpha=0.69$. This value is in good agreement with the optical data value quoted above. For the c' direction we observe $\rho_{c'}(T) \propto T^{-0.2}$ quite consistent with Eq. (4) and the above value of K_ρ (which would lead to $T^{-0.29}$). The interpretation of $\rho_{b'}(T)$ is more complex since no simple power law was found over the entire temperature range. However a change in the anisotropy behavior is clearly seen to take place above 100 K in Fig. 3 and the fit to a power law in Fig. 4 shows a downturn of the exponent from 0.65 to 0.24. The data could thus be interpreted as due to a crossover regime between the low-temperature Fermi-liquid one and the high-temperature Luttinger liquid. Note that it is reasonable to expect a much larger crossover region for the b'-axis transport, than for the c' axis given the much higher value of the transfer integral in this direction.

The optical data along the c' axis is compatible with the above conclusions. The c'-axis resistivity measured at 24 GHz possesses the semiconductorlike behavior $(d\rho_{c'}/dT < 0)$ in the high-temperature region 100 K $< T < 200$ K with the power law $\rho_{c'}(T) \propto T^{-0.6}$. From this power law we obtain $K_\rho=0.20$, again in reasonable agreement with the other determinations of the Luttinger-liquid exponent. The interpretation of the b'-axis optical data is more complex. Given the above interpretation of the dc transport the system is clearly in the two-dimensional regime for temperatures below 100 K and still in the crossover regime even up to room temperature. Thus an interpretation of the optical data along the b' direction can only be done by using a two-dimensional theory for the planes (e.g., along the lines of Ref. 28). Note that the temperature dependence is quite sensitive to the moderate frequency change, as depicted in Fig. 6. After performing the conversion to constant volume, we obtain $\rho_{b'}(V) \propto T^{-0.4}$ in the temperature range 20 K $< T < 55$ K. This is to be contrasted with the T^2 behavior observed in the dc transport in the same temperature range. The fact that a frequency of an energy corresponding to ~ 1 K gives such a change in the b'-axis conductivity signals a very narrow Drude peak, whose behavior remains clearly unknown.

B. (TMTSF)$_2$ClO$_4$

The situation is more complex for (TMTSF)$_2$ClO$_4$ which obviously exhibits a much more two-dimensional behavior. As can be seen from Fig. 8 the behavior along the a and b' axes is quite similar over the whole temperature range, while the c' axis remains clearly metallic with a flattening only around 300 K. This suggests that the crossover temperature in the case of (TMTSF)$_2$ClO$_4$ is higher than 200 K, which means that the dc transport is totally controlled by the two-dimensional physics. Note that the optical data clearly shows for (TMTSF)$_2$ClO$_4$ the power-law behavior of a Luttinger liquid at high energy, which is consistent with the existence of a crossover scale, but which in that case would be much higher than for (TMTSF)$_2$PF$_6$. However, the dc behavior in the two-dimensional regime is still quite puzzling. From Fig. 3 the anisotropy is approximately temperature independent above 150 K and roughly equal to 2. Although the constant anisotropy is indeed to be expected if the system is in the two-dimensional regime the value is quite surprising since it is much lower than the ratio that would be expected from the hopping integral, and that would be quite similar to the one actually measured for the case of (TMTSF)$_2$PF$_6$. The reason for such a low value remains to be understood. The increase of the anisotropy (of about a factor of 2 until the transition) is reminiscent of the one occurring in (TMTSF)$_2$PF$_6$ but on a much broader temperature range (100 K instead of less than 50 K for the later). Note also that the exponents for the dc transport are quite different than the ones for (TMTSF)$_2$PF$_6$. Although (TMTSF)$_2$PF$_6$ was having the exponents expected for two-dimensional planes in a Fermi-liquid states (T^2 for a and b' axes and T for the incoherent hopping along c' direction) one finds, as shown in Fig. 9, exponents for the three axis between 1.15 and 1.47.

This difference between (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$ClO$_4$, and especially the low value of the anisotropy ratio is quite puzzling. In particular it is expected that a universal phase diagram would hold for the organics, in which one could go from one chemical compound to the other by applying pressure. This property clearly holds for the various instabilities. It would thus be interesting to make a detailed comparison between (TMTSF)$_2$PF$_6$ under pressure and (TMTSF)$_2$ClO$_4$ as far as their transport properties are concerned to check how much of the transport properties of (TMTSF)$_2$ClO$_4$ can be recovered. Note in particular that it would be unlikely given the amount of pressure to apply to (TMTSF)$_2$PF$_6$ to change the hopping integrals sufficiently to explain, simply by a modification of the hopping integrals, the low anisotropy ratio observed in (TMTSF)$_2$ClO$_4$.

V. CONCLUSION

The comparison of the power laws found in the temperature-dependent dc and microwave resistivity of (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$ClO$_4$ yields a complex picture. The quadratic behavior found along the chains of (TMTSF)$_2$PF$_6$ is reduced to $\rho_{c'}(T) \propto T^{1.3}$ above the dimensional crossover around 70 to 100 K; in (TMTSF)$_2$PF$_6$ we find a maximum in the resistivity $\rho_{c'}(T)$ around 80 K. The longitudinal and transverse properties in this material are qualitatively consistent from what it to be expected from a system of coupled one-dimensional chains, having a crossover from a Luttinger-liquid at high temperature to a two-dimensional (Fermi-liquid-like) behavior at low temperatures.

Although the optical data of (TMTSF)$_2$ClO$_4$ indicate a one dimensional Luttinger-liquid behavior at high energy, the dc transport shows clearly that below ambient temperature, (TMTSF)$_2$ClO$_4$ is in a two-dimensional regime. The third direction of (TMTSF)$_2$ClO$_4$ is metallic in the entire temperature range with some indications to a semiconducting behavior above room temperature, implying that the crossover temperature should be above ambient temperature. Surprisingly the anisotropy ratio, of about 2, is quite small and much lower than what would be expected from the ratio of...
the transfer integrals. Given the idea of a universal phase diagram where change of chemistry would be equivalent to pressure, these measurements suggest a careful comparison between (TMTSF)$_2$PF$_6$ under pressure and (TMTSF)$_2$ClO$_4$ to determine the similarities and differences of the two systems.

ACKNOWLEDGMENTS

We thank G. Untereiner for the crystal growth and sample preparation. The 3He experiments have been performed by Thom. The work was supported by the Deutsche Forschungsgemeinschaft (DFG) and by the Swiss National Fund under MANEP and Division II.

45. Note, although the value of 25% is reported in Ref. 16, the data actually taken from the graphs of that paper show this value to be around 10%.

