Self-Organizing Surface-Initiated Polymerization of Multicomponent Photosystems: Stack Exchange with Fullerenes

BOLAG, Alatengbaolige, et al.

Abstract

Like beads on a string: A synthetic method for the directional construction of strings of spherical fullerenes along stacks of planar oligothiophenes is described. The key to success was the preparation of fullerenes with two solubilizing tri(ethylene glycol) tails (bold) and an aromatic aldehyde for covalent capture by hydrazides along the oligothiophene stacks (red).

Reference

DOI: 10.1002/open.201300004
The incorporation of spherical molecules into \(\pi \)-stack architectures of planar molecules is not a trivial task. The topological mismatch is significant. Ironically, one of the most attractive components in functional multicomponent architectures is a sphere. Namely, fullerenes, particularly \(C_{60} \), are of high interest to create electron-transporting pathways.\(^{[1, 2]} \) They are extensively used in the materials sciences, including most organic solar cells.\(^{[3]} \) Given this paramount importance, it is not surprising that much effort has been spent to accommodate the molecular spheres into uniform stacks of planar aromatics. The use of concave partners has been very productive.\(^{[4]} \) Numerous strategies have been conceived to attach the fullerene spheres covalently or noncovalently along linear architectures, including covalent polymers, \(\pi \)-stacks or coordination polymers.\(^{[5]} \) The alignment of fullerenes along oligothiophene stacks has received particular attention because of the importance of this architecture in organic solar cells.\(^{[6]} \) Highlights in this direction come from the groups of Bassani\(^{[7]} \) and Aida.\(^{[8]} \) Most difficult is the directional assembly of 1D fullerene channels. This is important to achieve directional electron transfer along redox gradients, as in biological photosystems. The leading example for this approach comes from the Imahori group.\(^{[9]} \) In the proposed strategy, fullerenes equipped with a ligand are coordinated to metalloporphyrin oligomers that have been grown directly on oxide surfaces.

Interested to learn how to grow functional multicomponent architectures directly on solid substrates, we have recently introduced self-organizing surface initiated polymerization (SOSIP) as a general synthetic method.\(^{[10]} \) In SOSIP, surface-initiated ring-opening disulfide-exchange polymerization is combined with molecular recognition to grow charge-trans-
Fullerene 4 was designed based on difficulties to achieve stack exchange with fullerene 5 (not shown). It contains an aromatic aldehyde to give stable hydrazones and two tri(ethylene glycol) (TEG) solubilizers to reach the concentrations in the polar aprotic solvents needed for TSE. The synthesis was based on protocols from the Nierengarten group. One TEG solubilizer 6 was attached to malonic acid 7 as described (Scheme 1). The resulting malonate monoester 8 was reacted with the primary alcohols in diol 9 to give bis-malonate 10. Diol 9 was prepared as described by Nierengarten et al.\cite{[2a]} Namely, 3,5-dibromobenzaldehyde 11 was protected as acetal 12 and formylated by treatment with first BuLi (4 equiv), THF, −78−0 °C, then DMF, −78−0 °C, then aq. 2 M HCl, 58 %; d) DIBAL-H, DCM, 0 °C, 97 %; e) DCC, DMAP, DCM, 0 °C to RT, 43 %; f) C6H5N3 BuLi, I2, toluene, RT, 39 %; g) TFA, H2O, DCM, RT, 50 %.

Scheme 1. Synthesis of formyl-fullerene 4. Reagents and conditions: a) 110 °C, 4 h, 80 %; b) 2,2-dimethyl-1,3-propanediol, C6H5N3, pTosOH cat., ∆, Dean-Stark trap, 97 %; c) tBuLi (4 equiv), THF, −78−0 °C, then DMF, −78−0 °C, then aq. 2 M HCl, 58 %; d) DIBAL-H, DCM, 0 °C, 97 %; e) DCC, DMAP, DCM, 0 °C to RT, 43 %; f) C6H5N3 BuLi, I2, toluene, RT, 39 %; g) TFA, H2O, DCM, RT, 50 %.

The yield of stack exchange was estimated by comparing the absorbance of thiophene at 420 nm and fullerene at 320 nm before and after the stack exchange (see Supporting Information). The obtained 50 % yield is reasonable considering the three-dimensional bulk of the fullerenes. The fate of the remaining acyl hydrazines, if any, is unknown. Covalent addition to the fullerenes and oxidation during photocurrent generation are less likely given the mild conditions and the test-retest reliability of the photocurrent kinetics (see below).

Photocurrent generation was examined under standard assay conditions. In brief, the photosystem was used as a working electrode together with a platinum wire counter electrode and a silver/silver chloride reference electrode. Triethanolamine (TEOA) was used as a mobile sacrificial hole acceptor; activities found with alternative hole acceptors such as the reversible carrier p-methoxyaniline di(2-ethylsulfonic acid) (MDESA) or ascorbic acid were analogous but overall clearly weaker. Irradiated with a solar simulator, oligothiophene–fullerene conjugate 3 generated much higher photocurrent than the photosystem 1 with only oligothiophenes (Figure 2B). Repeated photocurrent generation gave unchanged kinetic profiles, suggesting that the decrease observed with 3 is not due to instability of the photosystem. Although conceivable with a HOMO energy around the −5.7 eV reported for the quaterthiophenes,\cite{[14]} irreversible oxidation of unreacted acyl hydrazines, if occurring, does therefore not account for the phenomenon. Repeatable photocurrent decrease with time thus originates most likely from biphasic saturation behavior somewhere along the charge-transporting pathways.

The action spectra (Figure 2C) revealed about 15-times increased charge generation by the oligothiophene stack upon conjugation with fullerenes. Absorption and action spectra are

![Figure 2. A) UV/Vis absorption spectra, B) photocurrent generation and C) action spectra of oligothiophene SOSIP photosystem 1 (---) and oligothiophene-fullerene photosystem 3 (-----). Incident photon-to-current efficiency (IPCE) values are normalized against the IPCE of 1 at 420 nm (A=absorbance, AU=absorbance units, J=photocurrent density, rel=relative).](www.chemistryopen.org)
reasonably well superimposable (Figure 2.A versus 2.C, green spectra). This observation suggested that not only the oligothiophenes but also the fullerences contribute significantly to photocurrent generation. Decreasing rather than increasing activity with methyl viologen as electron acceptor in place of TEOA hole acceptors implied that the fullerences are not just deposited on the surface of the SOSIP architecture but really form active stings along the oligothiophene stacks. This conclusion was further supported by the inability to deposit fullerences in the absence of reactive hydrazides and aldehydes and the unproblematic detectability of fullerene reduction in the cyclic voltammogram of the film (similar to the ones measured in solution). These results are consistent with the formation of oligothiophene–fullerene heterojunctions.

In summary, herein we demonstrated the compatibility of the SOSIP-TSE strategy with fullerences. Encouraged by these results, our current efforts focus on the preparation of various fullerene derivatives with different LUMO levels toward the construction of multicomponent heterojunction photosystems with built-in redox gradients.\(^{[1,18]}\)

Acknowledgements

We thank J.-F. Nierengarten (Strasbourg) for advice, J. Areephong and D.-H. Tran for contributions to synthesis, D. Jeannerat, A. Pinto and S. Grass for NMR measurements, the Science Mass Spectrometry platform for mass spectrometry services, and the University of Geneva, the European Research Council (ERC Advanced Investigator), the National Centre of Competence in Research (NCCR) Chemical Biology and the Swiss National Science Foundation (NSF) for financial support.

Keywords: fullerences · hydrazone exchange · oligothiophenes · photosystems · surface-initiated polymerization