The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity

CAMNASIO, Stefano, et al.

Abstract

Neuronal disorders, like Huntington's disease (HD), are difficult to study, due to limited cell accessibility, late onset manifestations, and low availability of material. The establishment of an in vitro model that recapitulates features of the disease may help understanding the cellular and molecular events that trigger disease manifestations. Here, we describe the generation and characterization of a series of induced pluripotent stem (iPS) cells derived from patients with HD, including two rare homozygous genotypes and one heterozygous genotype. We used lentiviral technology to transfer key genes for inducing reprogramming. To confirm pluripotency and differentiation of iPS cells, we used PCR amplification and immunocytochemistry to measure the expression of marker genes in embryoid bodies and neurons. We also analyzed teratomas that formed in iPS cell-injected mice. We found that the length of the pathological CAG repeat did not increase during reprogramming, after long term growth in vitro, and after differentiation into neurons. In addition, we observed no differences between normal and mutant genotypes in [...]
The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity

Stefano Camnasio a,1, Alessia Delli Carri a,1, Angelo Lombardo b, Iwona Grad c, Caterina Mariotti d, Alessia Castucci d, Björn Rozell e, Pietro Lo Riso b, Valentina Castiglioni a, Chiara Zuccato a, Christelle Rochon a,2, Yasuhiro Takashima g, Giuseppe Diaferia h, Ida Biunno h, Cinzia Gellera d, Marisa Jaconi f, Austin Smith g, Outi Hovatta i, Luigi Naldini b, Stefano Di Donato d, Anis Fekic, Elena Cattaneo a,⁎

a Department of Pharmacological Sciences and Centre for Stem Cell Research, University of Milan, Milan, Italy
b San Raffaele Telethon Institute of Gene Therapy and Vita Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy
c Stem Cells Research Laboratory, Department of Obstetrics & Gynecology, Geneva University Hospital, Geneva, Switzerland
d Unit of Genetics of neurodegenerative and metabolic diseases, Carlo Besta Neurological Institute, Milan, Italy
e Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Riddersgade 3 1870 Frederiksberg C, Denmark
f Embryonic Stem Cell Laboratory Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Switzerland
g Wellcome Trust Centre for Stem Cell Research and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
h Integrated Systems Engineering, s.r.l., via Fantoli 16/15, 20138 Milan, Italy
i Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden

A R T I C L E I N F O

Article history:
Received 28 July 2011
Revised 24 November 2011
Accepted 22 December 2011

Keywords:
Human induced pluripotent stem cells
Huntington’s disease
Neuronal differentiation

A B S T R A C T

Neuronal disorders, like Huntington’s disease (HD), are difficult to study, due to limited cell accessibility, late onset manifestations, and low availability of material. The establishment of an in vitro model that recapitulates features of the disease may help understanding the cellular and molecular events that trigger disease manifestations. Here, we describe the generation and characterization of a series of induced pluripotent stem (iPS) cells derived from patients with HD, including two rare homozygous genotypes and one heterozygous genotype. We used lentiviral technology to transfer key genes for inducing reprogramming. To confirm pluripotency and differentiation of iPS cells, we used PCR amplification and immunocytochemistry to measure the expression of marker genes in embryoid bodies and neurons. We also analyzed teratomas that formed in iPS cell-injected mice. We found that the length of the pathological CAG repeat did not increase during reprogramming, after long term growth in vitro, and after differentiation into neurons. In addition, we observed no differences between normal and mutant genotypes in reprogramming, growth rate, caspase activation or neuronal differentiation. However, we observed a significant increase in lysosomal activity in HD-iPS cells compared to control iPS cells, both during self-renewal and in iPS-derived neurons. In conclusion, we have established stable HD-iPS cell lines that can be used for investigating disease mechanisms that underlie HD. The CAG stability and lysosomal activity represent novel observations in HD-iPS cells. In the future, these cells may provide the basis for a powerful platform for drug screening and target identification in HD.

© 2012 Elsevier Inc. All rights reserved.

I N T R O D U C T I O N

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by excessive expansion of a CAG trinucleotide repeat in the gene encoding the huntingtin protein (htt). This trinucleotide repeat results in the addition of a long stretch of glutamines (polyQ) near the N-terminus of the protein (HD Collaborative Research Group, 1993). The disease is characterized by movement, cognitive, and emotional disturbances that result from massive
neurodegeneration involving, at first, striatal medium spiny neurons and later, entire cortical structures (Reiner et al., 1988).

The disease occurs as a consequence of the expanded polyQ tract, whose length dictates the disease onset. However, recent evidence has suggested that the loss of physiological activity in the normal protein may also contribute to disease pathogenesis (Cattaneo et al., 2001, 2005; Zuccato et al., 2010). Consistent with this possibility, in a small collection of homozygous patients, disease progression appeared to precipitate faster than in heterozygous patients (Squitieri et al., 2003); this was also observed in a mouse model, although further confirmatory studies are needed (Lin et al., 2001).

