High-resolution magnetic resonance imaging quantitatively detects individual pancreatic islets

LAMPRIANOU, Smaragda, et al.

Abstract
We studied whether manganese-enhanced high-field magnetic resonance (MR) imaging (MEHFMRI) could quantitatively detect individual islets in situ and in vivo and evaluate changes in a model of experimental diabetes.

Reference

DOI : 10.2337/db11-0726
PMID : 21926272
High-Resolution Magnetic Resonance Imaging Quantitatively Detects Individual Pancreatic Islets

Smaragda Lamprianou,1 Riikka Immonen,2 Christine Nabuurs,2 Asllan Gjinovci,1 Laurent Vinet,4 Xavier C.R. Montet,3 Rolf Gruetter,2,3,4 and Paolo Meda1

OBJECTIVE—We studied whether manganese-enhanced high-field magnetic resonance (MR) imaging (MEHFMRI) could quantitatively detect individual islets in situ and in vivo and evaluate changes in a model of experimental diabetes.

RESEARCH DESIGN AND METHODS—Whole pancreata from untreated (n = 3), MnCl2 and glucose-injected mice (n = 6), and mice injected with either streptozotocin (STZ; n = 4) or citrate buffer (n = 4) were imaged ex vivo for unambiguous evaluation of islets. Exteriorized pancreata of MnCl2 and glucose-injected mice (n = 6) were imaged in vivo to directly visualize the gland and minimize movements. In all cases, MR images were acquired in a 14.1 Tesla scanner and correlated with the corresponding (immuno)histological sections.

RESULTS—In ex vivo experiments, MEHFMRI distinguished different pancreatic tissues and evaluated the relative abundance of islets in the pancreata of normoglycemic mice. MEHFMRI also detected a significant decrease in the numerical and volume density of islets in STZ-injected mice. However, in the latter measurements the loss of β-cells was undervalued under the conditions tested. The experiments on the exteriorized pancreata confirmed that MEHFMRI could visualize native individual islets in living, anesthetized mice.

CONCLUSIONS—Data show that MEHFMRI quantitatively visualizes individual islets in the intact mouse pancreas, both ex vivo and in vivo. Diabetes 60:2853–2860, 2011

Despite the high incidence of diabetes, the precise molecular and cellular mechanisms that cause the decrease in the mass and function of the insulin-producing β-cells, observed in both the type 1 and type 2 forms of the disease, remain to be elucidated (1). At present, the only, although somewhat indirect, way to monitor the onset and the evolution of the diseases in a given individual is by using sensitive immunological and functional tests, which require injections and repeated blood sampling. However, we still lack a method that could visualize and quantitate pancreatic β-cells in vivo, in a fully noninvasive way. As a result, we also lack a solid biological basis to target new therapeutic approaches that could promote the regeneration (type 1 diabetes) or the function (type 2 diabetes) of β-cells. The difficulty in imaging these cells stems from their deep abdominal location, their distribution in small (50–600 μm in diameter) islets of Langerhans, their modest volume density (~1%) in a control pancreas, and their close relationships to different cell types of both endocrine and exocrine nature. Several of these issues have been partially solved using optical methods, which can now investigate laboratory rodents (2–4), but which cannot be adapted to human studies, given the limited tissue penetration of light (2.4–6). Penetration is not an issue in magnetic resonance (MR) imaging (MRI) and positron-emitting tomography (PET) imaging, which are convenient for human applications, specifically if combined with computed tomography. Because islets are structurally and functionally heterogeneous, and are not all simultaneously altered to the same degree during diabetes development, their individual visualization is important. The choice of an imaging modality is then restricted to MRI, given that the lateral resolution of PET is, at best, in the millimeter range (7). MRI has already been used to visualize transplanted islets (8–11), but has not yet been shown to detect native islets in situ, mostly because of an insufficient spatial resolution, which is only provided by the use of a high magnetic field (8,12–14).

