Oxygen isotope effect and phase separation in the optical conductivity of (La0.5Pr0.5)0.7Ca0.3MnO3 thin films

MENA, F., et al.

MENA, F., et al. Oxygen isotope effect and phase separation in the optical conductivity of (La0.5Pr0.5)0.7Ca0.3MnO3 thin films. Physical Review. B, Condensed Matter, 2005, vol. 72, no. 13, p. 134422

DOI: 10.1103/PhysRevB.72.134422
Oxygen isotope effect and phase separation in the optical conductivity of \((\text{La}_{0.8}\text{Pr}_{0.5})_{0.7}\text{Ca}_{0.3}\text{MnO}_3\) thin films

F. P. Mena, A. B. Kuzmenko, A. Hadipour, J. L. M. van Mechelen, D. van der Marel, and N. A. Babushkina

1Material Science Center, University of Groningen, 9747 AG Groningen, The Netherlands
2Département de Physique de la Matière Condensée, Université de Genève, quai Ernest-Ansermet CH - 1211 Genève, Switzerland
3RRC Kurchatov Institute, 123182 Moscow, Russia

(Rceived 6 January 2005; revised manuscript received 7 September 2005; published 24 October 2005)

The optical conductivities of films of \((\text{La}_{0.8}\text{Pr}_{0.5})_{0.7}\text{Ca}_{0.3}\text{MnO}_3\) with different oxygen isotopes \((^{16}\text{O} \text{and} ^{18}\text{O})\) have been determined in the spectral range from 0.3 to 4.3 eV using a combination of transmission in the midinfrared and ellipsometry from the near-infrared to ultraviolet regions. We have found that the isotope exchange strongly affects the optical response in the ferromagnetic phase in a broad frequency range, in contrast to the almost isotope-independent optical conductivity above \(T_C\). The substitution by \(^{18}\text{O}\) strongly suppresses the Drude response and a midinfrared peak while enhancing the conductivity peak at 1.5 eV. A qualitative explanation can be given in terms of the phase separation present in these materials. Moreover, the optical response is similar to the one extracted from measurements in polished samples and other thin films, which signals to the importance of internal strain.

DOI: 10.1103/PhysRevB.72.134422

PACS number(s): 78.20.–e, 78.66.–w, 75.30.–m

I. INTRODUCTION

Few compounds manifest a so ample variety of phases as the manganite perovskites when conditions such as magnetic field, temperature, or doping are changed. \(\text{La}_{1-x}\text{Ca}_x\text{MnO}_3\) is a particular well studied family of manganites, an example of this as can be seen from its phase diagram given in Fig. 1(a).\(^1\) It is evident that the particular ground state of the manganites depends on the ratio of \(\text{Mn}^{3+}\) to \(\text{Mn}^{4+}\) given by the hole doping \(x\). At a doping between about 0.17 and 0.5 the low-temperature phase is metallic and ferromagnetic, which is commonly attributed to the double exchange mechanism.\(^2\)

The ground state also depends on specific lattice characteristics: Mn-O and cation-O bond lengths, and cation-Ocation bond angles. These bond characteristics depend, in turn, on the average cation radius, \(\langle r_A\rangle\).\(^3\) At a given hole doping, the direct influence of \(\langle r_A\rangle\) can be studied by replacing the rare earth with another. However, this replacement can also induce disorder if \(\langle r_A\rangle\) exceeds certain critical value.\(^4\) \((\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3\) is particularly suitable to study the effect of the average cation radius as it always remains below the critical value.\(^5\) Neutron diffraction experiments in this system\(^5\) have revealed the phase diagram shown in Fig. 1(b) (solid lines). At low temperatures, as the Pr concentration increases, the system goes from a homogeneous ferromagnetic metal to a homogeneous canted antiferromagnetic insulator. Between these two extremes, the neutron diffraction data\(^5\) suggests the presence in the system of two different phases, one is antiferromagnetic while the other is canted ferromagnetic.

Phase separation seems, indeed, to be a common feature of strongly correlated systems (see Ref. 6, and references therein). For example, the double-exchange model has a natural tendency towards phase separation at low doping.\(^6,7,9\)

The regions formed in this way are one of an undoped antiferromagnet and one of higher electron (or hole) concentration which is ferromagnetic (or strongly canted) and metallic.\(^6\) However, the long-range Coulomb forces compete against phase separation forcing the phase domains to be rather small.\(^6,7\) It is important to mention that there can also be phase separation between electron rich regions and charge ordered regions.\(^5\) Several experimental techniques yield a strong evidence for phase separation in the manganites (see Refs. 6, 7 for a review, and Ref. 8 for experiments specific to thin films).