To facilitate investigations of the disease mechanisms, an impressive series of HD models has been developed (Zuccato et al., 2010). Neuronal disorders are in fact probably among the most difficult to model due to limited cell accessibility, late onset manifestations, and low availability of material, which often reflects only the final phases of pathology. Cell lines that carry the HD mutation provide biochemically homogeneous material for testing specific hypotheses. For example, studies initially performed in rodent cell lines have led to the loss of HTT function hypothesis, evidence for a defect in BDNF, altered vesicular transport along microtubules in neurons (Colin et al., 2008; Gauhier et al., 2004) and data on cholesterol abnormalities in HD. Subsequently, those findings were verified in animal models and, where appropriate, in human post mortem patient samples (Zuccato et al., 2010). However, we lack a reliable, stable source of human cell lines with a central nervous system (CNS) character that correctly express the mutant gene during neuroanterior differentiation. Towards this goal, 8 human embryonic stem (hES) cell lines were derived from preimplantation genetic diagnosis plasmid (36 μg); the pMD2.G envelope-encoding plasmid (9 μg); and pCMV-Rev (6.25 μg). All four vectors were added to cells in a 15-cm dish, and 1 mM sodium butyrate was added to the collected medium. Vector particles were concentrated 250-fold by ultracentrifugation and measured with HIV-1 Gag p24 immunocapture assay (Perkin Elmer).

Retroviruses were produced in Plat-E cells that were transfected with 4 vectors by calcium phosphate precipitation; these vectors were the pCCL.Sin.PPT.pA.Tk.CMV.SFFV.OE3/4.FMDV 2A_KLF4_TaV 2A_SOX2.Wpre.JLTR_loxP ren viral vector transfer plasmid (36 μg); the pMDL.G/pRRE packaging plasmid (12.5 μg); the pMD2.G envelope-encoding plasmid (9 μg); and pCMV-Rev (6.25 μg). All four vectors were added to cells in a 15-cm dish, and 1 mM sodium butyrate was added to the collected medium. Vector particles were concentrated 250-fold by ultracentrifugation and measured with HIV-1 Gag p24 immunocapture assay (Perkin Elmer).

Retroviruses were produced in Plat-E cells that were transfected with pBABE-based retroviral vectors for OCT4, SOX2, KLF4, in DMEM containing 10% FBS, using Fugene 6 (Roche).

Materials and methods

Vector production

A reprogramming vector Stem Cell Cassette (STEMCCA) that included 4 factors (OCT4, SOX2, KLF4, and C-MYC) was a kind gift from G. Mostoslavsky. We also prepared a stock solution of a reprogramming vector that included 3 factors (OCT4, SOX2, KLF4), as previously described (Follenzi and Naldini, 2002). Briefly, 293T cells were co-transfected with 4 vectors by calcium phosphate precipitation; these vectors were the pCCL.Sin.PPT.pA.Tk.CMV.SFFV.OE3/4.FMDV 2A_KLF4_TaV 2A_SOX2.Wpre.JLTR_loxP transfer vector plasmid (36 μg); the pMDL.G/pRRE packaging plasmid (12.5 μg); the pMD2.G envelope-encoding plasmid (9 μg); and pCMV-Rev (6.25 μg). All four vectors were added to cells in a 15-cm dish, and 1 mM sodium butyrate was added to the collected medium. Vector particles were concentrated 250-fold by ultracentrifugation and measured with HIV-1 Gag p24 immunocapture assay (Perkin Elmer).

Retroviruses were produced in Plat-E cells that were transfected with pBABE-based retroviral vectors for OCT4, SOX2, KLF4, in DMEM containing 10% FBS, using Fugene 6 (Roche).

Fibroblast culture and infection

Skin biopsies were obtained from patients coming for clinical follow-up visits at the Neurological Institute “C. Besta” in Milan. All subjects gave their written consent for the skin biopsy procedure and for the use of the sample material for research purposes. Fibroblasts were cultured in DMEM high glucose (Euroclone), 10% FBS (Euroclone), 2 mM L-Glutamine (Euroclone, Italy), and 1% penicillin/streptomycin (Invitrogen). We plated 1.5 × 10^4 cells in a 6-well dish and performed infection with viral construct that encoded the transcription factors OCT4, SOX2, and KLF4 (OSK, with or without C-MYC), in the presence of 4 μg/ml of polybrene. When reprogramming was performed using retroviral vectors, fibroblasts were previously transduced with SLC7A1 receptor. After 1 week, we replated the infected fibroblasts on a feeder layer of mouse embryonic fibroblasts (MEFs from strain CD1, 3.5 × 10^6 cells/cm²) or on human neonatal foreskin (3.5 × 10^6 cells/cm²) mitotically inactivated by Mitomycin C treatment (Sigma Aldrich), in Knock-out-DMEM (Invitrogen) supplemented with 20% Knock-out serum replacement (Invitrogen), 2 mM L-Glutamine (Euroclone, Italy), 2 mM nonessential amino acids (Invitrogen), 1% penicillin/streptomycin (Invitrogen), and 0.1 mM β-mercaptoethanol (Invitrogen), with 10 ng/ml of bFGF (Invitrogen). Colonies started to appear 30 days later, and at around day 40, they were selected and transferred to a new feeder layer with the same culture conditions. Subsequently, iPES clones were passaged mechanically every 5–7 days and the presumed undifferentiated regions were transferred to a new feeder layer. In our experiments, we used only undifferentiated colonies.
Embryoid body differentiation

Entire colonies of hES, wild-type (WT), and HD-iPS cells were detached by incubation with collagenase IV (Invitrogen) for 40 min; next, cells were cultured in suspension in hES medium without adding bFGF. After 7 days, EBs had formed; these were plated on 0.1% gelatin (Sigma Aldrich) and the medium was changed every 3 days.

