A novel exon 3 mutation in a Tunisian patient with Lafora's disease

KHIARI, H Mrabet, et al.

Abstract

We report a Tunisian patient born from consanguineous marriage affected with progressive myoclonus epilepsy and cognitive decline, consistent with the diagnosis of Lafora disease. Genetic analysis showed a novel c.659 T>A mutation on exon 3 of the EPM2A gene, converting a leucine to a glutamine residue at amino acid position 220 (p.Leu220Gln), in the dual-specificity phosphatase domain.

Reference


DOI : 10.1016/j.jns.2011.02.011
PMID : 21371719

Available at:
http://archive-ouverte.unige.ch/unige:25383

Disclaimer: layout of this document may differ from the published version.
Short Communication

A novel exon 3 mutation in a Tunisian patient with Lafora’s disease

H. Mrabet Khiaria,⁎, G. Lesca, A. Malafosse, A. Mrabet

1. Introduction

Lafora disease (LD) is an autosomal recessive disease, frequent in Mediterranean countries, characterized by epilepsy, myoclonus, dementia and periodic acid-Schiff-positive intracellular inclusion bodies [1]. LD is caused by mutations in the EPM2A or EPM2B/NHLRC1 genes localized on 6q24 and respectively encoding Laforin and Malin [2,3]. The EPM2 gene expands 4 exons and more than 30 different mutations have been reported [4,5]. We report a novel mutation in a Tunisian family with a phenotype of Lafora disease.

2. Case report

A 16-year-old female patient was referred to the neurological department of Charles Nicolle Hospital, Tunis, at age of 14, for seizures and cognitive decline. She originated from Tataouine (south of Tunisia), was born to third degree related parents. Her medical history showed no problems at birth and psychomotor development was normal until the beginning of adolescence. In her family history, a sister, dead at age of 22, presented cognitive decline and intractable epilepsy beginning at the age of 14. One year after, she had experienced monthly generalized spike-waves and polyspike-waves enhanced by photic stimulation (Fig. 1B). Laboratory evaluations, ophthalmologic examination and brain imaging were normal. Despite adequate anti-epileptic treatments, the patient continued to have seizures and her mental decline continued. Her last visit to our department was at age of 16 with very frequent seizures. Neurological examination showed impaired cognition, dysarthria and ataxia. EEG showed long bursts of diffuse slow waves enhanced by photic stimulation (Fig. 1C, D). LD was suspected on the basis of the electroclinical picture. Microscopic examination of the axillary skin biopsy did not reveal Lafora bodies.

Genetic analysis, after informed consent, showed that the patient was homozygous for a novel c.659 T→A mutation on exon 3 of the EPM2A gene, converting a leucine to a glutamine residue at amino acid position 220 (p.Leu220Gln), in the dual-specificity phosphatase domain.

⁎ Corresponding author. Tel./fax: 216 71562834.
E-mail address: helamrabet@yahoo.com (H.M. Khiari).
4. Conclusion

This first EPM2A mutation reported in a Tunisian family will bring additional data to the genetic epidemiology of LD. Our finding together with the other new mutations recently described will help to complete the pathogenetic understanding of the disease and certainly develop new therapeutic gene replacement trials.

Informed Consent/Ethics of Experimentation

We received prior approval by the appropriate institutional review body. Informed consent was obtained from each subject or patient.

References