Adenovirus-mediated silencing of synaptotagmin 9 inhibits Ca2+-dependent insulin secretion in islets

IEZZI-BAKHTIARI, Mariella, et al.

Abstract

Synaptotagmins (Syts) are involved in Ca(2+)-dependent insulin release. However, which Syt isoform is functional in primary beta-cells remains unknown. We demonstrate by electron microscopy of pancreatic islets, the association of Syt 9 with insulin granules. Silencing of Syt 9 by RNA interference adenovirus in islet cells had no effect on the expression of Syt 5, Syt 7 and Syt 3 isoforms. The latter was localized at the plasma membrane of pancreatic polypeptide cells. Insulin release in response to glucose or tolbutamide was strongly inhibited in Syt 9 deficient islets, whereas exocytosis potentiated by raising cAMP levels, was unaltered. Thus, Syt 9 may act as Ca(2+) sensor for beta-cell secretion.

Reference

DOI : 10.1016/j.febslet.2005.08.047
PMID : 16165130
Adenovirus-mediated silencing of Synaptotagmin 9 inhibits Ca2+-dependent insulin secretion in islets

Mariella Iezzia, Lena Eliassonb, Mitsunori Fukudac, Claes B. Wollheima, *

a Department of Cell Physiology and Metabolism, University Medical Center, 1211 Geneva 4, Switzerland
b Department of Experimental Medical Science, Division of Diabetes, Metabolism and Endocrinology, BMC B11, 221-84 Lund, Sweden
c Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Received 15 July 2005; revised 18 August 2005; accepted 21 August 2005

Available online 6 September 2005

Edited by Robert Barouki

Abstract Synaptotagmins (Syt)s are involved in Ca2+-dependent insulin release. However, which Syt isoform is functional in primary \(\beta\)-cells remains unknown. We demonstrate by electron microscopy of pancreatic islets, the association of Syt 9 with insulin granules. Silencing of Syt 9 by RNA interference adenovirus in islet cells had no effect on the expression of Syt 5, Syt 7 and Syt 3 isoforms. The latter was localized at the plasma membrane of pancreatic polypeptide cells. Adenovirus infection in response to glucose or tolbutamide was strongly inhibited in Syt 9 deficient islets, whereas exocytosis potentiated by raising cAMP levels, was unaltered. Thus, Syt 9 may act as Ca2+ sensor for \(\beta\)-cell secretion.

© 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Keywords: Pancreatic islets; Insulin exocytosis; Electron microscopy; RNA interference; \(\beta\)-cell

1. Introduction

Glucose and other insulin secretagogues depolarize the \(\beta\)-cell plasma membrane. The subsequent Ca2+ entry triggers release of insulin granules [1]. Among the Ca2+-binding proteins that are potential Ca2+ sensors for exocytosis, Synaptotagmins (Syt)s are currently the best candidates [2].

At present 15 different mammalian isoforms have been described [2,3]. The abundant synaptic vesicles isoform Syt 1, functions as the major Ca2+ sensor for neurotransmitter release [4]. Syt 1 is also present on secretory vesicles in endocrine cells (e.g., chromaffin cells, PC12 cells and pancreatic \(\beta\)-cell lines) and is involved in Ca2+-dependent exocytosis, suggesting a role for Syt 1 as an endocrine Ca2+ sensor [5–7]. In PC12 cells, the importance of this isoform has, however, been questioned [8]. Pancreatic \(\beta\)-cells do not express Syt 1 or the highly homologous Syt 2 [7], prompting the question which isoform is predominant in primary cells.

Additional Syt isoforms were proposed to function as Ca2+ sensors in neuroendocrine cells including PC12 and insulin-secreting cells [3,9–12]. Consistent with this notion, Syts 3, 7 and 8 were suggested to regulate Ca2+-stimulated release in primary \(\beta\)-cells by introduction of antibody or peptides corresponding to the C\textsubscript{2} domains [9,11]. However, the functional assays used, do not directly prove which Syt isoform is the candidate Ca2+ sensor. Moreover, Syt 5 was only detected in islet \(\alpha\)-cells [12,13], Syt 8 is an atypical isoform lacking Ca2+ binding sites [2], whereas the cellular localization of Syt 3 is still controversial [9–11]. Finally, Syt 7 immunoreactivity was detected in insulin-containing islet cells [10] but its precise subcellular distribution in the native \(\beta\)-cell remains to be determined.

Our previous immunofluorescence study on isolated \(\beta\)-cells revealed that Syt 9, closely related to Syt 1 [14], is associated with insulin granules and controls Ca2+-dependent exocytosis in the cell line INS-1E [12]. Here, we investigate the Syt 9 localization at the ultrastructural level and determine whether this isoform functions as Ca2+ sensor for insulin secretion in the \(\beta\)-cell.

