Article

Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS): evidence of adipocyte hypertrophy and tissue-specific inflammation

MARINO, Joseph S, et al.

Abstract

Clinical research shows an association between polycystic ovary syndrome (PCOS) and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC) mice) and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC) mice showed reduced or absent ovulation. IR/LepR(POMC) mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited […]

Reference

DOI : 10.1371/journal.pone.0048643
PMID : 23119079

Available at:
http://archive-ouverte.unige.ch/unige:32259

Disclaimer: layout of this document may differ from the published version.
Adipocyte Dysfunction in a Mouse Model of Polycystic Ovary Syndrome (PCOS): Evidence of Adipocyte Hypertrophy and Tissue-Specific Inflammation

Joseph S. Marino¹, Jeffrey Iler¹, Abigail R. Dowling¹, Streamon Chua³, Jens C. Bruning⁴, Roberto Coppari⁵, Jennifer W. Hill¹,²

¹ Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America, ² Department of Obstetrics-Gynecology, University of Toledo Medical Center, Toledo, Ohio, United States of America, ³ Department of Medicine and Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America, ⁴ Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster for Cellular Stress Responses in Aging Associated Diseases, and Center for Molecular Medicine Cologne, ⁵ Department of Internal Medicine, Division of Hypothalamic Research, Pharmacology, and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America

Abstract

Clinical research shows an association between polycystic ovary syndrome (PCOS) and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR¹⁰⁰M mice) and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR¹⁰⁰M mice showed reduced or absent ovulation. IR/LepR¹⁰⁰M mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR¹⁰⁰M mice, which develop a PCOS-like phenotype. Thus, IR/LepR¹⁰⁰M mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.

Introduction

Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age, affecting 5–10% of this group [1]. Besides infertility, PCOS is associated with a range of adverse health outcomes, including type 2 diabetes and cardiovascular disease [2,3,4]. Many PCOS patients are obese or show increased abdominal adiposity, which may worsen the severity of the syndrome and its complications [5,6,7,8].

In the general population, obesity contributes to adipose tissue dysfunction. Large adipocytes or limited adipocyte differentiation is associated with insulin resistance and diabetes risk [9,10]. The adipose tissue of obese individuals is often characterized by hypertrophic adipocytes, a proinflammatory gene expression profile, and dysregulated secretion of adipose-specific proteins and cytokines [6,11]. This pro-inflammatory response, possibly resulting from hypoxia in the adipocyte [12,13,14], leads to an increase in the recruitment of macrophages and other immune cells [15,16,17]. It is likely that the development of adipose inflammation and dysfunction is a process that begins early in the expansion of adipose depots. Indeed, adipose expression of macrophage chemoattractant proteins rises significantly following only 1 week on a high fat diet [18].

Obesity-related inflammation also results in impaired liver-mediated regulation of glycemia and reduced skeletal muscle insulin sensitivity [19,20]. Cytokines and macrophage-secreted factors activate inflammatory pathways in cells that sense insulin. These pathways lead to the phosphorylation of insulin receptor substrate (IRS) proteins and insulin receptors, interfering with normal insulin action and creating a state of cellular insulin resistance [21]. Although the normal mode of cytokine-mediated insulin resistance involves local paracrine effects, elevated blood levels of TNFα, interleukin (IL)-6, and IL-1β have been reported in obese insulin-resistant states, raising the possibility that tissue cytokines that pass into the circulation can impair insulin sensitivity in distal tissues [19,22]. Indeed, inflammatory mediators appear to induce insulin resistance locally in fat and liver, but also systemically in skeletal muscle [23,24]. In addition, increased
proinflammatory cytokine levels in the bloodstream may promote atherogenesis and CVD [25].

In both lean and obese PCOS patients, circulating markers of low-grade inflammation are elevated, suggesting that inflammation can promote insulin resistance, atherosclerosis, and other pathologies associated with PCOS [26,27,28,29]. In particular, PCOS patients have elevated circulating IL-1β, TNFα, IL-6, high sensitivity C-reactive protein (hs-CRP), monocytes, T cells, B cells, and neutrophils compared with body mass index matched controls [26,30,31]. In contrast, others have found that the accumulation of adipose tissue rather than the presence of PCOS is the primary cause of the pro-inflammatory response [31]. Therefore, additional investigation is necessary to identify the specific contribution of PCOS to the development of the low-grade inflammatory response identified in these patients. The detection of a preclinical inflammatory process would be a useful prognostic and therapeutic monitoring tool for PCOS patients at risk for the development of diabetes or CVD. The invasive nature of tests for tissue-specific inflammation makes the use of an animal model to identify markers for early detection highly advantageous. Rodent models of the reproductive and metabolic disturbances of PCOS can provide an invaluable means to investigate the etiology and perhaps promote research into the prevention and treatment of PCOS and its co-morbidities.