The aim of the current study was to investigate whether imaging of individual islets could be achieved using a 14.1 Tesla (T) MR scanner. In the absence of a validated probe for the specific staining of β-cells, we have also tested whether the MRI contrast of these islets could be enhanced by an in vivo infusion of manganese (12). Our data document that the combination of these conditions, in manganese-enhanced high-field magnetic resonance imaging (MEHFMRI), allows for the easy differentiation of multiple tissues within the whole murine pancreas, including individual islets of Langerhans. The approach quantitatively detects the loss of pancreatic islets in an animal model of type 1 diabetes, and with this approach pancreatic islets in the living animal can be investigated.

RESEARCH DESIGN AND METHODS

Animals. C57BL6 mice were used throughout. All animals were anesthetized with an intraperitoneal injection of 1 g/kg body weight (b.w.) pentobarbital. Three mice were immediately killed. Five mice had a polyethylene (PE50) catheter with an adapted tip (Eppendorf, 0030 001.222) inserted into a femoral vein. Through this catheter, a 15 nmoL/M MnCl2 solution (in 0.9% NaCl) was infused at the rate of 4 mL/h for 7 min, using a precision syringe pump. This provided for a cumulative dose of 47 mg of MnCl2/kg b.w. Six other mice were given 0.8 g glucose/kg b.w. i.p. once, 15 min before the start of the manganese infusion. After 30 min of the manganese infusion, the animals were again injected intraperitoneally with 1.7 g glucose/kg b.w., to acutely stimulate the β-cells, and the pancreata were dissected 15 min later.

Four mice were injected intraperitoneally with 200 mg/kg b.w. streptozotocin (STZ, Sigma), whereas four received only the citrate buffer (CB), which was used as a vehicle of the drug. Two weeks later, the mice were anesthetized with 1.5% isoflurane and had two intraperitoneal catheters placed for administration
of 35 mg/kg b.w. MnCl₂ dissolved in N,N-Bis-(2-hydroxyethyl)glycine (BICINE) buffer together with 1.5 g/kg b.w. glucose. Both MnCl₂ and glucose were manually injected via the catheters, while the animals were inside the magnet bore of the MRI equipment as follows: first, half of the MnCl₂ dose (~1.5 mL) was injected for 15 h in 0.8% paraformaldehyde (PFA) at 4°C, washed in phosphate-buffer, and placed individually into a Fomblin-containing bag. MRI. Ex vivo pancreata were imaged within the Fomblin-containing bags, using a 14.1 Tesla 26 cm horizontal bore scanner (Varian/Magnex Scientific, Abingdon, U.K.) with a 12 cm inner-diameter gradient (400 mT/m in 200 ms, minimized eddy currents), interfaced with a DirectDrive console (Varian, Palo Alto, CA) and a quadrature half-volume coil of 20 mm diameter. High-resolution images were acquired for optimal tissue contrast in a 1 h 12 min acquisition time. In vivo MRI was performed on externalized pancreata of six mice. Animals were injected 30 min before imaging with 35 mg/kg b.w. MnCl₂ (dissolved in BICINE buffer) and 1.5 g/kg b.w. glucose 2 to 3 h before anesthesia with 1 to 2% isoflurane in a 3:2 air/O₂ gas mixture. The abdomen was opened, and the spleen was pulled out with the pancreas. The gland was secured to a Plexiglas plate (Supplementary Fig. 1) using a plastic pin inserted between the pancreatic tail and the spleen without damaging the pancreas vessels. Once the plastic pin had been attached to a Plexiglas plate, the pancreas led on a semiflexible plastic support to minimize its movements (Supplementary Fig. 1) and was positioned in the center of a quadrature coil. The whole mounting was placed within 5 min in the MRI equipment, in which the mouse was kept under ventilation, anesthesia, and warmed by water circulation to maintain the body temperature between 35° and 37°C. High-resolution images were acquired using a gradient echo multislice sequence with fourteen 0.5-mm-thick slices, field of view (FOV) 26×25 mm, and data matrix 512×512 (51×49×300 μm resolution) to cover the whole mouse pancreas. T1/T2* weighted images with repetition time (TR) = 282 ms, echo time (TE) = 7 ms, flip = 60°, and 30 averages were acquired for optimal tissue contrast in a 1 h 12 min acquisition time.

