Training conference interpreter trainers with technology – a virtual reality

CLASS, Barbara, MOSER-MERCER, Barbara

Abstract

The training of conference interpreter trainers is characterized by several pedagogical shifts. The use of socio-constructivism and portalware technology constitutes the latest shift in pedagogical paradigms. This paper provides a novel framework for quality assurance in the training of interpreter trainers by describing a multi-pronged approach to quality assessment with the ultimate objective of obtaining accreditation for an Advanced Masters Course for interpreter trainers. As such it covers the various parameters that have been adopted for accreditation in higher education, with special reference to interpreter training and the leveraging of new technologies. The article describes the curriculum, the learning environment and the pedagogy used in the Master of Advanced Studies for conference interpreter trainers at FTI and how these respond to quality assurance criteria within the six domains recommended by the Swiss Center of Accreditation and Quality Assurance in Higher Education.

Reference

Available at:
http://archive-ouverte.unige.ch/unige:35620

Disclaimer: layout of this document may differ from the published version.
13. TRAINING CONFERENCE INTERPRETER TRAINERS WITH TECHNOLOGY – A VIRTUAL REALITY

BARBARA CLASS
Barbara.Class@unige.ch

BARBARA MOSER-MERCER
Barbara.Moser@unige.ch

Université de Genève, Switzerland.

INTRODUCTION

Interpreter training programs go back to 1941, when the first was created in Geneva at the École d'interprètes. Simultaneous interpreting was used for the first time in 1928 at the International Labour Conference and the need to train simultaneous interpreters was immediately recognised. Then, in the years following World War II, the need for simultaneous interpreters became all the more apparent with the Nuremberg Trials. In 1946, with the introduction of simultaneous interpretation at the United Nations, training did not last more than three months, during which trainees had to become familiar with the equipment (booths, microphones, etc.) and with listening to and interpreting a given speech. It was only in 1953 that the “first purpose-built simultaneous interpretation room with ten booths was inaugurated (Williams 1981: 7) and the teaching of simultaneous interpreting became an integral part of the curriculum of the École d'interprètes” (Moser-Mercer 2005: 212). In 1952, Jean Herbert published Le manuel de l'interprète, which was the first attempt to furnish advice on how to teach simultaneous interpretation. But it was not until 1989, with the publication of Pédagogie raisonnée de l'interprétation by Seleskovitch and Lederer “that the
teaching of simultaneous interpreting was given a systematic and detailed
treatment” (Moser-Mercer 2005: 217).
Seleskovitch and Lederer were the first to point to different types of discourse
and discourse parameters as a global framework for developing progression in
the training of simultaneous interpreting. Their manual also is among the first to
point to the importance of appropriate feedback at the formal and substantive
level and to the necessity of allowing students to prepare the subject matter of
a speech before entering the practice booth. (ibid.: 218)

In 1989, van Dam introduced the notion of expertise, drawing a distinction
between “interpreting as a process and interpreting as a skill to be taught”
(Moser-Mercer 2005: 219). During the last decade of the 20th century expertise
research as pioneered by Hatano and Inagaki (1986), Hoffman (1992), and Ericsson
(1996) provided us with a more comprehensive view of skilled performance than
had hitherto been possible within the more narrowly defined paradigms of
cognitive science (Ericsson et al. 2006). With performance being central to
interpreting, both at the professional level and in the classroom, the study of
skilled performance must occupy centre stage when it comes to developing a
thorough understanding of skill acquisition (Moser-Mercer 2008). Due in large
part to this new orientation in the cognitive sciences, we have made considerable
strides in understanding interpreting as a high-level and complex cognitive skill
and, consequently, have been able to leverage new pedagogical paradigms in
order to advance training in interpreting.