The relevance of current animal models of PCOS that involve the administration of androgens or other steroid hormones to the etiology of PCOS in humans is uncertain [32,33]. We have recently shown that specific genetic deletion of insulin receptors (IR) and leptin receptors (LepR) from pro-opiomelanocortin (POMC) neurons reproduces many features of PCOS. POMC neurons modulate food intake, energy use, and hepatic glucose production [34,35,36]. These IR/LepR^{POMC} mice have normal GnRH gene expression, and normal estradiol and prolactin levels [37]. However, by four months old and before the onset of obesity, they show reduced litter production, reduced litter sizes, and lengthened reproductive cycles [37]. In addition, their serum testosterone levels are significantly elevated, with increased expression of ovarian 3β-HSD [37], the enzyme that produces androstenedione. IR/LepR^{POMC} mice also show significantly increased basal insulin levels, reduced glucose tolerance, overall insulin resistance, and profound hepatic insulin resistance resulting in increased glucose production [37]. Although these mice do not overeat, they have a decreased metabolic rate [37]. As in PCOS [38,39,40], their insulin resistance is out of proportion to their body weight. The body weights of females do not diverge from controls until 6 months old when they display increased fat deposition [37]. Therefore, like PCOS patients, these mice display both reproductive and metabolic abnormalities.

The primary aim of the present study was to determine whether this new mouse model of PCOS has chronic inflammation. We hypothesized that IR/LepR^{POMC} mice would be predisposed to adipocyte dysfunction along with PCOS-like impairments in fertility before obesity onset, allowing assessment of adipocyte function with a reduced number of confounding factors. After verifying sensitivity of the HPG axis to metabolic status, we assessed the following: 1) ovarian morphology, 2) fat distribution and adipocyte size, 3) adipose tissue macrophage infiltration and 4) circulating cytokine levels and cytokine mRNA expression in adipose tissue, liver, and ovary. Because impaired adipose tissue function in women with PCOS could promote insulin resistance and susceptibility to diabetes [41], we also investigated the development of gestational diabetes in these mice.

Materials and Methods

Experimental animals

Mice lacking leptin receptors (LepRs) and insulin receptors (IRs) in pro-opiomelanocortin (POMC) cells (IR/LepR^{POMC} mice) have been previously described [37]. Separate cohorts of animals were generated for each of the experiments outlined below. Study animals were derived from crosses between 1) males homozygous for the floxed IR and LepR carrying the POMC-cre allele and 2) females homozygous for each floxed receptor. Experimental mice were compared with littermate controls carrying only the floxed alleles (IR/Lep^{floxe} mice). All mice were on a mixed C57BL/6J-129S6/SvEv background.

All animal care and procedures were approved by the University of Toledo Medical School or UT Southwestern Medical Center Institutional Animal Care and Use Committees. Mice were housed in a temperature-controlled environment in groups of two to four at 22°C–24°C using a 12 hr light/12 hr dark cycle with standard chow (4% fat mouse/rat diet #7001, Harlan-Teklad, Madison, WI) and water provided ad libitum unless noted. Mice were killed by CO₂ narcosis unless otherwise specified.

Examination of Ovarian Morphology

Ovaries were removed at autopsy at 6 months old and fixed for 72 hours in 4% paraformaldehyde. The tissues were then embedded in paraffin, cut into 20-micron sections on a sliding microtome, and stained with hematoxylin/eosin. The numbers of corpora lutea and follicles of various stages present in slices from each ovary were tabulated for each of the genotypes. Follicles were labeled as primordial (surrounded by a single layer of flat, squamous granulosa cells), pre-antral (surrounded by up to Five layers of cuboid granulose cells), early antral (small antrum visible), or preovulatory (largest size with well-defined corona radiata surrounding the zona pellucida). Follicles in which the oocyte was not visible were not counted to avoid duplication. All sections were examined by a single blinded observer. Average counts were calculated by dividing total follicles counted by the number of sections examined per ovary. Only high-quality sections were quantified. An average of 4.4 sections were counted per ovary.