In vivo MRI was performed on externalized pancreata of six mice. Animals were injected 30 min before imaging with 35 mg/kg b.w. MnCl₂ (dissolved in BICINE buffer) and 1.5 g/kg b.w. glucose 2 to 3 h before anesthesia with 1 to 2% isoflurane in a 3:2 air/O₂ gas mixture. The abdomen was opened, and the spleen was pulled out with the pancreas. The gland was secured to a Plexiglas plate (Supplementary Fig. 1) using a plastic pin inserted between the pancreatic tail and the spleen without damaging the pancreas vessels. Once the plastic pin had been attached to a Plexiglas plate, the pancreas led on a semiflexible plastic support to minimize its movements (Supplementary Fig. 1) and was positioned in the center of a quadrature coil. The whole mounting was placed within 5 min in the MRI equipment, in which the mouse was kept under ventilation, anesthesia, and warmed by water circulation to maintain the body temperature between 35° and 37°C. High-resolution images were acquired using a gradient echo multislice sequence with fourteen 0.5-mm-thick slices, FOV 26×25 mm, data matrix 512×512 (51×49×300 μm resolution), and 10 averages.

Histology. Ex vivo MRI images were analyzed using Matlab R2008a (Math-Works, Natick, MA). The entire pancreas pro-

Quantification of the islet mass by MRI. To compare the size of putative islets as well as their numerical and volume densities within the pancreas, the entire pancreata of five animals that had received both manganese and glucose were evaluated first by MRI and then by histology (Fig. 3A). Morphometry showed the expected asymmetrical distribution of islet sizes in histological sections (Fig. 3B). The size distribution determined by the MRI was significantly (P < 0.001) shifted to higher diameters, likely a result of partial volume effects of the 300-μm slice thickness, which made the detection of islets <50 μm in diameter difficult (Fig. 3B). Despite this limitation, MRI evaluated that the volume density of islets, i.e., the relative volume of islets within the pancreas, was on the average 0.8 ± 0.2% (n = 5; Fig. 3C). The average numerical density of islets was 1.2 ± 0.3 per mm³ of pancreas (n = 5).

To evaluate whether the loss of islets in an animal model of type 1 diabetes can be detected by MRI, we injected mice intraperitoneally with either 200 mg/kg b.w. STZ or an equivalent volume of the CB (sham treatment), which was used as vehicle for the drug (Fig. 4A). Two weeks after the STZ injections MRI evaluation showed that the hyperglycemic mice (Supplementary Table 1) had a pancreas volume (Vp; bottom panel of Fig. 4B) that was not significantly different from that of the citrate-injected controls. In contrast, the relative number (Nh; top panel of Fig. 4B) and volume density (Vh; middle panel of Fig. 4D) of the islets were decreased by 55% (P < 0.01) and 45% (P < 0.001), respectively, in the STZ-injected mice (Fig. 4B). These changes were confirmed by the histological analysis of the same pancreas (Fig. 4A). Given that the hyperglycemia of the STZ-injected mice (Supplementary Table 1)
suggested a more profound drop of the insulin-producing β-cells, we immunostained the pancreas for insulin and glucagon (Fig. 4C). As expected, we found that the islets of the STZ-injected mice contained much less insulin-containing β-cells than those of controls. However, anti-glucagon staining demonstrated an increased number of glucagon-containing α-cells (Fig. 4C). In some cases, the latter cell type occupied almost the entire surface of the small, residual islets (Fig. 4C).

Visualization of islets by Mn²⁺-enhanced MRI in living mice. To determine whether high-field MRI can detect islets in vivo, the pancreas was exteriorized through an abdominal incision, without affecting its normal blood flow and innervation (Supplementary Fig. 1). This externalization
FIG. 2. Individual pancreatic islets are visualized by MRI. A: This MR image (left) is a high magnification view of the pancreas shown in Fig. 1C, recorded with a 50 μm in plane resolution. Small, round-ovoid whitish structures (several are pointed by green arrows) are seen dispersed within the pancreatic lobules. Histology (right) confirmed that these structures are pancreatic islets of Langerhans, dispersed within the exocrine parenchyma, between vessels and ducts (white arrows). Scale bar: 1 mm. B: Quantification of the islet signal intensity, relative to that of the surrounding exocrine tissue, confirmed that the MR image of islets was more contrasted (**P < 0.001) in the Mn2+-infused mice (red bar) than in noninfused controls (blue bar). Values are means ± SEM of the number of islets indicated within the columns, a.u., Arbitrary units. (A high-quality digital representation of this figure is available in the online issue.)