The introduction of socio-constructivist pedagogy and activity-based virtual
learning environments mark a turning point not only in education in general, but
in interpreter training in particular. When pedagogy and instructional design
change, professional development for trainers must either follow suit, or, ideally,
precede that change. At the Interpreting Department of FTI, both scenarios have
been embraced since 2004-2005, the date the Virtual Institute was launched, with
a first wave of training in new pedagogical paradigms and new technologies being
followed by ongoing training for new staff as they join the ranks of interpreter.
Training conference interpreter trainers with technology – a virtual reality

Training conference interpreter trainers with technology – a virtual reality

2004 was also the first year the Master of Advanced Studies (MAS) in interpreter training was offered within the new paradigm of virtual collaborative learning.

Standard course evaluations of this training program for trainers was carried out regularly starting with the first face-to-face edition in 1996. With the introduction of the first blended edition in 2004 systematic evaluation of the various dimensions of the new course was introduced in order to develop best practice and ensure that conference interpreters who were studying to become trainers embraced the idea of the medium becoming the message, or put in other words, would incidentally learn about the importance of quality assurance in the interpreter training programs they would be involved in after graduation.

QUALITY ASSURANCE

The training programme has recently undergone accreditation. The standards used were those proposed by the Swiss Center of Accreditation and Quality Assurance in Higher Education (OAQ). This instrument is also available on the OAQ website with precise reference to each standard.

The following domains of the training programme have been examined: implementation and teaching objectives, internal organization and quality assurance measures, curriculum and teaching methods, teaching staff, students, and facilities and premises. These domains are generally to be found in the accreditation guidelines for courses of study in higher education. Their definition is usually more suited to the acquisition of knowledge, rather than skills, and more to traditional classroom learning than to virtual or blended learning. As a result, the accreditation process represented a considerable challenge both for those implementing the Advanced Masters in Interpreter Training and for those evaluating its implementation. Both had to conclude that at times the exercise

295
involved driving square pegs into round holes, but in light of the fact that the programme to be evaluated had teacher training as its main objective allowed both parties to keep the focus on pedagogical innovation in the service of best practice in higher education. We will briefly describe the six domains; this will serve as guide to the remainder of the paper which covers the curriculum and its implementation.

Domain 3, curriculum and teaching methods, is the central domain of concern in the following sections of this paper. The remaining domains represent different support structures. For instance, for delivering this curriculum, domain 1 shows that there is an actual market and need for training interpreter trainers at postgraduate level since the demand exists and the course has been offered regularly. Domain 2, concerned with internal organization and quality assurance shows that the well organized human resources provide stability and a sound and fertile ground for innovation. Course evaluations are organized for both on-line and face-to-face parts of the nine course modules. Participants are also invited to give their opinion on the overall course and the integration of on-line and face-to-face activities. Besides, less formal course evaluation is provided through the blogs, journals and wrap-up of modules which include a “recommendations” section, used by faculty to improve the next edition of the course. Domain 4 goes into further depth regarding human resources and analyses the staff resources available to the programme. Faculty are supported by techno-pedagogical staff to help them with this blended format of the programme. Domain 5 addresses the target audience issue: professional interpreters who are already teaching or not yet teaching interpreting. Domain 6 addresses the facilities issue: for both the face-to-face and the on-line parts of the program, equipment has been developed following strict needs analyses. For further details, readers may want to consult the report from the international team of experts which is available on the OAQ website.

As evidenced by the accreditation report, the entire evaluation is very positive and the Conference of Swiss Universities (CUS), upon recommendation of the Swiss Center of Accreditation and Quality Assurance in Higher Education, issued unconditional accreditation in January 2011, stating that the program complies with the requirements of all standards. The accreditation is valid for seven years.

The accreditation procedure includes four steps: The request from the institution or from the program; the self-evaluation report; the on-site visit of international experts followed by their report and the report from the national accreditation agency; and finally the decision from the Swiss rector’s conference. The self-evaluation report provides answers and references to the different domains mentioned above. It is the written document on which experts base their first impressions of the program; it is then used to draft the questions for the on-site visit, during which the team of experts schedules meetings with the different target groups concerned with the program: the rectorate, the continuing education division, the department running the program, the faculty, as well as students and alumni, stakeholders, and the techno-pedagogical and administrative staff. These discussions allow the experts to develop an opinion on the different aspects of the program. While the six domains drive the evaluation process, domain 3 remains more central. The five remaining ones address key issues related to the support and further development of a high quality and sustainable program.