PCNA Immunohistochemistry

Ovarian sections were prepared as described above. Sections were permeabilized with 0.5% triton X-100 in tris buffered saline (TBS) for 10 followed by by 2 washes with TBS. Sections were then incubated with 0.3% hydrogen peroxide in 70% methanol made in TBS for 15 minutes to quench endogenous peroxidase activity. Following 2 washes with TBS, sections were incubated in blocking buffer (3% donkey serum, 0.5% triton X-100 in TBS) for 30 minutes at room temperature. Sections were washed and incubated with mouse-anti PCNA (cat. # MCA1558; AbD Serotec) 1:100 in TBS for 2 hours at room temperature. Sections were washed 3 times and incubated with biotinylated sheep anti-mouse IgG (cat. # AAG108; AbD Serotec) 1:50 in TBS for 30 minutes at room temperature. Sections were washed with TBS and incubated for 30 minutes with horseradish peroxidase aavidin D, 1:1000 in TBS. Following 2 final washes with TBS, sections were developed using AEC (Vector Labs).

Examination of Impact of Fasting on Estrous Cyclicity

Vaginal cytology was examined for at least 3 weeks to establish average estrous cycle lengths of female IR/LepR^{POMC} mice and littermate controls. Estrous cycles were monitored by daily inspection of vaginal lavage as described by Bingel and Schwartz [42]. Estrous cycle length was defined as the number of days from
one proestrous stage to another. The impact of fasting was then determined at 6 months of age. Food was removed during diestrus, an hour before lights out (1900 h) and returned 48 hours later. Vaginal cytology was monitored until one full cycle occurred (P-E-D-M).

Examination of Adipose Depots

Four-month-old female IR/LeprPOMC mice and littermate control mice were examined for these studies. Body weight was measured on an Ohaus Voyager precision mouse scale. Body composition was measured using quantitative magnetic resonance (QMR) (Bruker’s Minispec MQ10, Houston, TX). Fat volume in subcutaneous and intra-abdominal depots was measured by CT scan. For in vivo scans, mice were anesthetized by 1% isoflurane inhalation and positioned in the mouse bed. The whole body (base of the skull, as the spinal canal begins to widen and the distal end of the tibia) of each mouse was scanned at an isotropic voxel size of 93 \(\mu\text{m} \times 93 \times 93\) (30 kV, 450 mA and 100 ms integration time) using the eXplore Locus micro-CT scanner (GE Health Care). Each scan took about 10 minutes, and the mice showed no sign of discomfort during the procedure. The legs and head were not scanned. Scan energy and voxel size (scanning increment) was decided by the requirements of scanning time and tissue detail, and on minimizing exposure to radiation. Based on the scan parameters, the estimated radiation exposure was 4 rad (0.04 Gy) for each scan. Three-dimensional images were reconstructed from two-dimensional gray-scale image slices and were visualized using Microview Software (GE Medical Systems Density). Values for soft tissue and bone were calibrated from a phantom containing air, water and hydroxyl apatite rod (GE Health Care). Fat analysis was conducted using microview software with an advanced fat analysis tool. For calculation of adipose tissue volume, a ROI (region of interest) was drawn around the body of the animal, and a histogram was created on this selected region. The separation of fat regions was calculated from the appropriate gray scale value (upper threshold \(\pm 165\) and lower threshold \(\pm 360\)) on the histogram. The abdominal muscular wall was used as the differentiation line to separate intra-abdominal adipose tissue from subcutaneous adipose tissue. The contour lines were drawn around the viscera and a 3-dimensional ROI was generated. The intra-abdominal fat was measured from the histogram of these segmented viscera using the same thresholds. Subcutaneous fat was calculated by subtracting intra-abdominal fat from the total body fat.

At autopsy, perigonadal adipose tissue was rapidly removed from each mouse. The tissues were immediately fixed in 10\% neutral buffered formalin, embedded in paraffin, and processed for histological analysis. All the tissues were sectioned (5 \(\mu\text{m}\) thick) and routinely stained using hematoxylin and eosin. A morphometric analysis was performed using Nikon NIS-Elements BR3.1 software (Tokyo, Japan). The adipocyte area was calculated by capturing bright-field images and measuring an area containing 50 cells for each mouse, and the average area per cell was calculated. Cell counting and sizing were performed by blinded operators to avoid any biases.