Teratoma assay

To test the pluripotency of the HD-iPS cells in vivo, cells were manually dispersed from the human fibroblast feeder layer and suspended in Matrigel™ (BD, Becton Dickinson). Then, 200 μl of Matrigel-suspended cells (~10⁶ cells) were injected subcutaneously into four, 7-week-old, severe combined immune deficient (SCID), beige mice (C.B.-17/GbmsTac-scid-bgDF N7, M&B, Ry, Denmark). Four additional mice were injected with another batch of cells derived from the same cell line. A total of eight mice were injected. The mice were followed up, and teratoma growth was observed weekly. After 6 weeks, the mice were sacrificed, and the teratomas were excised, fixed in 4% buffered paraformaldehyde, prepared for histology, and embedded in paraf.

Karyotyping

For HD-iPS⁹⁶ 4F-1, HD-iPS⁹⁶ 4F-3 cell lines, karyotype analyses were performed on twenty metaphase spreads, using the GTG-banding method. iPS cell lines were incubated in proliferation medium, supplemented with 0.2 mg/ml colcemid (Roche) at 37 °C for 20 min, and subsequently washed three times with 2 ml phosphate buffered saline (PBS) containing Ca²⁺ and Mg²⁺. A minimum of fifteen colonies were mechanically detached from the feeder layer, collected in 2 ml 1× trypsin-EDTA (Invitrogen) and incubated at 37 °C for 5 min. Subsequently the pellet was resuspended and incubated in 1 ml of pre-warmed potassium chloride solution (KCl, 0.075 mol/ L) for 10 min at 37 °C. Cells were then pre-fixed with 1 ml Carnoy fixative solution [methanol/acetic acid = 3/1] at −20 °C, and immediately spun at 1800 rpm for 10 min. Finally the pellet was resuspended again in Carnoy solution and prepared for analysis. For HD-iPS⁹⁶ 3F-1 and WT-iPS 3F-1 cell lines, karyotype analysis was performed using QFQ-banding method, analyzing 51 metaphases.

Neural differentiation

The cells were differentiated according to the neural differentiation protocol described by Chambers et al. (2009). Briefly, dissociated WT-iPS and HD-iPS were plated on Matrigel™ (BD, Becton Dickinson) at a density of 3.5×10⁴ cells/cm² and maintained in hES medium with 10 ng/ml of bFGF2 for 3 days, until they reached 90% confluence. Then, we exposed the cells to 500 ng/ml of Noggin (R&D) and 5 μM of SB431542 (Tocris) for 12 days. Then, we repleted the cells on 3 μg/ml of laminin (Invitrogen) and maintained them in N2 medium (composed of DMEM/F12, N2 100×) (Invitrogen), supplemented with 30 ng/ml BDNF (Peprotech) and 50× B27 (Invitrogen).

RNA isolation

After differentiation, total RNA was prepared from WT-iPS and HD-iPS cells with Trizol (Invitrogen), according to the manufacturer's instructions; human fetal brain RNA was used as a positive control (Clontech). Before reverse transcription, the RNA was treated with DNase I (Qiagen) and purified with the RNeasy kit (Qiagen). After DNase treatment, 1 μg of total RNA was reverse-transcribed to produce single-stranded cDNA with SuperScript III reverse transcriptase and random primers in a total volume of 20 μl, according to the manufacturer's instructions (Invitrogen).

RT-PCR analysis

After reverse transcription, PCR was performed in a total volume of 25 μl containing 25 ng cDNA, 50 mM KCl, 1.5 mM MgCl₂, 0.2 mM dNTPs, 0.4 μM of each primer, and 1U Taq polymerase (Invitrogen). RT-PCR was performed in 30 cycles, as follows: denaturing for 30 s at 94 °C, annealing for 30 s, and extension for 45 s at 72 °C. PCR products were resolved in a 2% agarose gel. Primer sequences, annealing temperatures, and PCR product sizes are listed in Table S1.

Gene expression analyses

We analyzed 36 ng of cDNA in duplicate in a Viia7 Real-time PCR thermal cycler with the Hs03005111_91 TaqMan® Gene Expression Assay (Applied Biosystems) for OCT4, and the following primers and probe were used to amplify vector-derived transcripts (to detect the 3′UTR of the vector): Forward primer: 5′-GGCTGTGAGCCACCTGA-CAAT-3′ 900 nM, Reverse primer: 5′-ACGTCGCCGCAAAATC-3′ 900 nM, Probe: 5′-6-FAM-TTCCCATAGCTGCTGCGCT-MGB-3′ 250 nM. Standard TaqMan amplification conditions were used. The Viia 7 RUO Software 1.0 was used to extract raw data (Ct and raw fluorescence). The relative expression level of each gene was calculated by the ΔΔCt method (Pfaffl, 2001), normalized to HPRT expression (housekeeping gene control). Results are represented as the fold change relative to fibroblasts 10 days after transduction with the reprogramming vector (calibrator).

Vector copy number analysis

Quantitative PCR analysis was performed as previously described (Lombardo et al., 2007). Briefly, 200 ng of genomic DNA was analyzed with primers and probes complementary to the vector backbone sequence (ψ-PBS) and to the human TERT gene; the latter was used for normalization. A standard curve for ψ-PBS was generated by serial dilutions of DNA from human cell lines containing a known number of vector integrations.

DNA extraction

iPS colonies were isolated mechanically from at least one 3.5 cm dish. Cells were collected and DNA was extracted with the Nucleospin Kit (Macherey Nagel) according to the manufacturer’s instructions.