The following sections, related to domain 3, are designed to cover this domain in greater detail with the idea of providing guidance to curriculum designers and program directors in the field of interpreting with regard to embedding quality assurance requirements in their curricula.

CURRICULUM

The curriculum comprises nine modules organized according to a progression from theory to practical applications: 1. Fundamentals of distance learning; 2. The

Module 1, *Fundamentals of distance learning*, is an introduction to the programmes' pedagogical foundation and the virtual learning environment. Activities are structured in such a way that participants must use all the tools offered on the learning platform and complete the learning activities to grasp the underlying socio-constructivist pedagogy used on this course.

Module 2, *The interpreting process*, focuses both on the theoretical background to be acquired and on authentic problem solving in interpreter training. This module lays the foundation for Module 3 and Module 6. By the end of the module participants are expected to have acquired a good understanding of the underlying cognitive processes and skill components involved in interpreting.

Module 3, *Skill acquisition and expertise*, is also theoretically oriented. By the end of the module participants have gained a thorough understanding of how skills are progressively acquired. They first master the concepts (progression, expertise, skill acquisition mechanisms), and then deal with data acquisition and organisation (i.e. report the stages of skill acquisition), before designing application models for individual stages of skill acquisition.

Module 4, *Design and implementation of research projects*, provides participants with the necessary foundation for conducting academic research. By the end of the module participants are familiar with the means and methods of conducting research in interpretation studies; they will have developed the skills and confidence required for formulating research questions and hypotheses, and identify the methodological issues involved in designing empirical research projects with a view to completing their thesis.
Module 5, *Teaching consecutive interpreting*, is devoted to consecutive interpretation. By the end of the module, participants have gained an in-depth understanding of how skills in consecutive interpreting evolve, in other words, how novices become experts. They will also have learned to identify the source of problems at various stages in skill acquisition and developed problem-specific didactic remedies.

Module 6, *Teaching simultaneous interpreting*, is devoted to simultaneous interpretation. Its pedagogical goals are very similar to those of the previous module on consecutive interpretation. Theoretical concepts acquired in Module 2 are now applied to skill acquisition in simultaneous interpreting. By the end of the module, participants have learned to identify the source of problems in various phases of skill acquisition and developed problem-specific didactic remedies.

Module 7, *Curriculum, syllabus design and lesson planning*. In terms of the skills and knowledge that are targeted in this module participants acquire skills in classroom management and in applying the principles of instructional design to create pedagogical documents, such as curricula, syllabi and lesson plans.

Module 8, *Evaluating classroom performance: Providing feedback to students* focuses on the practice of delivering feedback to support participants’ progress. Participants also examine a range of different feedback instruments and different ways of keeping track of students’ progress. By the end of the module participants have gained a thorough understanding of feedback and how to deliver it in an academic context in order to enhance its effectiveness.

Module 9, *The interpreter’s voice*. This module serves as an introduction to the interpreter’s voice, both theoretically and practically. It proceeds from a theoretical discussion of voice to individual, preparatory exercises designed to raise the participant’s awareness of his/her voice. The face-to-face component is focused on practical exercises to support relaxation and breathing, articulation and muscularity, resonance and range, and creating meaning with the voice. By
the end of the module, participants are able to integrate voice work in their courses and develop their own warm-up exercises and voice activities for use in the interpreting classroom.

Given the pedagogical design of the trainers' course as a whole with the medium supporting the message, the curriculum is front-loaded with a module to familiarize participants with the activity-based and collaborative pedagogy used throughout the course. The curriculum is then modular and progressive with theoretical modules preceding the more practical ones. Modules 2 and 3 are designed to foster a thorough understanding of the cognitive dimensions of the interpreting processes and how participants progress towards expertise. Participants then analyze the different forms of interpreting, teaching strategies, and curricular design options.