Examination of Inflammatory Markers

Immunohistochemistry was performed on perigonadal adipose tissue collected from 4 month old IR/LeprPOMC and IR/Lepr (control) mice. Briefly, tissue was fixed overnight in 10\% formalin and paraffin embedded before sectioning. Following 30 minutes of blocking, sections were incubated overnight at 4°C with rat anti-mouse F4/80 (AbCam) at a dilution of 1:50. Alexa Fluor 488 (Invitrogen) secondary was used to visualize F4/80 positive cells, and nuclei were labeled with DAPI (Vector Labs). For each set of slides immunostained for F4/80, one cross section from an IR/LeprPOMC mouse was used as an antibody control to test specificity of the primary antibody.

For QPCR analysis, RNA was isolated from perigonadal fat, liver, and ovary from 4 month old IR/LeprPOMC and IR/Lepr (control) mice using Qiagen Raceasy kit (Qiagen). cDNA was reverse transcribed using Applied Biosystems high capacity RT kit (Applied Biosystems). F4/80, and cytokine gene expression was measured using a Step One Plus (Applied Biosystems) system and expression levels were normalized to 18S (adipose) or GAPDH (ovary and liver). Changes in mRNA expression were calculated using \(2^{-\Delta\Delta C_{t}}\) and expressed as a fold change compared with controls (IR/Lepr). Sequences for primers used from 5’ to 3’ are: F4/80 forward CTGGATAGCCTTTTCTTCTGTGG and reverse GCAAGGAGCAGAGAGTTTATCGTG, CD11c forward CTGGATAGCCTTTTCTTCTGTGG and reverse GCCACTGTGGCGGAACTGCA, IL-1\beta forward CAACCAACAGTGTATATCTCTCATG and reverse GATCCACACTCTCTCAGGTCGA, IL-6 forward CTGCGAGAAGCTGCCATATGTTG and reverse GAAGTGGAGGCCCCTTG, 18s forward TTGACGAGGGCCACACG, and reverse GACACCACCCCCACCCA-ATCG and GAPDH forward ATGTTTGTGATGGGTTGAA and reverse ATGCCAAAGTTGTCATGGAT.

Serum analysis

Blood from randomly cycling adult female mice (4 months old) was collected transcardially at 3 hours after lights on to avoid any potential influence of increased gonadal steroids in the afternoon of certain phases of the estrous cycle. Serum was analyzed as follows. Triglycerides were analyzed with commercially available reagents (Pointe Scientific, Inc.). Total cholesterol, HDL, and LDL/VLDL were analyzed with a commercially available kit (BioAssay Systems), with a lower limit of detection of 5 mg/dl. C-reactive protein (Alpco) analysis was performed according to the manufacturer’s protocol with a lower limit of detection of 0.39 ng/ml. Cytokine concentrations were analyzed using a Bio-Plex cytokine array (Bio-Rad) and measured using the Bio-Plex Plate Reader (Bio-Rad) with a lower limit of detection of 0.2 pg/ml. Serum free fatty acids (BioVision) were analyzed according to the manufacture’s protocol with a lower limit of detection of 2 \(\mu\text{M}\). For all serum analyses, samples were run in at least duplicate and diluted to fit in the respective standard curves.

Examination of Gestational Glucose Regulation

Basal glucose levels were measured in experimental and control females at 3 months of age. Glucose in tail blood was assayed using a mouse-specific glucometer (AlphaTRAK, Abbott, IL), with non-fasted measurements taken between 8 and 10 a.m.

Another cohort of experimental and control females were paired at 3.5 to 4 months of age with male control mice known to be successful breeders. Females were weighed and monitored for vaginal plugs each morning by 2 hours after lights on. The male was removed after a plug was found, and the female was weighed daily to verify pregnancy-related weight gain. Mice that became pregnant within 2 weeks were used for these studies. All mice delivered on their expected due dates.

Fasted glucose levels were measured before pairing and on gestational day 12 and 13. For glucose tolerance tests (GTTs), 6 h-fasted mice were injected with 1 p.p. D-glucose (2 g/kg body weight), and blood glucose was measured immediately before and at 15, 30, 45, 60, and 120 min post i.p. injection.

For insulin assays, tail vein blood was collected from ad libitum chow-fed mice. Serum was collected by centrifugation and assayed
by a commercially available ELISA kit (Crystal Chem. Inc., Downers Grove, IL) with sensitivity from 100–6400 pg/ml and intra- and inter-assay coefficient of variance of less than 10%. Only data that satisfied the manufacturer’s performance characteristics were used.