Analysis of CAG expansion

Amplification of PCR fragments that encompassed the CAG repeat was performed with the Taq Gold Polymerase at standard operative conditions in the presence of 1% DMSO and 1.5 mM MgCl₂ for 30 cycles. Each cycle consisted of a denaturation step at 94 °C for 1 min, then an annealing step at 65 °C for 1 min; and a polymerization step at 72 °C for 2 min. PCR fragment lengths were determined by capillary electrophoresis with the ABI PRISM 3130 XL Genetic Analyzer.

Immunofluorescence

Cells were fixed in 4% paraformaldehyde for 15 min at room temperature (RT) and washed 3× with PBS. The cells were then
permeabilized with 0.5% Triton (SIGMA) and blocked with 5% FBS (Euroclone) for 1 h at RT. Fixed, permeabilized cells were incubated overnight at 4 °C with the following primary antibodies and dilutions: anti-Nanog, 1:500 (Novus Biological); anti-OCT4, 1:100 (Santa Cruz); anti-TRA-1-81, 1:50 (gift from ESTOOLS consortium); anti-SOX2, 1:200 (Millipore); anti-β3-Tubulin, 1:1000 (Sigma); anti-α smooth muscle actin (α-SMA), 1:800 (Sigma), anti-GATA4, 1:200 (Santa Cruz); anti-Nestin, 1:200 (Millipore); anti-MAP2, 1:500 (BD Bioscience); anti-Calbindin, 1:200 (SWANT); anti-Phospho Histone H3 (PH3), 1:100 (Cell Signaling); and anti-Caspase-3, 1:150 (Cell Signaling). After incubation with the primary antibody, the cells were washed 3× with PBS, and we added the appropriate secondary antibodies conjugated to Alexa fluorophores 488 or 568 (Molecular Probes, Invitrogen). After incubation for 1 h at RT, the cells were washed 3× with PBS and nuclei were stained with Hoechst 33258 (5 μg/mL; Molecular Probes, Invitrogen). Images were acquired with a Leica DMI 6000B microscope (4×, 10×, and 20× objectives), analyzed with LAS-AF imaging software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda) and then processed using Adobe Photoshop and ImageJ.

LysoTracker staining

The cells were incubated for 30 min at 37 °C in proliferation medium containing 50 nM LysoTracker® Red DND-99 (Molecular Probes, Invitrogen). The cells were then incubated for 15 min at 37 °C with Hoechst 33258 (5 μg/mL; Molecular Probes, Invitrogen).

Flow cytometry measurements were carried out on live cells exposed to 200 nM Lysotracker® Dye with a FACS Canto II (BD Bioscience). Data were analyzed with BD FACSDiva v6.1.3 software.

Western blot

Cells were homogenized in RIPA buffer (tris HCl pH 8 50 mM, NaCl 150 mM, SDS 0.1%, NP40 1%, Sodium deoxycholate 0.5%) with PMSF 1 mM, DTT 0.5 mM and protease inhibitor cocktail (Sigma). Proteins were quantified using the BCA kit. 50 μg of protein was loaded per track onto a 11% SDS-PAGE gels. Proteins were transferred onto nitrocellulose membranes that were blocked in TBS-T with 5% milk; 3× with PBS and nuclei were stained with Hoechst 33258 (5 μg/mL). Cells were probed with the following antibodies: anti-β3-Tubulin (Sigma, 1:5000) at 4 °C overnight. Washes were in TBS-T. Secondary antibody probing and detection was by use of the ECL kit (Pierce).

Statistical analysis

The Student's t-test or one-way ANOVA and Dunnet post hoc test were used to compare samples. P values, SEM, and means were calculated with Graph Pad Prism version 4.0.

Results

Production of iPSC cells from Huntington's disease fibroblasts

We derived human iPSC cells from primary HD fibroblast cell lines generated from three different patients with HD, designated HD509, HD832, and HD1657. The former two were rare homozygous individuals carrying, respectively, 42/44 CAG and 39/42 CAG. The latter carried 17/45 CAG. We also derived two different human iPSC cell lines from WT adult fibroblasts with 15/17 CAG and WT newborn fibroblasts carrying 15/18 CAG (Table 1).

We reprogrammed HD cells by infection with two different polycistronic lentiviruses. In a first round of infection, fibroblasts were transduced with a single polycistronic lentiviral vector encoding the four reprogramming human genes OCT4, SOX2, KLF4, and C-MYC (4F). In a second round of infection, we used an improved polycistronic lentivirus encoding only three reprogramming factors, OCT4, SOX2, and KLF4 (3F). We used a multiplicity of infection (MOI) of 1.66, because this provided an optimal compromise between transgene expression, cellular viability, and genomic preservation. At 5 days post infection, exogenous OCT4 and SOX2 proteins were detected in almost all transduced fibroblasts (Suppl. Fig. 1).

The infection with 4F had a reprogramming efficiency of 0.011% (17 colonies obtained from infecting 15×10⁴ fibroblasts). At about 35 days post infection, ES-like colonies were selected amplified, and propagated, either on human neonatal foreskin fibroblasts or mouse embryonic fibroblasts (Fig. 1A and Suppl. Fig. 2A). In comparison, infections with the lentivector lacking C-MYC showed greatly reduced reprogramming efficiency; only rare colonies (3–5) were observed, and they took 3 weeks longer to appear. We concluded that the HD mutation or the lack of normal HTT in homozygous cells, did not affect the reprogramming process. From each HD fibroblast line, we expanded 3 independent colonies that grew without any detectable differences.