The same approach can be found within the various modules: practical activities that have to be completed build on the acquisition of theoretical/scientific concepts. The theoretical background allows participants to develop reasoned and pedagogically sound solutions when confronted with practical problems. For example, when, in module 6, activity 1, participants need to fill in templates, trying to understand why students have a particular problem and how to remedy these, they consult the theoretical readings that are offered as resources for the activity. During module 4, design and implementation of research projects, participants are invited to choose a topic for their Masters thesis and start working on it.

LEARNING ENVIRONMENT

Since the training is offered in a blended format, the learning environment plays a determining role. It consists in a community portal within which participants are active knowledge and skill builders, working collaboratively most of the time. The community portal is anchored in the so-called activity-based learning
Training conference interpreter trainers with technology – a virtual reality

environments family (Hannafin, Land and Oliver 1999, Jonassen 1999). Activity-based learning environments are composed of a set of technological tools to support socio-pedagogical goals. Communication, collaboration, social, cognitive scaffolding tools and resources constitute core tools to enable activity-based learning. The teacher's role is transformed, orchestrating scenarios to scaffold meaningful learning experiences for learners (Dillenbourg and Jermann 2010). Psycho-pedagogical values underlying such learning environments are related to situated learning, meta-cognitive monitoring and progressively refined higher-order learning.

Physically, the portal is organised like a “cockpit” where the central view changes, but access to tools, navigation and information blocks always remains available. These systems use simple web applications that existed on a stand-alone basis (i.e. forums, chats, news exchanges, etc.), in modular formats, so that each user/institution can configure the environment according to his/her community's needs. Based on open-source technology and philosophy, they allow a community to develop customised modules precisely tailored for a particular community (Schneider et al. 2003). The portal developed for interpreter trainers entails tools to support production, communication, meta-cognition, evaluation, awareness and organisation (Class 2009). Its layout is illustrated in figure 1.

The portal for the MAS course uses Zikula\(^1\), a content management system available in the public domain which offers a variety of core functionalities and complementary tools allowing the online interaction between and among teachers, tutors and participants. Additional tools have been specifically developed by FTI for the context of interpreter training. To cater to learning needs, five types of tools are available to the different actors: content and production, communication and regulation, metacognitive, evaluation and awareness tools.

\(^1\)<http://zikula.org/>.

301
Figure 1. The learning environment, a community portal

Content and production tools include the forum⁴, the news⁵, the wiki⁶, a faculty wiki, the portfolio⁷, the repository⁸ and the wrap-up book⁹. The communication

⁴ Discussion tool, organized by topic. Used by participants and teaching staff to build knowledge, exchange on content and interact with the community.
⁵ Text editor. Used exclusively by teaching staff to post information covering organizational matters or providing content information related to modules.
⁶ Webpage editor that can be modified by anyone through a simple web browser. Used by participants to draft collaborative documents.
⁷ Webpage editor. Used by participants, collaboratively, to synthesize modules following a given structure. Ultimately published as wrap-up book for the entire course.
⁸ Upload/download tool. Used by participants to deposit final productions required to complete activities.
⁹ Word file. Synthesis of all modules with references to participants’ productions sent out as e-publication to participants at the end of the course for future reference.
and regulation tools include the chat10, the shoutbox11 and the private messenger12. The metacognitive tool is the journal13. The evaluation tools include the student tracking tool14 and the course evaluation15. Awareness and organisation tools include who is on-line16, the calendar17, the course description18 and the member list19. Additional tools are a blog20, the library21, the portal guide22 and "my account23".

10 Synchronous discussion tool. Used by teaching staff, usually at the end of the module, for debriefing. It can also be shared at any time among participants, knowing that all conversations are being recorded for easy retrieval.

11 Short message boards. Used equally by participants and teaching staff either to reinforce organizational tools or for social purposes.

12 Asynchronous messaging system internal to the portal. Used for private communication by participants and teaching staff.

13 Text editor. Used by participants and teaching staff as a reflection tool to report progress in activities, emotions, new insights, etc. Can be used with or without scaffolding template.

14 Evaluation tool for tracking grades, and feedback when this was not available on the forum. Used by teachers to provide grades and sometimes feedback. Used by participants to gather grades and feedback.