Statistics
The data are reported as mean ± SEM. All statistical analyses were performed using Prism (version 5.0) software. ITT and GTTs were analyzed by comparing the mean of the Area Under the Curves by t-test. Groups of more than two and individual weight-gain time points were analyzed by a Bonferroni’s post-hoc test following a one-way ANOVA. When planned comparisons had been part of the experimental design, a Bonferroni post-hoc analysis was used to assess selected pairs of means. T-tests were used to compare results between groups of two. Fisher’s exact test was used to analyze differences in cyclicity percentages. All statistical comparisons were made between data sets with equal variances. P<0.05 was considered statistically significant.

Results
To evaluate the reduced fertility of IR/LepRPOMC mice [37], we examined their ovarian morphology. All follicle stages were found (Fig. 1); however, approximately 45% of IR/LepRPOMC mice lacked either corpora lutea or preovulatory follicles (Fig. 1 d,3,f). In particular, 5 of 16 IR/LepRPOMC females showed no ovarian corpora lutea, while only 1 of 13 females showed no corpora lutea. The data show histological evidence compatible with anovulation in the form of a lack of preovulatory follicles and corpora lutea. These findings are consistent with impaired late-stage follicle maturation and ovulation.

We then tested whether impaired ovulation in IR/LepRPOMC mice results from POMC neurons failing to communicate key permissive signals of energy sufficiency to GnRH neurons. Contrary to expectations, fasting induced a similar lengthening of estrous cycles in both IR/LepRPOMC females and control littermates (Fig. 2a,b).

At 6 months of age, IR/LepRPOMC mice on a mixed-strain background show increased body weight compared with wildtype controls because of fat deposition [37]. To further clarify the metabolic phenotype of these mice, we examined whether the body composition of IR/LepRPOMC females changes before becoming overtly overweight. We confirmed that at 4 months old, absolute body weight was not statistically increased in these mice, although a trend was seen (Fig. 3a). However, the percent fat mass was elevated and percent lean mass correspondingly decreased (Fig. 3b). Lean mass did not decrease in absolute terms (not shown). This finding was reflected by a trend toward increased intra-abdominal adiposity in IR/LepRPOMC females and the presence of perigonadal adipocyte hypertrophy (Fig. 3c-e). Correspondingly, circulating levels of the adipokine leptin were also elevated in IR/LepRPOMC females (Fig. 3f).

We next examined whether hypertrophy in the perigonadal fat depot was associated with deleterious inflammatory cell accumulation and cytokine production. We found elevated macrophage accumulation as shown by significantly increased F4/80 staining in the perigonadal fat of IR/LepRPOMC mice compared with IR/LepR controls (Fig. 4a,b). Gene expression of CD11c, an antigen typically expressed by pro-inflammatory macrophages, was approximately 3-fold elevated compared with controls (Fig. 4c). Additionally, gene transcript levels of inflammatory cytokines IL-6 and IL-1β were increased (Fig. 4d,e), suggesting that the macrophage infiltration was associated with increased low-grade inflammation in this tissue. No difference in adipose tissue TNF-α or IL-10 was found (data not shown).

Because hepatic insulin resistance is associated with local inflammation [19,43,44], we also examined cytokine expression...
Figure 2. IR/LepR^{POMC} females have reduced ovulation but show normal cycling suppression from fasting. A. Example of delay in resumption of estrous cycles measured by vaginal cytology taken before, during, and after a 48 hour fast. B. Delay from fast quantified for control (white bars) or IR/LepR^{POMC} (black bars) mice, n = 9–13 (not significant). Mean ± SEM.

doi:10.1371/journal.pone.0048643.g002

Figure 3. Increased fat mass and intra-abdominal adipocyte hypertrophy in IR/LepR^{POMC} mice. A. Body weight of IR/LepR^{POMC} female mice and controls. B. Fat and lean mass of IR/LepR^{POMC} females and controls measured by NMR (white bars = control mice, black bars = IR/LepR^{POMC} mice), n = 5–6. C. Subcutaneous and intra-abdominal fat volume measured by CT scan in IR/LepR^{POMC} females and controls, n = 5–6. D. Section of perigonadal fat tissue, paraffin embedded and stained with H/E. E. Adipocyte size calculated from H/E stained perigonadal fat pads, 50 cells counted per section/mouse, n = 15–24 mice. * indicates p<0.05. F. Serum leptin levels of control (white bars) or IR/LepR^{POMC} (black bars) mice 3 hours after chow removal. n = 4, ** indicates p<0.01. Mean ± SEM.