minimized the effects of breathing and bowel movements on imaging and allowed for the unambiguous identification of the pancreas, which is not immediate in the noninvasive imaging of mice. Under these conditions, MRI revealed intrapancreatic structures similar to those observed in the ex vivo samples, including putative pancreatic islets of Langerhans, which appeared as intralobular whitish bodies (Fig. 5). Correlative histology confirmed that these bodies were bona fide islets (Fig. 5).

DISCUSSION
Imaging the pancreatic islets, which comprise all insulin-producing β-cells of our body and most of its glucagon-producing α-cells, is urgently needed to progress in our understanding of the natural history and the pathophysiology of diabetes, as well as to monitor candidate treatments aimed at compensating and improving, if not curing, the disease (15,16). Although progress has been made in the imaging of transplanted islets, which can be labeled before transplantation (8–11,17,18), the imaging of the native islets within an entire, intact pancreas still raises significant challenges. This is because of the small size of pancreatic islets, their scattering within the pancreas, their poor contrast relative to that of the surrounding tissues, and the deep position of the pancreas within the abdomen. In laboratory mice, at least some of these challenges can be solved using β-cell–specific probes and near-infrared optical methods (19). However, in larger animals and in humans, the use of nonoptical methods, such as PET or MRI, is required, because of the limited tissue penetration of light (15,16,20,21). If PET has a unique sensitivity and is quantitative, it lacks the resolution to differentiate individual islets, and its application to large numbers of individuals is complicated by the need to generate positron-emitting isotopes, the short half-life of these compounds, and a variety of safety issues. MRI is of more widespread applicability, but questions arise as to whether it could visualize the small pancreatic islets, which in a control human pancreas represent all together no more than 1 g wet weight tissue, and, furthermore, whether it is amenable to a sound quantitative analysis of their mass and function (15,16,21,22).

Using the increased sensitivity of a 14.1T MRI system, we achieved a spatial resolution (23) that, on theory, should be sufficient to detect islets. Using a correlative MRI-histology approach, we document here that the technique indeed visualizes individual islets within a whole, fresh, and untreated mouse pancreas, after either excision of the gland or its externalization in a living mouse. We further document that the islet visualization is enhanced by the prior vascular infusion of manganese (12,14,24,25), particularly in animals challenged with an acute glucose load, since the cation accumulates in islet cells during stimulation of insulin secretion (12,14,24). The study provides evidence that a clinically relevant imaging methodology can be adapted to image individual pancreatic islets in the intact rodent pancreas.

Our study further shows that the analysis of MEHFMRI images provides a sound estimate of the islet mass in control mice. Thus, both the numerical and volume density estimates of the endocrine islets were consistent with the many previous reports, which evaluated these parameters by morphometry of histological sections (26–30). However, the volume and number of the islets were underestimated by MEHFMRI, presumably as a result of the so-called partial volume effect (31,32), as small islets (<50 μm in diameter), which represent but a small proportion of the total β-cell volume, escaped MRI detection within the 300-μm-thick pancreas slices that we imaged. Our study also provides evidence that MRI can quantitate a partial loss of islets, as a result of a major cytotoxic insult to β-cells. Thus, 2 weeks after administration of a dose of STZ, which made the animals stably and overtly hyperglycemic, MRI revealed a 45–55% loss in the volume and numerical densities of the endocrine islets. Immunolabeling of the same pancreas showed that, as expected from many previous reports (31–40), the loss of β-cells was sizably larger than suggested by this percentage and was associated to the persistence of many glucagon-containing α-cells (38,41). Thus, under the conditions we used, MRI did not differentiate the islets.
containing residual β-cells from those predominantly made of α-cells, most likely because manganese is taken up by multiple pancreatic cell types, including α-cells (42,43). These considerations raise concerns that MEHFMRI may not be adequate to detect the modest loss in β-cell mass that may progressively take place over months of diabetes development, nor the even more modest increase in β-cell numbers, which could be anticipated under conditions of spontaneous or treatment-induced β-cell proliferation, transdifferentiation, or neogenesis. To increase the sensitivity of the approach, the development of ligands specifically targeting β-cells (19) is most needed. With the availability of such ligands, MRI may become useful for the evaluation and longitudinal monitoring of both type 1 and type 2 diabetes (4,44–47).