15 Online surveys. Used by participants to evaluate modules and the entire course. Used by faculty to fine-tune the design of the course.

16 Social awareness tool. Used to check who is connected to the portal at the same time as oneself.

17 Calendar tool. Used by teaching staff to remind participants of important dates, such as beginning and end of module activities or synchronous meetings.

18 Detailed description of each module. Used by participants to obtain information about activities, resources, deadlines, evaluation.

19 Directory. Used by teaching staff and participants to access any member registered in the portal's member data base.

20 Webpage editor. Used by faculty and participants to provide a short biography, share interests, etc.

21 Upload/download tool. Used by teaching staff to store all compulsory readings and by participants to download them.

22 Wiki. Used to provide newcomers with an overview of all the tools and spaces used both pedagogically and technically.

23 Panel. Used by faculty and participants to edit private information and adapt the portal to their preferences using personal settings.
PEDAGOGY

We are using blended learning, with one face-to-face week embedded in a one-year program. During the first eight months, participants work with on-line modules, then come to Geneva for one week for the face-to-face portion of some of these modules, and complete the course work at distance by working on their theses for the remainder of the course.

Forms and methods of learning and teaching are innovative since activities are socio-constructivist in orientation and completed with participants dispersed across five continents and many different time zones. This confrontation of intellectual cultures, learning styles and cultures considerably enriches interactions as well as knowledge and skill building within the MAS. An activity completed by a group of European participants, for instance, does not produce the same knowledge as when it is completed by a mixed group of Asian-African-American-European participants. Differences in the type and richness of knowledge constructed by culturally mixed groups as opposed to work produced by culturally more homogenous groups has led the course director to initiate research into the influence of intellectual styles on learning outcomes as part of a research project on distributed cognition (Moser-Mercer 2008). First results indicate that mixed groups of participants that include both Asian and Western participants produce knowledge that is richer in content and more diversified, with a more balanced representation of different ideas, while reports produced by all-Western groups tend to be much more homogenous in nature, reflecting less diversity of thought as a result of a more competitive knowledge construction process. We consider this to be a particularly important dimension of the course and a direct result of the pedagogical models we employ; while an unintended windfall initially, we now exploit this dimension of the course by deliberately influencing group composition for collaborative activities as we believe that interpreting is an inherently cross-cultural activity and that this aspect must be
included in the training of interpreters. The literature on collaborative, cross-cultural virtual learning, is virtually non-existent and we believe that our course can build an important data base for research, and provide important input for managing cross-cultural, distributed work teams.

The design of learning activities involves a certain amount of creativity, of course, but a significant part of the design is based on pedagogical models and strategies that have been validated by research and proven to be efficient and effective. The following pedagogical models are used on the course: the first set belongs to the information-processing family, which is concerned with “enhancing the human being’s innate drive to make sense of the world by acquiring and organizing data, sensing problems and generating solutions to them, and developing concepts and language to convey them” (Joyce, Weil and Calhoun 2004: 26). Models related to this family involve information gathering, concept learning, hypothesis formation and testing, and creative thinking. These models (inductive thinking, concept acquisition, scientific inquiry) are used throughout the nine modules to lay the conceptual foundation, while problem-based learning is used as an overarching model for all of the practice-oriented activities.

Inductive thinking addresses the following instructional issues: information retrieval, concept formation, skill development, and hypothesis formation and testing. It nurtures the spirit of inquiry and logical thinking and provides an awareness of the nature of knowledge. One example would be reading resources and producing a synthesis report that addresses stages in skill development, the structure of expert knowledge and its importance for interpreting.

