Motility-related protein-1 (MRP-1/CD9) expression can predict disease-free survival in patients with squamous cell carcinoma of the head and neck

MHAWECH-FAUCEGLIA, Paulette, et al.

Abstract

CD9 is a transmembrane protein that has been implicated in cell adhesion, motility and proliferation, and numerous studies have demonstrated the prognostic value of its expression in different solid tumours. The purpose of this study is to determine the predictive value of CD9 in squamous cell carcinoma (SCC) of the head and neck. A total of 153 cases were examined for CD9 expression using immunohistochemistry applied on formalin-fixed, paraffin-embedded tissue. Cases were stratified in two categories depending on CD9 expression, as positive (\(\geq 50\%\) positive cells) or reduced (\(\leq 50\%\) positive cells).

Reference

DOI : 10.1038/sj.bjc.6601542
PMID : 14735195
Motility-related protein-1 (MRP-1/CD9) expression can predict disease-free survival in patients with squamous cell carcinoma of the head and neck

P Mhawech1,2, P Dulguerov2, E Tschanz1, C Verdan1, C Ares3 and AS Allal3

1Department of Pathology, Geneva University Hospital, CMU, Michel-Servet, 1, Geneva 1211, 4, Switzerland; 2Division of Head and Neck Surgery, Geneva University Hospital, CMU, Michel-Servet, 1, Geneva 1211, 4, Switzerland; 3Division of Radiation Oncology, Geneva University Hospital, CMU, Michel-Servet, 1, Geneva 1211, 4, Switzerland

Keywords: CD9 expression; IHC; SCC of head and neck; DFS

CD9 is a transmembrane protein that has been implicated in cell adhesion, motility and proliferation, and numerous studies have demonstrated the prognostic value of its expression in different solid tumours. The purpose of this study is to determine the predictive value of CD9 in squamous cell carcinoma (SCC) of the head and neck. A total of 153 cases were examined for CD9 expression using immunohistochemistry applied on formalin-fixed, paraffin-embedded tissue. Cases were stratified in two categories depending on CD9 expression, as positive (≥50% positive cells) or reduced (<50%). In all, 108 cases were positive for CD9 (85 cases with membranous, and 23 with both membranous and cytoplasmic staining) and 45 reduced expression. Reduced CD9 expression was significantly associated with high grade (P = 0.0007) and lower disease-free survival (DFS) (P = 0.017). The latter retained its significance in the multivariate analysis. When the 23 cases with both membranous and cytoplasmic patterns were studied as a separate subgroup, there were significant associations between CD9 expression and tumour grade (P = 0.025) (95% CI 1.1–6.8), tumour stage (P = 0.08) (95% CI 3.5–86) and the occurrence of any failure (P = 0.083) (95% CI 1.7–57). Immunohistochemical CD9 expression proved to be an independent prognostic factor in SCC of the head and neck, and it may detect patients at a high risk of recurrence. In addition, the cytoplasmic pattern seems to have an even more significant value. However, this finding is limited to the small number of cases with this pattern.

© 2004 Cancer Research UK

Despite the important advances made in the management of squamous cell carcinoma (SCC) of the head and neck, patients still have poor prognosis with a 5-year disease-free survival (DFS) of about 50% (Landis et al, 1999). The prognostic factors are mostly confined to the histopathologic and clinical parameters such as grade, stage, pattern of invasion, location and lymph node metastasis (Crisman et al, 1984; Pera et al, 1986; Wiernik et al, 1991; DeStefani et al, 1997). Recently, numerous molecular markers such as cell cycle regulators, cell adhesion proteins, oncogenes and tumour-suppressor genes have been investigated in SCC of the head and neck, and some of these markers have shown promising results for future use (Schoelch et al, 1999; Grabenbauer et al, 2000; Pukkila et al, 2001; Khademi et al, 2002; Khan et al, 2002; Liu et al, 2003).

Disruption of cell adhesion and alteration of cell motility play an important role in cancer cell invasion and metastasis. Previously, CD9 was reported to be of prognostic significance in adenocarcinoma of the lung, colon, breast, pancreas and SCC of the oesophagus and the oral cavity. Motility-related protein (MRP-1)/CD9 is a member of the transmembrane 4 superfamily (TM4SF) which is involved in cell growth, adhesion and motility. Of the 20 known members, five – MRP1/CD9, ME491/CD63, KAI1/CD82, CD151, CD81 – may be implicated in cell migration, proliferation and tumour cell metastasis (Miyake et al, 1991; Ikeyama et al, 1993). The motility-related protein/CD9 is so far the best characterised of the TM4SF members. It is located on chromosome 12 (12p13) and is widely distributed among all cell types. CD9 is capable of interacting with other transmembrane proteins such as integrins and other tetraspanins to form a complex, which facilitates cell adhesion, motility and signalling (Hemler et al, 1996). Thus, CD9 appears to have an important role in inhibiting cell motility in numerous neoplastic cell lines (Miyake et al, 1991).