For further evaluations, we randomly selected three clones from the 4F reprogrammed HD509 fibroblasts and HD832 fibroblasts (HD-iPS^{4F-1}, HD-iPS^{4F-2} and HD-iPS^{4F-3}) and two clones from 3F reprogrammed HD509 fibroblasts (HD-iPS^{3F-1} and HD-iPS^{3F-2}; Table 1). We also included one clone from the reprogrammed heterozygous HD1657 iPSC cells (HD-iPS^{het 3F-1}) and two from the reprogrammed wild-type fibroblast cell lines (WT-iPS^{4F-1} and WT-iPS^{3F-1}). All clones were positive for pluripotency stem cell markers, Nanog and TRA1-81 (Fig. 1A and Suppl. Fig. 2A).

Karyotype analyses in four iPSC cells show occasional alterations both on WT than HD lines, such as additional chromatin on chromosome 2, a small deletion on chromosome 11 and a chromosome 12 trisomy (Suppl. Fig. 3). Notably HD-iPS^{4F-1} and HD-iPS^{3F-1} which were derived from the same HD509 fibroblasts, carry the same mutation (Suppl. Fig. 3).

Quantitative PCR analysis revealed that the reprogramming vector was successfully silenced after iPSC selection. In two representative iPSC clones (HD-iPS^{3F-1} and HD-iPS^{3F-2}), the transgenic expression of vector (OKS)-derived transcripts was reduced to undetectable levels compared to transduced fibroblasts collected 10 days after infection, when the lentiviral promoter was highly active (Fig. 1B). In particular, while the reprogramming genes were nearly completely expressed; this con

![Table 1](https://example.com/table1.png)

<table>
<thead>
<tr>
<th>Fibroblast lines</th>
<th>Haplotype<sup>a</sup></th>
<th>Age</th>
<th>Reprogramming factors</th>
<th>iPSC lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD509</td>
<td>42/44</td>
<td>59</td>
<td>OKSM<sup>b</sup> (lentivirus)</td>
<td>HD-iPS<sup>3F-1</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OKS (lentivirus)</td>
<td>HD-iPS<sup>3F-2</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OKS (lentivirus)</td>
<td>HD-iPS<sup>3F-3</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OKS (lentivirus)</td>
<td>HD-iPS<sup>3F-4</sup></td>
</tr>
<tr>
<td>HD832</td>
<td>39/43</td>
<td>44</td>
<td>OKSM (lentivirus)</td>
<td>WT-iPS<sup>3F-1</sup></td>
</tr>
<tr>
<td>HD1657</td>
<td>17/45</td>
<td>36</td>
<td>OKS (lentivirus)</td>
<td>HD-iPS<sup>3F-1</sup></td>
</tr>
<tr>
<td></td>
<td>15/17</td>
<td>36</td>
<td>OKS (revertio)</td>
<td>WT-iPS<sup>3F-1</sup></td>
</tr>
<tr>
<td>Dermal fibroblasts</td>
<td>15/18</td>
<td>Newborn</td>
<td>OKSM (lentivirus)</td>
<td>WT-iPS<sup>4F-1</sup></td>
</tr>
</tbody>
</table>

^a Haplotype indicates the number of CAG repeats on each allele.

^b OKSM: OCT4 (O), KLF4 (K), SOX2 (S), and C-MYC (M) genes.
In addition, we found very prominent yolk sac-like tissue components, similar to those observed in human germ cell tumors and teratomas. The yolk sac-like nature of these tumors was demonstrated with immunohistochemical staining for AFP and GPC3 (Zynger et al., 2010) (Fig. 1D). Furthermore, cell aggregates resembling embryoid structures expressed OCT3/4 indicating retention of a pluripotent cell compartment. Hence, these pluripotent iPS cells also showed the capacity to form primitive endoderm that developed into extraembryonic yolk sac tissue. This was not described previously for human pluripotent stem cell injections into SCID mice.

Furthermore, because lentiviruses are expected to give rise to only one or a few integrations, we analyzed the vector copy number of transduced fibroblasts.
per cell (VCN) in two representative cell lines generated with the 3F vector. As shown in Suppl. Fig. 3, these clones carried only one or two copies of the integrated virus per cell. This result was also consistent with the MOI used for the infection.

CAG repeat length during HD-iPS cell reprogramming, long-term growth, and differentiation

The CAG repeat in hht is reported to undergo tissue-specific somatic instability in transgenic mice models and in HD patient brains, predominantly in the striatum (Dragileva et al., 2009; Gonitel et al., 2008; Kennedy et al., 2003). Accordingly, it was suggested that brain-specific changes in CAG length could modify the disease process (Kennedy et al., 2003). Moreover, in a human ES cell line carrying the HD gene, a (limited) expansion of five CAG repetitions after neural differentiation was reported (Niclis et al., 2009), although this was not confirmed in other hES cell lines (Serioila et al., 2011).

We therefore analyzed our HD-iPS cell lines during proliferation and after neuronal differentiation to determine whether the native CAG length had changed after the reprogramming process and duringpassaging. We employed capillary electrophoresis with an ABI PRISM 3130 XL Genetic Analyzer. We found (Table 2) that all HD-iPS cells retained the same CAG lengths that they exhibited in the original fibroblasts from which they were derived. Moreover, DNA analyses of clone HD-iPSV 4F-1 showed that the CAG repeats remained stable for at least 40 passages in vitro (Fig. 1E and Table 2). Furthermore, 30 days after the HD-iPSV 4F-1 lines were differentiated into neurons (see below), the DNA showed no expansion in CAG repeats. On the contrary, we occasionally detected a contraction of CAG repeats; e.g., one haplotype with 42/44 CAG had lost two CAG triplets (see Fig. 2A showing the unique prevalent peak at 162 base pairs, corresponding to 42 CAG repeats). These data indicated that the CAG repeats in the human gene were stable during passaging and remained unaltered after neuronal differentiation.