Another striking phenomenon observed for certain compositions is the strong oxygen isotope effect.\(^12,13\) For instance, the effect of oxygen isotope substitution \((^{16}\text{O} \rightarrow ^{18}\text{O})\) has been studied in various members of the

FIG. 1. (Color online) Phase diagram of (a) \(\text{La}_{1-x}\text{Ca}_x\text{MnO}_3\) (from Ref. 1), and (b) \((\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3\) (from Ref. 5 for \(^{16}\text{O}\) and as suggested in Ref. 10 for \(^{18}\text{O}\)). The richness of these phase diagrams is evident. They comprise the following states: canted antiferromagnet (CAF), charge order (CO), ferromagnetic insulator (FI), ferromagnet (FM), and antiferromagnet (AF). The arrow in (b) indicates the composition used in this work. However, it has to be taken into account that due to internal strains, the film actually lies closer to the region of phase separation (see Ref. 11).
metal-insulator transition is accompanied by a large redistri-
manganites.18,21

Several mechanisms have been formulated to explain the iso-
iso-

The isotope effect has also been studied in thin films of
(La$_{0.7}$Sr$_{0.3}$)$_2$MnO$_3$ grown in either LaAlO$_3$ (LAO) and

The isotope effect has also been studied in thin films of
(La$_{0.7}$Sr$_{0.3}$)$_2$MnO$_3$ grown in either LaAlO$_3$ (LAO) and

For example, let us consider La$_{0.7}$Sr$_{0.3}$MnO$_3$ (Ref. 22) which

II. EXPERIMENT

A. Sample preparation

Thin films of (La$_{0.3}$Pr$_{0.7}$)$_2$Ca$_{0.3}$MnO$_3$ were grown on

THIN FILMS OF manganites.10,13 In the paramagnetic state neither the
current conductivities10,13 are noticeably modified by the iso-

High temperature conductivity of the magnetic compound

Alternatively, it has been attributed to a slight oxygen-mass
dependence of the lattice Debye-Waller factor and, therefore,
the hopping parameter t and bandwidth W, which is close to
the critical value.16 In order to be so sensitive to the oxygen
mass, the system has to be at the verge of the metal-insulator
transition. This sensitivity can also be related to phase

In the present paper we present the optical conductivity of
manganites containing two different oxygen isotopes. Spec-
If the metal-insulator transition is accompanied by a large redistribution of optical spectral weight, mainly below ~ 4 eV. It indicates the energy scale of the most important electronic interactions making up the phase diagram, such as the on-site Hund’s rule interaction or polaron activation energy. The value of the electronic kinetic energy, derived from the integrated optical conductivity, has been a key ingredient of the quantitative verification of the double-exchange scenario in manganites.18,21

Optical conductivity has also offered some indications of

Further, the change from a small to a large polaron.24 However, in
contrast to the experiments performed on polished samples,
experiments on cleaved single crystals27 show, the develop-
ment of only a broad zero-centered peak. The difference in
the results emphasize the sensitivity of the manganites to
static imperfections and/or structural strain.27

Optical experiments in thin films have also shown the
presence of a narrow Drude-like mode and a MIR peak in
FM metallic samples (see, for example, Refs. 20 and 28).
These MIR peaks have also been assigned to polaronic ab-
sorptions. Particularly, it was possible to distinguish between
small and large polaron in La$_{0.25}$Pr$_{0.75}$Ca$_{0.3}$MnO$_3$ and
La$_{0.75}$Sr$_{0.25}$MnO$_3$, respectively.28 In contrast to the work of
Kim et al.24 (discussed above), Hartinger and collaborators
made the assignment by fitting the optical conductivity to the
corresponding theoretical expressions.28 Evidence of phase
segregation has also been inferred from measurements of the
absorption coefficient in manganite thin films (see Refs.
29–31, and references therein).

In the present paper we present the optical conductivity of
manganites and characterization see Ref. 11

A. Sample preparation

Thin films of (La$_{0.3}$Pr$_{0.7}$)$_2$Ca$_{0.3}$MnO$_3$ were grown on
SrTiO$_3$ using the aerosol metalorganic chemical vapor de-
position (MOCVD) technique (for the details of the preparation
and characterization see Ref. 11). The films had a nominal
thickness of 60 nm which was extracted more accurately
from the optical measurements. For the isotope exchange

Thin films of (La$_{0.3}$Pr$_{0.7}$)$_2$Ca$_{0.3}$MnO$_3$ were grown on
SrTiO$_3$ using the aerosol metalorganic chemical vapor de-
position (MOCVD) technique (for the details of the prepara-
tion and characterization see Ref. 11). The films had a nominal
thickness of 60 nm which was extracted more accurately
from the optical measurements. For the isotope exchange

Thin films of (La$_{0.3}$Pr$_{0.7}$)$_2$Ca$_{0.3}$MnO$_3$ grown in either LaAlO$_3$ (LAO) and
SrTiO$_3$ (STO).11,17 For the films grown in LAO, the
isotope substitution produces a metal-insulator transition
similar to the one seen in ceramic samples of
(La$_{0.25}$Pr$_{0.75}$)$_2$Ca$_{0.3}$MnO$_3$.11,17 Although for films grown in
STO no metal-insulator transition was observed, the samples
with 18O exhibit a much lower value of the dc
conductivity10,13 are noticeably modified by the isotope ex-

a strong MIR infrared peak whose intensity decreases when
the temperature is increased. The spectral weight lost by this
a strong MIR infrared peak whose intensity decreases when
the temperature is increased. The spectral weight lost by this

Alternative, it has been attributed to a slight oxygen-mass
change. At low temperatures, however, the situation is dras-
tically different. Samples containing heavier 18O atoms
exhibit a much lower isotope effect. Alexandrov and Bratkovsky described the iso-

topic dependence in terms of polaron-bipolaron dynamics.15

Compared to the ceramic samples, this angle is increased for
films grown in LAO. This structural difference is re-
lected in the magnitude of the Mn-O-Mn bond angles.