2. Materials and methods

2.1. Materials

The mouse monoclonal antibody against rat Syt 9 was purchased from BD Biosciences (Basel, Switzerland). Anti-Syt 3 and anti-Syt 7-N rabbit polyclonal antibodies were prepared as previously described [13,15]. The monoclonal antibodies specific for syntaxin, insulin and glucagon were from Sigma (Buchs, Switzerland). Anti-pancreatic polypeptide rabbit polyclonal antibody was from Peninsula Laboratories (Belmont, CA, USA). Anti-somatostatin rat monoclonal antibody was from Biogenesis (Poole, UK). The guinea pig antibody against insulin was kindly provided by Dr. P. Meda (University of Geneva, Switzerland). Tolbutamide, forskolin and 3-isobutyl-1-methylxanthine (IBMX) were from Sigma.

2.2. Cell culture

The rat clonal \(\beta\)-cell line INS-1E derived from parental INS-1 cells was cultured in RPMI 1640 medium and other additions as described [16]. Pancreatic islets were isolated from male Wister rats (200–300 g) by collagenase (Serva Electrophoresis, Heidelberg, Germany) digestion and handpicking. Islets were then cultured free floating in RPMI 1640 medium supplemented as for INS-1E cells, for 24 h before adenovirus infection.

2.3. Preparation of Syt 9 silencing adenovirus and infection

The Syt 9 hairpin small interfering RNA (siRNA) template containing the U6-RNA promoter was constructed as described [12]. The siRNA insert was cloned into the pAxcw adenoviral backbone and the recombinant adenovirus (AdSIRNA-Syt9) was generated according to manufacturer’s instructions (Takara Shuzo, Biomedical Group, Otsu, Shiga, Japan). AdCALacZ express bacterial \(\beta\)-galactosidase and was used as a control adenovirus.
INS-1E cells or isolated islets were infected for ~20 h at 50 virus particles/cell or at 3 x 10^5 virus particles/islet (100 virus particles/cell, assuming 3000 cells/islet), respectively, washed once and further cultured during 3 days before experiments.

2.4. Immunofluorescence microscopy

Infected INS-1E cells and trypsin-dispersed islet cells [17], were seeded on glass cover slips, fixed for 10 min in 4% paraformaldehyde and permeabilized for 1 h in PBS containing 0.1% saponin and 0.5% BSA. The cells were incubated with primary antibodies overnight at 4 °C and then exposed to FITC- or rhodamine-conjugated secondary antibodies for 1 h at room temperature. The double labelling with anti-pancreatic polypeptide and anti-Syt 3 antibodies was performed with the Tyramide Signal Amplification Kit (Molecular Probes, Basel, Switzerland). Samples were analysed using a Zeiss laser confocal microscope (LSM 510, Zurich, Switzerland).

2.5. Western blotting

The homogenates from infected islets were analysed by Western blotting as described [12].

3. Results and discussion

3.1. Intracellular localization of Syt 9

To elucidate the subcellular distribution of Syt 9 in rat pancreatic islets, we performed immunofluorescence microscopy. The micrographs in Fig. 1 show that Syt 9 is specifically localized at the membrane of insulin secretory granules in β-cells, albeit at low density. It was calculated that 88% of the insulin granule labelling is concentrated to the limiting membrane. The immunogold density in the secretory granules compared to the remainder of the cell is 1.49 ± 0.24 and 0.11 ± 0.02 particles/μm^2, respectively (n = 32 sections of an equal number of cells; 6 islets isolated from 2 rats; P < 0.001). No staining is observed at the plasma membrane or in the mitochondria. Moreover, the density of the gold particles in the granules is not changed even when the antibody is concentrated 10-fold (compare Fig. 1 panel C to A and B).

3.2. Repression of Syt 9 in islet cells

We have demonstrated that Syt 9 is involved in Ca^{2+}-evoked insulin exocytosis from INS-1E cells [12]. To address the question if Syt 9 constitutes the Ca^{2+} sensitive protein for secretion in primary β-cells, we generated an adenovirus directing the synthesis of siRNA targeted against Syt 9 (AdsiRNAsyt9).

As shown by immunofluorescence, infection of AdsiRNAsyt9 in INS-1E cells, used as control cells, potently diminishes the level of endogenous Syt 9 (Fig. 2A). A dramatic decrease of Syt 9 expression level (>80%) is also detected in homogenates of infected islets (Fig. 2B). Considering that under our experimental conditions, 80–90% of islet cells are efficiently infected (as determined by GFP fluorescence, see also [17]), this indicates that Syt 9 is strongly reduced in siRNA-containing islet cells. Indeed, as revealed in dispersed islet β-cells identified by insulin staining, AdsiRNAsyt9 almost completely eliminates Syt 9 (Fig. 2C). The silencer effect is specific because the amounts of other endogenous proteins including Syt 5, Syt 7 and syntaxin remain unaffected (Fig. 2B).