doi:10.1371/journal.pone.0048643.g003
Liver IL-1β mRNA levels were also elevated, suggesting an inflammatory state in hepatic tissue as well (Fig. 4g). Finally, because any disruption of the normal inflammation that accompanies ovulation [45] could potentially disrupt ovarian function, we compared inflammatory markers in the ovaries of control and targeted mutant mice. Ovarian IL-6 mRNA levels were increased on diestrus (Fig 4f). Gene transcript levels for ovarian F4/80, CD11c, TNFalpha, and IL-1β were not changed compared with control mice (not shown). Because cytokines can stimulate proliferation of theca cells [82], we used a marker of cell proliferation to examine this parameter in the ovaries of these mice. In IR/LepR^{POMC} mice, PCNA immunostaining showed no difference in theca cell proliferation compared to controls (data not shown). Finally, no differences were found in circulating levels of cytokines or CRP (Table 1).

IR/LepR^{POMC} females were reported to have impaired glucose tolerance and elevated basal fasting blood glucose levels at 2 months old before beginning a hyperglycemic euglycemic clamp [46]. Indeed, we confirmed that blood glucose levels are elevated in these mice at 3 months of age (Fig. 5a). To resolve whether
glucose regulation in IR/LepRPOMC females is abnormal during pregnancy, we examined fasting blood glucose and insulin levels at day 12 and 15 of gestation and performed a glucose tolerance tests between gestational days 12 and 15 in IR/LepRPOMC females (Fig. 5b), but insulin levels failed to rise in compensation (0.481 pg/ml +/- 0.0439 controls vs. 0.6354 ng/ml +/- 0.294 experimental mice, n = 5). Glucose tolerance was not impaired when normalized to initial glucose levels (Fig 5c), indicating that pregnancy induced a similar increase in blood glucose levels in each group of mice. In addition, HOMA-IR values did not differ between the two groups (not shown). Therefore, IR/LepRPOMC mice are hyperglycemic before and during pregnancy, without evidence of gestational glucose intolerance.

Discussion

Mice lacking leptin receptors and insulin receptors in POMC cells (IR/LepRPOMC mice) were originally developed to study the control of food consumption by POMC neurons in the hypothalamus [37]. Both insulin and the adipokine leptin communicate the status of adiposity stores to the brain [47,48]. POMC neurons modulate food intake, energy use, and hepatic glucose production, and may change these parameters independently [34,35,36]. High parasympathetic output (or low sympathetic output) transmitted through the vagus nerve to the liver reduces hepatic glucose production by inhibiting hepatic enzymes involved in gluconeogenesis and by activating enzymes promoting glycogen synthesis. This output is modulated by neurons of the hypothalamus, including POMC neurons [49,50] and seems to result in excess HGP in IR/LepRPOMC mice. Likewise, POMC neurons project monosynaptically to brown adipose tissue [51] and can thereby change oxygen consumption and basal metabolic rate. Given the suppressed oxygen consumption in IR/LepRPOMC mice without changed physical activity levels [37], this pathway likely underlies the increased adiposity in older IR/LepRPOMC mice.

Both leptin and insulin signaling in POMC neurons can change neuronal activity as well as the production and processing of the POMC gene product [37,52]. Importantly, a single nucleotide polymorphism of the POMC gene is associated with PCOS risk in women [33]. Hence, further characterization of POMC neuronal function and regulation is important to understand the potential contribution of this pathway to PCOS.

We have recently shown that the IR/LepRPOMC mouse displays hyperandrogenemia, lengthened estrous cycles, and reduced fertility, arguably qualifying it for a PCOS “diagnosis.” However, the ovaries of IR/LepRPOMC mice do not show excess numbers of small antral follicles, i.e. polycystic ovaries. Most women with polycystic ovaries are asymptomatic [54], and diagnosis of PCOS does not require the presence of polycystic ovaries [55]. Thus, the IR/LepRPOMC mouse might best serve a model of the subset of PCOS patients diagnosed because of impaired ovulation and hyperandrogenemia. Interestingly, not all IR/LepRPOMC mice are affected by anovulation or infertility. The cause of the incomplete penetrance of this phenotype is the subject of ongoing studies.

The primary cause of reproductive impairment in IR/LepRPOMC mice has not yet been resolved. One possible explanation for the impaired fertility in IR/LepRPOMC mice is that POMC neurons fail to communicate key permissive signals of energy sufficiency to GnRH neurons because of their lack of insulin and leptin sensing. If GnRH neurons were to perceive a constant state of energy deprivation, the HPG axis should be chronically suppressed. However, fasting induced a similar lengthening of estrous cycles in both IR/LepRPOMC females and control littermates. With our previous findings of robust LH

Table 1. Serum inflammatory markers are normal in IR/LepRPOMC Females.

