Magnetic field induced magnetoelectric effects, (ME)H, in the perovskites Pb2CoWO6 and Pb2FeTaO6

BRIXEL, Wolf Dietrich, et al.

Abstract
On Pb2CoWO6 the linear (ME)H effect has been measured in the ferromagnetic/ferroelectric phase (T ≈ 7.6 K). On Pb2FeTaO6 the quadratic (ME)H-effect has been measured (4-17 K), a new magnetic transition evidenced at ~9 K and the magnetoelectric coefficients βijk evaluated at 4.4 K.

DOI: 10.1080/00150198800229431
MAGNETIC FIELD INDUCED MAGNETOELECTRIC EFFECTS, \((\text{ME})_H\), IN THE
PEROVSKITES \(\text{Pb}_2\text{CoWO}_6\) and \(\text{Pb}_2\text{FeTaO}_6\)

WOLF BRIXEL, JEAN-PIERRE RIVERA, ANTON STEINER AND HANS SCHMID
Department of Mineral, Analytical and Applied Chemistry,
University of Geneva, CH-1211 Geneva 4, Switzerland

Abstract On \(\text{Pb}_2\text{CoWO}_6\) the linear \((\text{ME})_H\) effect has been
measured in the ferromagnetic/ferroelectric phase \((T < 7.6K)\)
and the quadratic one in its paramagnetic/ferroelectric phase
\((T > 7.6K)\). On \(\text{Pb}_2\text{FeTaO}_6\) the quadratic \((\text{ME})_H\)-effect has been
measured \((4-17K)\), a new magnetic transition evidenced at \(\approx 9K\)
and the magnetoelectric coefficients \(\beta_{ijk}\) evaluated at 4.4 K

INTRODUCTION

Linear and quadratic \((\text{ME})_H\)-effects \(^{1,2}\) are based upon the following
two terms of the density of stored free enthalpy \(g\):

\[-g = \alpha_{ij}E_iH_j + (1/2)\beta_{ijk}E_iH_jH_k + \ldots\]

where \(\alpha_{ij}\), \(\beta_{ijk}\) are the linear and non-linear ME-susceptibilities,
\(E_i, H\) the electric and magnetic fields, respectively. The magnetic
field induced polarisation, \(P_i\), is defined by

\[-\partial g/\partial E_i = P_i = \alpha_{ij}H_j + (1/2)\beta_{ijk}H_jH_k + \ldots\]

This study reports measurements of \((\text{ME})_H\)-effects in the
orthorhombic phases III (ferroelectric/paramagnetic) and IV
(ferroelectric/ferromagnetic) of B-site ordered \(\text{Pb}_2\text{CoWO}_6\) (PCW)\(^{3,4}\)
and in the trigonal ferroelectric/antiferromagnetic phase of B-site
disordered \(\text{Pb}_2\text{FeTaO}_6\) (PFT)\(^{5,6}\). The magnetic field-induced charges
were measured by charge integration using a Keithley-642 electrometer\((10^{-10}-10^{-16}C)\). An electromagnet, equipped with a
time-linear regulation provided a field between 0 and 1 T. The
sample platelets were cut from flux grown single crystals\(^7\),
polished and gold-electroded.
THE FERROMAGNETIC TRANSITION OF Pb$_2$CoWO$_6$ AT 7.6K

The onset of ferromagnetism in the ferroelectric phase of PCW was found by means of magnetization measurements on ceramics ($T_c = 9$K)8, corroborated by neutron powder diffraction3 and in the present study by an anomaly of the (ME)$_H$-effect (Fig. 1). The effect was measured on a ferroelastic polydomain platelet previously cooled in a field of 50 kVcm$^{-1}$. Below T_c the effect is linear in agreement with ferromagnetism and it becomes quadratic above. This seems the first time that a linear (ME)-effect has been measured in a ferroelectric perovskite, but the intricate domain pattern hindered the deduction of the ferromagnetic point group. The quadratic effect above 7.6K proves a ferroelectrically poled state (space group Amm21', predicted on semi-theoretical grounds4) because an equi-weight distribution of polar domains would cancel the effect9.