Studies evaluating the expression of this CD9 protein in SCC of the head and neck are nonexistent, save only for one study, and it was limited to the SCC of the oral cavity (Kusukawa et al, 2001). Thus, the aim of this study is to assess the utility of the CD9 protein expression in predicting DFS of patients with SCC arising in the head and neck after treatment with radiotherapy (RT) with or without chemotherapy.
MATERIALS AND METHODS

Patients population
A retrospective study covering 7 years (1992–1999) was conducted. The criteria for inclusion were patients with no prior treatment, histologic diagnosis performed in our department and adequate material for analysis. Tumours with a nasopharyngeal origin were excluded from the study. From 201 registered patients, 153 met our criteria for inclusion. The patient and tumour characteristics are summarised in Table 1. After the initial diagnosis, patients were treated with radical RT with or without chemotherapy. All patients were regularly followed up by the otolaryngologist, and the radio-oncologist. Therapy modality and follow-up data were retrieved from the registry at the Division of Radiation Oncology. The median follow-up for the surviving patients was 65 months (range 14–123).

Treatment
All patients received the same accelerated RT schedule using concomitant boost technique. The latter has been described previously in detail (Allal et al., 1999). The planned total dose was 69.9 Gy, delivered in 41 fractions over a period of 38 days. The basic course was given to a total dose of 50.4 Gy over 5.5 weeks. The boost to the initial sites of macroscopic tumour involvement consisted of 19.5 Gy, and was given as a second daily fraction, starting the last day of the second week of the basic treatment.

According to our institutional policy, 20 patients (13%) underwent a planned neck dissection prior to RT, either radical or modified radical, while one patient had simple excisions of lymph node metastases. Otherwise, surgery was reserved for salvage of locoregional failures.

Chemotherapy was given to 38 patients (25%), usually for patients presenting with T3–4 or N2–3 tumours, if their medical condition was judged fit enough to tolerate multimodality treatment. Except for two patients who received induction chemotherapy, all patients received one or more cycles of cisplatin and 5-FU-based chemotherapy, concomitantly with RT.

Immunohistochemistry
The tissue analysed consisted of initial (pretreatment) biopsies. The original diagnosis was reviewed by two pathologists (PM, ET) and the histologic grade was assessed using the WHO system. The histologic grade was assessed using the WHO system. The tissue analysed consisted of initial (pretreatment) biopsies. The original diagnosis was reviewed by two pathologists (PM, ET)

The tissue analysed consisted of initial (pretreatment) biopsies. The original diagnosis was reviewed by two pathologists (PM, ET).

Table 1 Patients and tumours characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (years) (range)</td>
<td>59 (35–90)</td>
</tr>
<tr>
<td>Sex M:F</td>
<td>122/31</td>
</tr>
<tr>
<td>Tumour sublocation</td>
<td></td>
</tr>
<tr>
<td>Oral cavity</td>
<td>8</td>
</tr>
<tr>
<td>Oropharynx</td>
<td>93</td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>25</td>
</tr>
<tr>
<td>Larynx</td>
<td>27</td>
</tr>
<tr>
<td>TN classification and stages (UICC 1997)</td>
<td></td>
</tr>
<tr>
<td>T1–2</td>
<td>64</td>
</tr>
<tr>
<td>T3–4</td>
<td>89</td>
</tr>
<tr>
<td>NO</td>
<td>72</td>
</tr>
<tr>
<td>N+</td>
<td>81</td>
</tr>
<tr>
<td>Stage I–II</td>
<td>35</td>
</tr>
<tr>
<td>Stage III–IV</td>
<td>118</td>
</tr>
<tr>
<td>Histology grading</td>
<td></td>
</tr>
<tr>
<td>Well differentiated (G1)</td>
<td>64</td>
</tr>
<tr>
<td>Moderately differentiated (G2)</td>
<td>66</td>
</tr>
<tr>
<td>Poorly differentiated (G3)</td>
<td>23</td>
</tr>
</tbody>
</table>

98°C for 30 min was done. Sections were incubated with a monoclonal anti-CD9 antibody (Novacstra, Newcastle, UK), diluted at 1:20. Endogenous peroxidase was blocked with 0.3% hydrogen peroxidase for 5 min. Sections were then incubated with mouse Envision horseradish peroxidase (HRP) for 30 min. IHC was performed using the automated stainer Dako ‘Autostainer’ (Dako, Copenhagen, Denmark). These incubations were performed at room temperature, and sections were washed by Tris buffer saline between incubations. Diaminobenzidine complex was used as chromogen. Tissue sections from cases of fibroadenoma were taken as positive controls. Staining of normal squamous epithelium with anti-CD9 showed strong membranous positivity (Figure 1). In negative controls, a normal goat serum was used in place of the primary antibody, resulting in a lack of detectable staining. Evaluation of the IHC was done twice by one pathologist (PM) at 2 weeks interval. All the tissue on the slide was scanned for CD9 expression, and the average was calculated for the entire slide. Samples for CD9 expression were stratified into two categories, depending on the percentage of CD9-positive cells of any pattern (cytoplasmic/membranous). Cases showing ≥50% CD9-positive tumour cells were classified as ‘positive’, while cases with <50% stained tumour cells were considered as ‘reduced’ cases.