3.3. Syt 3 expression in endocrine cells

As the cellular localization of Syt 3 remains unclear [9–11], we analysed the presence of this isoform in pancreatic endocrine cells by confocal microscopy. Double labelling experiments reveal that Syt 3 is not detected in insulin-, glucagon- or somatostatin-containing cells, but is distributed preferentially near the plasma membrane of pancreatic polypeptide cells (Fig. 3A). Similar to Syt 5 and Syt 7, the endogenous expression of Syt 3 is not altered in AdsiRNAsyt9-infected islet cells (Fig. 3B).

Syt 3 was not found in β-cells but targeted to the plasma membrane when transiently expressed [11] contrasting with previous reports showing the association of this isoform with insulin granules in β-cells [9,10]. Overexpressed Syt 3 in
HIT-T15 or PC12 cells was also located on the plasma membrane [11,13]. Similarly, in nerve terminals endogenous Syt 3 was concentrated on the synaptic membrane and not on synaptic vesicles [20]. Therefore, Syt 3 seems in general to be present at the plasma membrane where it may form heterodimers with other Syt isoforms [21].

3.4. Role of Syt 9 in insulin secretion

We next assessed the impact of Syt 9 suppression in islet insulin exocytosis. As depicted in Fig. 4A, basal insulin release is not significantly affected whereas glucose-induced secretion is inhibited by 69% compared to control. The residual release (31%) probably reflects (i) the escape from β-cell adenoviral infection, (ii) the incomplete suppression of endogenous Syt 9 by siRNAs (see Fig. 2C) and (iii) the compensatory effect of Syt 7 isoform also expressed in β-cells [10,19]. To verify whether secretion mediated by another Ca^{2+}-raising agent was diminished, we used the ATP channel-blocker tolbutamide. Exocytosis stimulated by tolbutamide is also strongly reduced reaching 61% (Fig. 4B). However, the effect of glucose is completely restored in the presence of forskolin and IBMX (Fig. 4C) making a
non-specific effect of the virus on the release machinery unlikely. This also demonstrates that Syt 9 is not required for the process of exocytosis per se. In all these experiments Syt 9 silencing does not modify cellular insulin content (not shown). Our data emphasize the importance of Syt 9 for regulation of Ca$^{2+}$-mediated β-cell secretion and are consistent with the proposed role in dense core vesicle release in PC12 cells [8].

Ca$^{2+}$-dependent neurotransmission consists of two components: a major fast component insensitive to the Ca$^{2+}$ substitute ion Sr$^{2+}$, and a slow one potentiated by Sr$^{2+}$ [22]. There is evidence for Syt 9 implication in the slow vesicular release in PC12 cells [8,23]. Regarding the β-cell, insulin secretion has a fast component comprising granules close to Ca$^{2+}$-channels and a major slow release, with Ca$^{2+}$ affinities of 17 and 1.4 μM, respectively [24]. Sr$^{2+}$ can also support insulin exocytosis albeit with a lower affinity than Ca$^{2+}$ [25,26]. The requirement of Syt 9 for Ca$^{2+}$ and Sr$^{2+}$ in phospholipid binding [22] would therefore be compatible with a role for Syt 9 in regulated secretion. Recently, the heterogeneity of the Ca$^{2+}$ sensitivity of release was further investigated. There is thus a slowly releasable highly calcium-sensitive pool (HCSP) of granules and a less sensitive readily releasable pool [27]. The Ca$^{2+}$-dependent secretion of the HCSP needs a global concentration of <10 μM [28]. Since

![Fig. 3. Syt 3 localization in islet cells and preserved expression after silencing of Syt 9. (A) Pancreatic endocrine cells were analysed by confocal microscopy after double labelling with an antibody against insulin, glucagon, somatostatin or pancreatic polypeptide (green) and with the anti-Syt 3 antibody (red). The right panels show the overlays of the corresponding green and red channels. (B) Islets infected with LacZ or siRNA Syt 9 adenovirus were dispersed and double stained with anti-Syt 9 (green) and with anti-Syt 3 (red).]
Syt 9 can interact with phospholipids [22] and SNAP 25 [6] at <10 μM Ca^{2+}, this is again consistent with a functional involvement of Syt 9 in the slow insulin exocytosis.

In conclusion, we have demonstrated that Syt 9 is associated with insulin granules in native β-cells and may function as Ca^{2+} sensor for the slow component of release either alone or through Ca^{2+}-dependent interaction with Syt 7 [29]. Taken together with its expression in chromaffin cells (M.F. unpublished observation) Syt 9 may be the relevant Ca^{2+} sensor for exocytosis in primary endocrine cells.

Acknowledgements: We are grateful to Alessandra Strom for helping with the immunostaining of the pancreatic polypeptide cells. We are indebted to Dale Brighouse, Eve-Julie Sarret, Kristina Borglid and Lina Gefors for technical assistance. This work was supported by the Swiss National Science Foundation Grant (32-66907.01) CBW and the Swedish Medical Research Council Grant (13147).

References