Concept acquisition or concept attainment is closely related to the inductive thinking model and is based on the presentation of organized information at different stages of development. The model nurtures conceptual flexibility, inductive reasoning and a tolerance for ambiguity. As such it finds its realization in the practice-oriented modules which focus on the conceptual information developed in the theoretical modules.
Scientific inquiry promotes strategies of inquiry and those values and attitudes that are necessary for an inquiring mind: process skills (observing, collecting, and organizing data; identifying and controlling variables; forming and testing hypotheses and explanations, inferring), active learning, persistence, logical thinking and an orientation that views all knowledge as tentative. On the instructional level, the scientific inquiry model emphasizes scientific processes and strategies for creative inquiry. On the nurturing level, it emphasizes a spirit of creativity, independence or autonomy in learning, tolerance of ambiguity, and the tentative nature of knowledge. Scientific inquiry provides the context for thesis work. One example is to support learners in discovering how to research the literature, choose a research topic, formulate a precise research question, and conduct research.

Problem-based learning: as they engage in authentic activities, participants are confronted with ill-structured and complex problems that require them to adopt an active role as problem solvers. According to Margetson (1997: 39):

(... problem-based learning encourages open-minded, reflective, critical and active learning; it is morally defensible in that it pays due respect to both student and teacher as persons with knowledge, understanding, feelings and interests who come together in a shared educational process; and it reflects the nature of knowledge — that is, knowledge is complex and changes as a result of responses by communities of persons to problems they perceive in their worlds.

For example, participants must identify recurrent difficulties typically encountered by interpreting students, formulate hypothesis concerning these difficulties, and suggest pedagogical strategies to overcome them.

The second set is related to the collaborative dimension of the course and uses two models (partners-in-learning and role play) from the social family. This family's foundations are based on social psychology and aim at facilitating interaction among people, building learning communities, and exploiting synergies emanating from the interaction among participants.
Partners-in-learning focuses on the definition of problems, exploration of various perspectives on the problem, and studying together to master information, ideas and skills, while at the same time developing social competencies. The number of participants can vary from two to a whole group. Partners-in-learning addresses the following instructional issues: effective group processes and governance, the constructivist view of knowledge, and the discipline of collaborative inquiry. It nurtures independence in learners, respect for the dignity of all, social inquiry as a way of life, and interpersonal affiliation. Partners-in-learning best describes the collaborative dimension of many of the learning activities that make up the nine modules.

Role-play engages participants in collecting and organizing information about social issues and then enacting the roles of others. On the instructional level, role play develops empathy and respect towards peers, promotes analysis of personal values and targets behavior and strategies for solving interpersonal problems. It nurtures social integration and comfort in expressing opinions, and develops skills in negotiating. This model is of particular relevance for the face-to-face activities of the six modules that have a face-to-face component. One example of an activity takes the shape of role-play that involves the head of a school, two instructors and a group of students. Participants must draft a curriculum in which they include a description of the facilities, the prerequisites for entry into the program, and an outline of the curriculum itself, along with a timeline and the number of hours per class.

In addition to the pedagogical models used to design activities, three main pedagogical strategies have been developed in this course and provide an overall framework for implementing pedagogical models: cognitive apprenticeship, knowledge building and collaborative learning. Schneider (no date) defines cognitive apprenticeship as:
Barbara Class, Barbara Moser-Mercer

"The pedagogical strategy at the core of situated learning...Thus, it is important not only to solve problems in a learning environment that uses real-world contexts and immerses the learner in the culture of a particular practice, but also to allow learners to witness the practitioners of that culture solving problems and carrying out tasks." (Schneider, EduTechWiki)

Knowledge building refers to "collecting information, supporting discourse and exchanges, encouraging a social and professional network of learners and experts and making the knowledge acquired collectively available for future use" (EduTechWiki). Collaborative learning, considered as a pedagogical strategy, involves a strong community-of-practice dimension, and engages participants in authentic higher-order activities, provoking meaningful interactions with meaning-construction and knowledge-building as outcomes.

The three pedagogical strategies overlap, focusing respectively on modeling, knowledge and the community. While each strategy focuses on one of these aspects, each often employs more than one aspect and strategy in combination. The richness of these meaningful interactions result in a high quality intellectual product, individual reflective practice, and a well regulated group characterized by active participation.