Given the present methodological stage of these experiments, we focused on the MRI of islets in either ex vivo or exteriorized mouse pancreas. The obvious next step is to test whether the approach is amenable to the quantitative imaging of native islets, under noninvasive, in vivo conditions. This question raises significant challenges. First, an in vivo MRI should take into consideration the circulatory, respiratory, and intestinal movements of the living animal, which cyclically displace the islets by a factor significantly larger than their average diameter. To compensate for these movements, the image acquisition needs to be
synchronized with the breathing and beating cycles, which is achievable with modern equipment. Second, a major limitation of pancreas MRI in the living rodent results from the small size of the gland and its intricate topography with respect to the other abdominal organs. The MRI definition of the rodent pancreas is therefore cumbersome and, to some extent, ambiguous. A solution to this problem awaits the development of a second, still putative ligand labeling
the entire exocrine tissue. This issue, however, is unlikely to limit the future translation of MRI to image the human pancreas, which features a much denser and more compact anatomy. In contrast, the future translation of MRI to the diabetes clinic faces several other problems, including the technical conditions required to obtain a sufficiently contrasted (manganese infusion) and resolvable image (high magnetic field). With regard to contrast, manganese infusion certainly raises safety questions. However, this potential problem may be overcome, and manganese-enhanced MRI is now routinely used in many clinical centers (31,32). The cation may also be replaced by alternative T1-relaxing agents (48), awaiting the availability of safer ligands to natural moieties of the β-cell membrane (19). With regard to resolution, the high magnetic field that is required, and that we used here, presently limits the approach to research on animal models until safety concerns have been adequately dealt with. However, the recent introduction of high field (3–9.4 T) equipment for whole human body MRI opens the possibility to now achieve in humans (49) a significant islet imaging, also because the manganese enhancement should be anticipated to be better than under the 14.1T conditions we tested here (50).

At any rate, the major goal of this study was to provide a first proof-of-principle that a clinically relevant imaging method can be developed to quantitatively visualize native islets in the mouse. The positive answer to this question, which is provided by our study, now opens the way to the MRI analysis of a variety of models that have been generated in this animal species, to address unanswered questions about the pathophysiology and sequence of the events that lead to diabetes.

ACKNOWLEDGMENTS
The authors’ teams are supported by grants from the Swiss National Science Foundation (310000-122423, 310000-109402, 122423, CR32B3_129987); the Juvenile Diabetes Research Foundation (40-2011-11); the European Union (BETAIMAGE 222980, Innovative Medicines Initiative for Diabetes [IMIDIA], C2008-T7); the Centre d’Imagerie BioMédicale (CIBM) of the Université de Genève (UNIGE), Healthcare Industry User Group (HIUG), Université de Lausanne (UNIL), Centre Hospitalier Universitaire Vaudois (CHUV), and École Polytechnique Fédérale de Lausanne (EPFL); and the Leenaards and Jeantet Foundations.

No potential conflicts of interest relevant to this article were reported.

S.L. performed the experiments, analyzed data, and wrote the manuscript. R.I. and C.N. performed the experiments, analyzed and researched data, reviewed and edited the manuscript, and contributed to discussion. A.G. helped with the animal surgery. L.V., X.C.R.M., and R.G. contributed to discussion. P.M. wrote the manuscript.

The authors thank D. Rigo, Centre Médical Universitaire (CMU), for excellent technical assistance.

REFERENCES