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Control</th>
<th>IR/LepRPOMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β (pg/ml)</td>
<td>890.0 ± 188.9</td>
<td>772.2 ± 80.22</td>
</tr>
<tr>
<td>IL-4 (pg/ml)</td>
<td>12.87 ± 1.66</td>
<td>13.52 ± 1.57</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>19.62 ± 4.34</td>
<td>18.48 ± 1.96</td>
</tr>
<tr>
<td>IL-10 (pg/ml)</td>
<td>190.7 ± 57.19</td>
<td>279.0 ± 33.31</td>
</tr>
<tr>
<td>TNF-α (pg/ml)</td>
<td>591.4 ± 85.86</td>
<td>631.5 ± 86.37</td>
</tr>
<tr>
<td>IL-13 (pg/ml)</td>
<td>2364.0 ± 240.8</td>
<td>3578.0 ± 493.0</td>
</tr>
<tr>
<td>INF-γ (pg/ml)</td>
<td>471.7 ± 80.79</td>
<td>556.1 ± 80.62</td>
</tr>
<tr>
<td>MCP-1 (pg/ml)</td>
<td>462.1 ± 68.64</td>
<td>445.2 ± 57.47</td>
</tr>
<tr>
<td>CRP (mg/ml)</td>
<td>3.04 ± 0.17</td>
<td>2.89 ± 0.28</td>
</tr>
</tbody>
</table>

Cytokine levels were measured in serum by Bio-Plex cytokine array, n = 4–5. Mean ± SEM. Tumor Necrosis Factor-alpha (TNF-α), Interferon-gamma (INF-γ), monocyte chemotactic protein-1 (MCP-1).

Figure 5. IR/LepRPOMC females are hyperglycemic and show hyperglycemia during pregnancy. A. IR/LepRPOMC female glucose levels under basal conditions (n = 6–7) ** p < 0.01. B. Fasted glucose levels in a second cohort of females, before pregnancy and on gestational day 12 and 15 (Black circles are control dams, open triangles are IR/LepRPOMC dams; n = 11–12) * p < 0.05, compared with controls at same timepoint; ** p < 0.01, compared with pre-pregnancy values of same group. C. Glucose tolerance testing (2 g/kg) performed on day 15–18 of gestation. (Black circles are control dams, open triangles are IR/LepRPOMC dams; n = 6). Mean ± SEM.

doi:10.1371/journal.pone.0048643.g005
metabolic phenotype of the IR/LepRPOMC mice (remaining to be
promotes lipogenesis and increased lipoprotein lipase expression in
energy storage in fat tissue [70]. For its part, brain insulin signaling
resistance and glucose intolerance [69]. We have shown that
effects may be driven by hyperandrogenemia; prenatal androgen
BMI-matched control women who do not have PCOS [5]. These
recently reported to be increased by 25% compared with that in
PCOS patients [62], worsening their metabolic and reproductive
abnormalities [63,64]. Loss of intra-abdominal fat may be
related with resumption of ovulation [65]. Nevertheless,
findings of increased intra-abdominal fat in women with PCOS
have been inconsistent [66,67,68]. Alternatively, the expandability
of the number and size of adipocytes may be exhausted in women
with PCOS. Among women with PCOS, adipocyte diameter was
recently reported to be increased by 25% compared with that in
BMI-matched control women who do not have PCOS [5]. These
effects may be driven by hyperandrogenemia; prenatal androgen
exposure results in increased visceral adipocyte size, with insulin
resistance and glucose intolerance [69]. We have shown that
adipoblast adipocyte hypertrophy occurs in IR/LepRPOMC mice.
Normal CNS leptin signaling promotes energy use, thus reducing
energy storage in fat tissue [70]. For its part, brain insulin signaling
promotes lipogenesis and increased lipoprotein lipase expression in
adipose tissue [71]. Thus, one explanation for the PCOS-like
metabolic phenotype of the IR/LepRPOMC mice (remaining to be
tested) is that inadequate adipogenesis in the face of a positive
energy balance drives adipocyte dysfunction, chronic inflammation,
and insulin resistance.