Neural differentiation of HD-iPS was variable, but not impaired by CAG expansion

To assess the neuralization capacity of our human HD-iPS cell lines, we applied a recently published monolayer protocol for differentiation (Chambers et al., 2009). Briefly, dissociated pluripotent cells were plated on Matrigel™ and exposed for 15 days to dual SMAD pathway inhibitors, Noggin and SB431542. This treatment potently suppressed endoderm, mesoderm, and trophoderm differentiation and enhanced conversion to neural ectoderm (Chambers et al., 2009). After 15 days, we monitored the appearance of typical neuronal markers. As shown in Fig. 2B and in Suppl. Fig. 4, both WT and HD-iPS lines were immunopositive for neuroepithelial markers, Nestin and PAX6. The cells were organized in radial structures that included the CAG repeats. An RT-PCR analysis (Fig. 2D) showed that, as expected, Nanog mRNA remained undetectable during differentiation of WT and HD-iPS lines. In contrast, both cell lines showed active expression of Sox3 and FOXG1 after 20 days. Furthermore, at the end of differentiation (day 50), we assessed mRNA expression levels for typical GABAergic and striatal markers, including Gad65/67, ARPP21, and DARPP32 (Fig. 2E). We found no significant differences between lines that could be attributed to CAG expansion. We concluded that the HD mutation did not appear to affect specification of the anterior fate and neuronal subtype differentiation programs, at least in the available lines and for parameters/protocols tested.

Phenotypic assays in HD-iPS cells

To identify a HD-related phenotype in our iPS cells, we analyzed specific molecular readouts that have been implicated in disease pathogenesis in animal and cell HD models. In a preliminary investigation, we considered the main cellular processes of proliferation, death, and lysosomal expansion. We analyzed cell proliferation and apoptotic activity in self-renewal conditions by immunofluorescence. In particular, phospho histone H3 (PH3) identifies cells in mitosis, and activated caspase-3 indicates apoptosis. Fig. 3A shows the absence of noticeable differences in proliferative rates, assessed by the percentage of PH3 positive cells in WT- and HD-iPS lines. In particular, the numbers of PH3 positive cells showed that around 5% of the control population was in the M-phase of the cell cycle, and this prevalence was not altered by the HD mutation (Fig. 3B). The same was observed in all HD-iPS lines tested (not shown). We then measured apoptosis by counting the number of cells immunoreactive for activated caspase-3; we found no differences between genotypes, which suggested that the presence of the mutation was not sufficient to activate a cell death program (fluorescence signal intensities: WT-iPS 3F-1: 30.4 ± 4.1; HD-iPSV 4F-1: 21 ± 4.1; and HD-iPSV 4F-2: 20.7 ± 1.8) (Fig. 3A).

Aggregates of mutant HTT protein have been reported in HD human brain and several HD mouse models (Zuccato et al., 2010). In mammalian cell culture systems, a strong correlation was described between HTT aggregates formation and susceptibility to cell
death (Zuccato et al., 2010). Alternatively, an independent set of data argued that aggregates in HD were neuroprotective; they acted by stimulating the autophagic process and enhanced clearance of mutant HTT (Ravikumar and Rubinsztein, 2006). Two major protein clearance pathways exist in mammalian cells; the ubiquitin–proteasome pathway and the autophagy–lysosome pathway. An increased number of autophagosome-like structures was described both in human HD postmortem material (Davies et al., 1997; Sapp et al., 1997) and in HD cell models (Ravikumar and Rubinsztein, 2004).

Based on those observations, we analyzed the lysosomal content in HD-iPS cells during proliferation. We used LysoTracker® Red DND-99, a red-fluorescent dye that stains acidic compartments, like lysosomes, in live cells. After exposure of WT-iPS 3F-1, HD-iPS hom 4F-1, and HD-iPS hom 4F-2 to the dye for 30 min, cells were fixed, and images were analyzed with ImageJ software to measure the fluorescence signal intensity for positive cells. As shown in Fig. 3C, the fluorescent signal was very bright in a percentage of HD-iPS cells. In particular, we found that HD-iPS cell lines had very high...
signal accumulation; i.e., 4 times higher than that observed in WT-iPS 3F-1. The number of stained dots/field was 16.25±2.83 in WT-iPS 3F-1; 45.01±5.56 in HD-iPShom 4F-1; and 60.33±9.68 in HD-iPShom 4F-2. These results suggested that iPS lines harbored an increased number of lysosomes compared to controls (Fig. 3D).

To more quantitatively confirm this observation, we performed flow cytometry on live cells after staining with LysoTracker dye. To enhance the lysosomal responses in different lines, we induced lysosome engulfment by exposing HD-iPS hom clones to 100 mM sucrose for 48 h (Sardiello et al., 2009). The analysis was performed with a threshold set on the isotypic intensity signal. This showed that the proportion of labeled HD-iPS cells was twice the proportion of labeled WT-iPS cells (Fig. 3E and Suppl. Fig. 5). This suggested that HD-iPS cell lines were highly susceptible to stressors.