Statistical analysis
The Mann–Whitney and Kruskal–Wallis tests were used to compare the CD9 median values of the different subgroups. The actuarial overall and DFS rates were calculated using the Kaplan–Meier method. For comparison between curves, the log-rank test was used. Multivariate analyses based on Cox proportional hazards standard model were used to identify the most significant factors related to outcomes. P-values of 0.05 or less were considered significant. All analysis was performed with the StatView V 5.0.1 software.

RESULTS

Overall results
At last follow-up, 58 patients were alive, and 95 had died. In all, 56 patients presented with one or more events. A total of 33 patients presented with persistent or recurrent local disease, 15 with...
regional disease (five regional only) and 19 with distant metastases (16 distant only). At 5 years, actuarial DFS was 58% (95% CI 0.49–0.67) and overall survival was 38% (95% CI 0.30–0.46).

CD9 expression and clinicopathologic associations

On CD9 evaluation, 108 cases were CD9 positive with any staining pattern (cytoplasmic/membranous) and 45 showed reduced expression. Of the 108 positive cases, 85 had membranous staining and 23 had both membranous and cytoplasmic staining (Figures 2, 3). CD9 are expressed in 100, 70 and 10% of G1, G2 and G3 cases, respectively. When the CD9 expression was compared with various clinical features, there was no significant association between the CD9 expression and T stage \((P = 0.41) \), lymph node status \((P = 0.53) \), UICC stage grouping system \((0.77) \) or tumour sublocation \((P = 0.3) \). However, there was a highly significant association between CD9 expression and tumour grade \((P = 0.0007) \).

Univariate and multivariate analyses

In the univariate analysis, besides advanced T \((P = 0.013) \) and N categories \((P = 0.002) \) and UICC stage \((P = 0.002) \), the reduced expression of CD9 was significantly associated with lower 5-year DFS (43% vs 64%, \(P = 0.018 \)) (Figure 4). Histology grading (G1 vs G2–3) (Figure 5) and treatment category (with or without chemotherapy) did not correlate significantly with DFS. Factors significantly influencing DFS in univariate analysis were included in the Cox model (except linked variables). In such a model, T-category \((P = 0.024) \), N-category \((P = 0.012) \) and CD9 expression \((P = 0.017) \) retained their significance for DFS, and can consequently be considered as independent factors in predicting tumour failure. The relative risks associated with these factors are listed in Table 2. In a similar model, when substituting CD9 expression by tumour grading (G1 vs G2–3), the impact of the latter on DFS remained nonsignificant \((P = 0.3) \).

Subgroup analysis

By contrast to tumours expressing only membranous CD9, the 23 tumours with both membranous and cytoplasmic staining showed
Table 2 Cox proportional hazards model for DFS

<table>
<thead>
<tr>
<th>Variables</th>
<th>RR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-category: T1 – 2/T3 – 4</td>
<td>0.51</td>
<td>0.29 – 0.91</td>
<td>0.024</td>
</tr>
<tr>
<td>N-category: N0/N1</td>
<td>0.48</td>
<td>0.27 – 0.85</td>
<td>0.012</td>
</tr>
<tr>
<td>CD9 expression: <50%</td>
<td>1.9</td>
<td>1.12 – 3.33</td>
<td>0.017</td>
</tr>
</tbody>
</table>

DFS = disease-free survival; RR = relative risk; CI = confidence interval.

Discussion

The present study of 153 patients with a long-term follow-up is the first to investigate the value of CD9 protein in SCC of the head and neck. Among all parameters analysed, such as tumour grade, location, age, lymph node status, UICC stage classification, tumour grade was the only parameter to show a significant association with CD9 expression: low grade tumours appeared to express the CD9 protein more frequently. On the other hand, the present study indicates that reduced CD9 expression by tumour cells seems to predict disease progression after RT with or without chemotherapy. The link between reduced CD9 expression and tumour failure was independent of tumour T and N categories, as found in the multivariate analysis. If CD9 is to be considered for clinical use in patients with and without any oncological event were 37 and 65%, respectively (P = 0.08). The impact of CD9 expression on the 5-year actuarial DFS was more significant in the subgroup with both membranous and cytoplasmic pattern compared to the subgroup with membranous pattern only (P = 0.009 vs 0.04).

The ability of neoplastic cells to invade the surrounding tissue and metastasis to distant organs comes from the disruption of cell adhesion and alteration of cell motility. CD9, which plays an important role in cell growth, cell adhesion and motility, seems to be an ideal candidate. In this study, we showed that CD9 expression in SCC of the head and neck may be an independent factor in predicting DFS, and consequently it may have a potential use in identifying patients with higher risk of recurrence after therapy.

Acknowledgements

We would like to thank the histopathology laboratory, especially Mrs Danielle Fontana for her technical assistance, the immunohistochemistry laboratory for their help and Mr Ludovic Metral for his technical skill.

References

CD9) in lung adenocarcinoma and its relation to prognosis. *Int J Cancer* 74: 203–211