Although circulating markers of chronic inflammation are
raised in women with PCOS, the source of their production is
unclear. Maneras-Holm and colleagues found no increase in
macrophage density in subcutaneous adipose tissue from women
with PCOS [5]. The antibody used in that study, however, may
also detect preadipocytes [72,73,74,75,76], whose number would
be expected to be reduced in hyperinsulinemic patients [77]. In
addition, a positive control showing an association between obesity
and macrophage density was not included in the study design.
Thus, the question of whether inflammation occurs in the adipose
tissue of PCOS patients or elsewhere is unresolved. We have
shown tissue-specific rather than a general elevation of circulating
cytokines in IR/LepRPOMC mice [78], but it remains to be established
whether a more generalized inflammatory state occurs later in the
life of these animals. However, our results suggest that investigation
of the inflammatory state of adipose and other tissues in
people with PCOS should continue. In addition, our data argue
against circulating inflammatory signals serving as a causal factor
in PCOS-like metabolic impairments, at least in this model.

Chronic inflammation may contribute to the hyperandrogenemia
of PCOS [79]. In vitro studies have shown the ability of pro-
inflammatory stimuli to upregulate the steroidogenic enzyme
responsible for androgen production in ovarian theca cells
[79,80,81]. Cytokines can also stimulate proliferation of theca
cells [82]. In addition, abnormal inflammatory input may impair
the finely tuned inflammatory processes used to control ovulation
[45,92,93]. In that light, the excess cytokine gene expression in the
ovary of IR/LepRPOMC mice is intriguing. Given that we saw no
evidence of theca cell proliferation, additional studies will be
required to identify the cause and consequence of increased ovarian IL-6 mRNA in these mice.

The progression from insulin resistance to type 2 diabetes mellitus (T2D) can take years, although women with PCOS might
show a more rapid conversion from impaired glucose tolerance to T2D [83,84]. Gestational diabetes (GDM) is an early marker of
T2D risk and may constitute an early stage in the progression to that disease [85]. Indeed, women with PCOS are at increased risk
for developing GDM [86]. Gestational diabetes results from impaired adaptation of the pancreatic beta cells during pregnancy
[87]. If adipocyte dysfunction and the other PCOS-like traits of
IR/LepRPOMC mice increases T2D risk, we hypothesized these
animals would show impaired glucose tolerance during pregnancy.
Current and proposed clinical guidelines allow diagnosis of GDM
based on either elevated fasting glucose levels or abnormal oral
GTT results [90,91]. IR/LepRPOMC mice continued to show
an elevated fasting glucose levels during pregnancy that rose
significantly by d15 without an accompanying rise in insulin
levels. However, glucose tolerance, once normalized for starting
glucose levels, was no worse than control mice. No absolute values
for hyperglycemia during GTTs have been established for mice,
making comparison to the situation in the clinic difficult.
Nevertheless, IR/LepRPOMC mice appear to have preexisting
hyperglycemia worsened by pregnancy. It remains to be seen
whether high fat diet would further stress their glucose regulatory
systems and reveal frank T2D.

Conclusion

In summary, the results of this study show tissue-specific
inflammation in IR/LepRPOMC mice, a new mouse model for
PCOS, as shown by macrophage infiltration in adipose tissue, and
elevated cytokine mRNA levels in adipose tissue, liver, and ovary.
Structural changes also occurred in adipose tissue, as shown by
perigonadal adipocyte hypertrophy. These mice also showed
susceptibility to gestational hyperglycemia. These findings are
consistent with the characteristics of PCOS patients that may
contribute to the insulin resistance and type 2 diabetes risk
associated with this common disorder. Future studies will be
directed at resolving whether the adipocyte dysfunction is directly
induced by hyperandrogenemia or by secondary metabolic
alterations such as obesity.

Acknowledgments

The authors gratefully acknowledge Laura Nedorezov for excellent
technical help and Akhtar Ali for Metabolic Phenotyping Core support
(supported by 1P1LD010912 and 1UL1RR029243). Ovarian histology
was provided by the UTSW Molecular Pathology Core Laboratory and the
University of Toledo Advanced Microscopy & Imaging Center Facility
(supported by the Cancer Biology Fund of the University of Toledo
Foundation). This work was supported by NIH grants R01HD056491 and
R21HD071529 to JWH.

Author Contributions

Conceived and designed the experiments: JWH JSM. Performed the
experiments: JWH JSM JI ARD SC JCB RC. Analyzed the data: JWH
JSM JI ARD. Contributed reagents/materials/analysis tools: SC JCB RC.
Wrote the paper: JWH.