We performed the same experiment in WT-iPS 3F-1 and HD-iPShom 4F-1 cells that were entering the first steps of neuronal differentiation. On day 5 after exposure to the monolayer differentiation protocol (Figs. 4A, B), the proportion of labeled HD-iPS cells was twice (46.79±4.09) the proportion of labeled WT-iPS cells (22.62±3.21). This reflected elevated lysosomal activation. We next extended the same analysis to all WT and HD-iPS cell lines after 25 days of differentiation to assess lysosomal activity in more mature neuronal cells. We found that the absolute value of fluorescence signal intensity after sucrose treatment was higher in all differentiated cells compared to self-renewing cells. Hence, we established a second intensity threshold, set on a fluorescence intensity of 10^4. Again, HD-iPS cell lines exhibited a higher percentage of positive cells compared to WT-iPS (Figs. 4C, D). We confirmed the association of increased lysosomal content with neuronal cells by co-staining of LysoTracker dye with Nestin and β3-Tubulin (Suppl. Fig. 7).

Furthermore, the differentiated neurons derived from the heterozygous iPS cell line HD-iPShet 3F-1 showed results similar to those from homozygous HD-iPShom lines (Figs. 4C, D). This suggested that lysosomal activation was similar between neurons derived from HD homozygous and heterozygous iPS cells. The same phenotype was observed in a mouse HD-iPS cellular model (Castiglioni et al., in press). To further verify this evidence, we next performed a Western blot analysis on day 30-differentiated WT-iPS 3F-1, HD-iPShom 4F-1 and HD-iPShet 3F-1 cell lines, to investigate the presence of the autophagic marker LC3 (Fig. 4E). Macroautophagy is a lysosomal-dependent process that mediates the turnover of organelles and misfolded proteins that are too large to be degraded by ubiquitin proteasomal system, such as huntingtin aggregates (Kegel et al., 2000). Upon synthesis, LC3 is cleaved into the cytosolic protein LC3 I. Activation of macroautophagy leads to conversion of LC3 I into LC3 II, a form that associates with autophagosomes. As a consequence, the amount of LC3 II correlates closely with the number of autophagosomes. In Fig. 4E the LC3 II/LC3 I ratio has been used as a measure

Fig. 3. Immunofluorescence visualization of PH3 and activated caspase-3 expression in WT-iPS 3F-1, HD-iPShom 4F-1, and HD-iPShom 4F-2 cells during self-renewal. (A) No evident differences were detectable between WT and HD-iPS lines. Scale bar, 100 μm. (B) Percentage of PH3 positive cells in control and HD-iPS cells. Four fields per clone were analyzed from two independent experiments. Error bars show SEMs, assessed by one-way ANOVA followed by Dunnet post hoc test. (C) Staining with LysoTracker Red DND-99, a red-fluorescent dye that stains acidic compartments in live cells. Three representative colonies are shown for each cell line. The cropped images show a higher magnification of the central portion of colonies. Scale bar, 100 μm. (D) LysoTracker red images were analyzed in HD lines with ImageJ software to quantify the numbers of labeled dots per field. Three fields per clone were counted from two independent experiments. Error bars show SEMs, assessed by one-way ANOVA followed by Dunnet post hoc test; * p<0.05; ** p<0.01. (E) Cyt fluorimetry analysis after staining with LysoTracker and adding 100 mM sucrose for 48 h; we analyzed 2×10^4 cells/line; a threshold was set on the isotypic intensity signal.
Fig. 4. LysoTracker assay in WT-iPS 3F-1 and HD-iPShom 4F-1 cells entering the first steps of neuronal monolayer differentiation. (A) On day 5 of neural induction, HD-iPS cells showed a higher signal intensity compared to WT-iPS cells. Scale bar, 100 \(\mu \text{m} \). (B) Quantification of LysoTracker labeled dots. Five fields/cell line from two independent experiments were counted with ImageJ software; the intensity of the signal was normalized to the total number of cells. Error bars show SEMs, assessed by the Student’s \(t \)-test followed by Dunnet post hoc test; **\(p < 0.01 \). (C–D) Cytoluminometry analysis on iPS clones after 25 days of neuronal differentiation and exposure to 100 mM sucrose stress for 48 h. Blue bars indicate the proportion of cells with intensities greater than the threshold of 10\(^4\) fluorescence intensity. 2\(\times \)10\(^4\) cells/line were analyzed. (E) Western blot analysis for LC3 marker on WT-iPS 3F-1, HD-iPShom 4F-1 and HD-iPShet 3F-1 after 30 days of neuronal differentiation. (F) Densitometric analysis of western blot for LC3 marker performed on WT-iPS 3F-1, HD-iPShom 4F-1 and HD-iPShet 3F-1 after 30 days of neuronal differentiation.
of autophagosome formation (Fox et al., 2010; Kabeya et al., 2000). In agreement with the LysoTracker data, LC3 BII form is more abundant in HD-iPS lines when compared to WT-iPS. This data reinforces the evidence of an increased lysosome content and specifically of autophagosome in HD-iPS cells and it is in full accordance with data from an in vitro HD model of rat primary neurons, transfected with mutant HTT (Liang et al., 2011).

Discussion

In this study, we generated HD-iPS cells from three patients that included two rare homozygous HD haplotypes. We showed that both homozygous and heterozygous HD iPS lines could be derived, expanded, and differentiated into cells of the three germ layers or into neurons. Hence, these data showed that two mutant alleles did not constrain efficient neuronal differentiation.