SKILL ACQUISITION

Research on the first two blended editions of the course confirms that participants acquired comprehensive and well-grounded skills to train conference interpreter students (Class 2009). Participants were divided into two groups: those who were already teaching and those who wished to do so in the near future. Both groups whole-heartedly agreed that they had acquired many skills and techniques for training interpreters. What was interesting to note was that learners with teaching experience agreed even more strongly than the non-teaching learners (figure 2, figure 3, table 1, table 2).
Training conference interpreter trainers with technology – a virtual reality

Figure 2. Non teaching learners' opinion about skill acquisition (Class 2009: 293)

Table 1. Frequencies, skill acquisition, non teaching learners (1: strongly disagree - 6: strongly agree)

<table>
<thead>
<tr>
<th>Case Studies</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Valid 21</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Missing 0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Maximum</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td>Percentiles</td>
<td>25</td>
<td>4.75</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5.50</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>6.00</td>
</tr>
</tbody>
</table>

Figure 3. Teaching learners' opinion about skill acquisition (Class 2009: 294)

Table 2. Frequencies, skill acquisition, teaching learners (1: strongly disagree - 6: strongly agree)

<table>
<thead>
<tr>
<th>Case Studies</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Valid 21</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Missing 0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Maximum</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td>Percentiles</td>
<td>25</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>6.00</td>
</tr>
</tbody>
</table>

CONCLUSION

To summarise, the MAS course for interpreter trainers has been offered in a blended format since 2004. It is a one-year programme with one embedded face-to-face week. It is worth 60 ECTS credits and represents a workload of a half-time occupation over one year. The learning environment consists of a community portal within which participants are active knowledge and skill builders. Activities are socio-constructivist in orientation and completed with participants dispersed across five continents, working collaboratively most of the time. Given the pedagogical design of the course as a whole with the medium supporting the message, theoretical modules precede more practical ones in the curriculum. The
advantage of looking at a programme from a dual perspective, both as a course and as a research field, is that results from research can be reinvested into the design of subsequent editions of the course. On-going formal and informal evaluation allows to always keep an eye on the fields’ demands and either to respond positively and change the design accordingly or show why it would not make sense to change it.

Accreditation is likely to sweep the academic landscape and the field of interpreting will certainly not be spared. It is thus very important to take quality assurances parameters into account upfront. On a European level, these parameters are being developed at two levels: the guidelines and domains recommended by the European Association for Quality Assurance in Higher Education (ENQA) or any affiliated national accreditation agency, and the European qualifications frameworks, for either lifelong learning programs (EQF) or for higher education (EHEA) programs. These guidelines invite you to describe your courses in terms of learning outcomes, defined as knowledge, skills and competences. In the European Qualifications Framework (EQF), knowledge is described as "theoretical and/or factual"; skills are described "as cognitive (involving the use of logical, intuitive and creative thinking) and practical (involving manual dexterity and the use of methods, materials, tools and instruments); and competence is described "in terms of responsibility and autonomy". These frameworks could provide some kind of safeguard to institutions or designers who would like to develop a program to train interpreters. Incorporating quality assurance guidelines in curriculum planning and implementation is thus very important. Also it is very important to always be listening to the field, fine-tuning whatever needs to be fine-tuned, monitoring whatever needs to be monitored while the training is unfolding.

It is also important to look both at the learning process and at the learning outcomes. There is a tendency to define learning exclusively in terms of learning outcomes. These are indeed very important and the paradigmatic shift towards
Training conference interpreter trainers with technology – a virtual reality

describing learning in terms not only of what knowledge will be imparted but what the learner is expected to know and be able to do at the end of a given training course, was indeed timely. But this paradigmatic shift has absorbed most of the available resources and it is important, particularly for the teaching of a cognitive skill, which requires trainers to develop sound theoretical knowledge and a wide repertoire of teaching strategies, to spend some time reflecting on the programme's architecture. The more stable and sound this process is, the greater the likelihood of successfully measuring the intended student learning outcomes.
REFERENCES

SCHNEIDER, D. et al. 2003. *Conception and implementation of rich pedagogical scenarios through collaborative portal sites: clear focus and fuzzy edges.* Paper presented at the International Conference on Open and Online Learning, Mauritius.