A NEW MAGNETIC TRANSITION OF Pb$_2$FeTaO$_6$ AT ≈ 9K

In the trigonal ferroelectric phase of PFT5 a quadratic (ME)$_H$-effect was measured between 4 and 17 K (Fig. 2). The anomaly at 9K is probably caused by a magnetic transition analogous to that of Pb$_2$FeNbO$_6$ at ≈ 9K.10

Determination of the coefficients $\mathbf{\beta}_{ijk}$ of Pb$_2$FeTaO$_6$. For one of the 8 possible trigonal domains (Fig. 3a), P_s, the tensor $\mathbf{\beta}_{ijk}$ (identical for 3m, 3m' and 3m''') leads to the three components of induced polarization, $P_1 = \mathbf{\beta}_{111}(H_1^2 - H_2^2) + 2\mathbf{\beta}_{113}H_1H_3$, $P_2 = -2\mathbf{\beta}_{111}H_1H_2 + 2\mathbf{\beta}_{113}H_2H_3$, $P_3 = \mathbf{\beta}_{311}(H_1^2 + H_2^2) + \mathbf{\beta}_{333}H_3^2$ along the axes of the coordinate system (Fig. 3c). Only their projections are measurable on (110)$_c$. The four equations needed for the resolution of the system are obtained from two series of measurements of P_i versus the angle formed between the magnetic field H_0 and a sample reference direction. The magnet was rotated around a different crystallographic axis for each set of measurements (Fig. 4).

By poling along [110]$_c$ mainly domains P^1_s and P^2_s occur (Fig. 3b), but with varying domain weight ratios X/Y depending on history as seen...
FIGURE 1 Induced polarization on PCW versus temperature at magnetic field $H_o = 0.5/T/[110]$, (100) _c -cut; 0.063 mm x 4.58 mm2

FIGURE 2 Induced polarization in PFT versus temperature at maximum field $H_o = 1/T/[110]$, (100) _c -cut; 0.023 mm x 5.53 mm2

FIGURE 3 Possible domain states of P_s in a (110) _c section of trigonal ferroelectric Pb$_2$FeTaO$_6$; a) zero electric field, b) electric field $// [110]$, c) coordinate system for P_s

FIGURE 4 Induced polarization of PFT versus the field directions; H_o rotating around a) [110] _c; b) [100] _c, resp.; same sample as in Fig. 1
under polarized light. Table 1 gives β_{ijk} values for some observed X/Y ratios. Their order of magnitude comes close to that found for $\text{Pb}_2\text{NbFe}_0\text{O}_6$.

Table 1 Values of $\beta_{ijk} \times 10^{-17}$ s/A of PFT at 4.4K ($X + Y < 1$ because of the presence of some domain states other than P_1^s and P_1^p)

<table>
<thead>
<tr>
<th>X/Y</th>
<th>β_{111}</th>
<th>β_{113}</th>
<th>β_{311}</th>
<th>β_{333}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7/0.1</td>
<td>1.67</td>
<td>-9.25</td>
<td>-1.09</td>
<td>1.72</td>
</tr>
<tr>
<td>0.6/0.1</td>
<td>1.81</td>
<td>-10.67</td>
<td>-1.35</td>
<td>2.16</td>
</tr>
<tr>
<td>0.5/0.1</td>
<td>1.93</td>
<td>-12.61</td>
<td>-1.73</td>
<td>2.83</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

The authors thank R. Boutellier, E. Burkhardt, R. Cros and Mrs O. Hirth for technical help and the Fonds National Suisse de la Recherche Scientifique for support (project No. 2.081-0.86).

REFERENCES

2. E. Ascher, Phil.Mag. 17, 149- (1968)