In this work, we generated HD-iPS lines from fibroblasts, both in the presence (4F) or absence of C-MYC (3F). These somatic cells underwent reprogramming under both conditions; molecular and cellular analyses showed no differences between HD-iPS somatic 3F and HD-iPS somatic 4F cells in pluripotency markers expression, colony morphology, or growth rate. Neuronal differentiation was also comparable between the 3F- and 4F-iPS cells.

Teratoma formation was achieved with reprogramming. Teratomas, teratocarcinomas, and yolk sac tumors are not uncommon among humans; they occur often in children and young individuals. They often contain yolk sac structures (Almstrup et al., 2007; Pierce et al., 1970; Prevedello et al., 2007; Thomas et al., 2010). Ectopic human embryos also form yolk sac tissues (Sathanathan et al., 2011). This was the first study to show that the teratomas formed by iPS cells included yolk sac tissue components. It is quite interesting that yolk sac tissues can be formed by reprogramming skin cells from older individuals.

CAG instability is a well-documented phenomenon in HD gametes. It may cause genetic anticipation, with earlier HD onset in the next generation (Pearson et al., 2005; Yoon et al., 2003). CAG instability was also shown in lymphoblasts when expansion repeats exceeded 60 CAG (Cannella et al., 2009), in somatic cells, specifically in postmitotic mouse neurons (Dragileva et al., 2009; Gonitel et al., 2008), and in human brain neurons (Kennedy et al., 2003). Although, no CAG instability has been detected in HD fetal tissues (Benitez et al., 2008), and in human brain neurons (Kennedy et al., 2003). We followed CAG expansion during reprogramming and confirmed that conversion from fibroblasts to iPS cells did not affect its length (Park et al., 2008; Zhang et al., 2010). The CAG repeat also remained stable for over 40 passages in vitro. This result was in agreement with that observed in human ES cell models for HD (Niclis et al., 2009; Seriola et al., 2011). We also tested CAG size in neurally differentiated HD-iPS cells. Thirty days after differentiation, approximately 15–30% of the cells had a neuronal character, however we did not detect any major change in CAG repeats; in contrast, a deletion of two triplets on one allele occurred in all four HD-iPS somatic cell lines analyzed (not shown). Seriola and collaborators saw no difference in CAG expansion in heterozygous HD-ES (Sertiola et al., 2011); however, another study reported low-level instability in neurospheres derived from two human HD-ES lines, with an expansion of five CAG repeats (Niclis et al., 2009).

We also noted that neural differentiation efficiency was quite variable in the different lines. An analysis of the behavior of all HD-iPS cell lines, including four that were derived from the same fibroblasts, indicated that this variability was intrinsic to the line, or even to the clone (e.g., Suppl. Fig. 4C), and did not reflect a role of the CAG mutation. This variability among cell lines was consistent with recent observations on the innate differentiation propensity of hES and iPS cell lines (Hu et al., 2010; Kim et al., 2010; Osafune et al., 2008). This unpredictability has attracted much attention, because it may mask subtle molecular differences in the original fibroblasts or iPS cells. A recent study identified miR-371-3 as a predictive marker of neural differentiation potential in pluripotent lines (Kim et al., 2011).

The similarities between WT and HD-iPS, despite intrinsic line variability, were further reinforced in the RT-PCR analysis of genes diagnostic for telencephalic specification (SIX3 and FOXG1) and striatal differentiation (GAD65/67, ARPP21 and DARPP32). These analyses did not reveal major differences between WT and HD cell lines. Thus, our results suggested that cells with mutations in HTT were perfectly capable of reaching maturation. This result was consistent with the evidence that homozygous carriers of HD are born asymptomatic (Squitieri et al., 2003).

Increased autophagy was observed in HD mouse brains. This was shown to cause a long-term failure in toxic protein clearance (Martinez-Vicente et al., 2010). In this study, we found higher lysosomal activation in HD-iPS lines than controls during self-renewal and differentiation conditions. We also found an increased number of subcellular acidic compartments compared to controls. This suggested highly active protein degradation. This process may contribute to preserving neurons in vitro.

Collectively, our observations suggested that our human HD-iPS cells could replicate some of the molecular and biological phenotypes typically observed in HD and remained fully capable of generating neurons. In future studies, this revolutionary technology may be used to establish a powerful platform for target discovery and drug screening approaches.

Supplementary materials related to this article can be found online at doi:10.1016/j.nbd.2011.12.042.

Acknowledgments

This research was funded by CHDI Foundation, NY—U.S.A. (A-3388), Ministero dell’Istruzione dell’Università e della Ricerca, Italy (MIUR, 2008KSHKKN) and partially by ESTOOLS (European Community’s Sixth Framework Programme, grant agreement nr. 2006-018739) and NeuroStemcell (European Community's Seventh Framework Programme, grant agreement nr. 222943) to EC.

We would like to thank Sandrine Vianin for the technical support and Dr. Marco Sardiello for helpful suggestions about the LysoTracker assay and for reading and commenting on our results. This study would have not been possible without the participation and consideration of those that suffer from Huntington’s Disease. Special thanks to Associazione Italiana Corea di Huntington (AICH) Milano Onlus for their trust.

References

Castiglioni, V., et al., in press. Induced pluripotent stem cell lines from Huntington’s disease mice undergo neuronal differentiation while showing alterations in the lysosomal pathway. Neurobiol. Dis.

Dimos, J.T., et al., 2008. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221.