For example, let us consider La$_{y}$Sr$_{1-y}$MnO$_3$ (Ref. 22) which
remains insulating even below T_C. Its optical conductivity
does not show any Drude contribution but a midinfrared (MIR) peak appeared at around 0.4 eV below T_C.22 This peak
was assigned to a small polaron absorption and it was not-
iced that the temperature dependence of its spectral weight
resembles a percolation-type transition.22 In fact, Moskvin et
al.23 have been able to describe the temperature dependence
of the optical conductivity in this compound by using an
effective medium approximation assuming that metallic
spherical regions are embedded into an insulating matrix
(LaMnO$_3$). In this approximation the MIR peak is a geometric
resonance whose position is mainly determined by the
shape of the metallic regions.23

Such MIR peak has also been seen in the FM metallic part
of the phase diagram.24–26 It is already visible at high tem-
peratures but below T_C its intensity increases being also
accompanied by a narrow Drude peak. This behavior suggested
the change from a small to a large polaron.24 However, in
contrast to the experiments performed on polished samples,
experiments on cleaved single crystals27 show, the develop-
ment of only a broad zero-centered peak. The difference in
the results emphasize the sensitivity of the manganites to
static imperfections and/or structural strain.27

Optical experiments in thin films have also shown the
presence of a narrow Drude-like mode and a MIR peak in
FM metallic samples (see, for example, Refs. 20 and 28).
These MIR peaks have also been assigned to polaronic ab-
sorptions. Particularly, it was possible to distinguish between
small and large polaron in La$_{0.25}$Ca$_{0.75}$MnO$_3$ and
La$_{0.75}$Sr$_{0.25}$MnO$_3$, respectively.28 In contrast to the work of
Kim et al.24 (discussed above), Hartinger and collaborators
made the assignment by fitting the optical conductivity to the
corresponding theoretical expressions.28 Evidence of phase
segregation has also been inferred from measurements of the
absorption coefficient in manganite thin films (see Refs.
29–31, and references therein).

In the present paper we present the optical conductivity of
manganites and characterization see Ref. 11

A. Sample preparation

Thin films of (La$_{0.3}$Pr$_{0.7}$)$_2$Ca$_{0.3}$MnO$_3$ were grown on
SrTiO$_3$ using the aerosol metalorganic chemical vapor de-
position (MOCVD) technique (for the details of the preparation
and characterization see Ref. 11). The films had a nominal
thickness of 60 nm which was extracted more accurately
from the optical measurements. For the isotope exchange

two strips of $1 \times 8 \text{ mm}^2$ were annealed simultaneously in different atmospheres. One of them was heated in an $^{16}\text{O}_2$ atmosphere, while the other was heated in an oxygen atmosphere containing 85% of $^{18}\text{O}_2$. Hereafter, these samples will be referred to as S16 and S18, respectively. The x-ray diffraction (XRD) analysis shows that the films are highly strained.\(^\text{11}\) As mentioned in the introduction, the STO lattice constants are larger than the film, which produces an in-plane expansion of the perovskite cube. In contrast, perpendicularly to the plane, the film is contracted. In this conditions, a buckling of the MnO$_6$ octahedrons is expected.\(^\text{11}\)

B. Optical experiments

1. Transmission

In the frequency region 1000–5000 cm$^{-1}$ the optical transmission was measured using a Bruker 113v Fourier-transform infrared (FTIR) spectrometer. Below this frequency the STO substrate is not transparent. The transmission was calibrated at room temperature against an aperture of the same size. For the temperature dependence of the transmitted intensity a home-built cryostat was used, the special construction of which guarantees the stable and temperature independent optical alignment of the sample. The measured intensities where then normalized to the room-temperature transmission. The results of these measurements are summarized in Fig. 2. The main panels show the absolute temperature transmission. The results of these measurements are summarized in Fig. 2. The main panels show the absolute temperature transmission. The results at room temperature and 7 K are shown in the top panel of Fig. 3. The outcome of the ellipsometry experiment are the ellipsometric parameters Ψ and Δ that define the ratio between the Fresnel reflection coefficients for the s- polarized and p-polarized light, $\rho = r_p/r_s = \tan(\Psi)e^{i\Delta}$. As an example of the results, we show in Fig. 4 the corresponding ellipsometric parameters for S16. The ratio ρ, obviously, depends on the dielectric functions of both, substrate and film. Since we know the optical properties of the substrate, the complex dielectric function of the film, $\varepsilon(\omega) = \varepsilon_r(\omega) + i(4\pi\omega)\sigma_r(\omega)$, was obtained by inverting numerically the analytical expression corresponding to ρ for a two-layer system.\(^\text{32}\) At different temperatures we used only the room temperature data for the substrate and also assumed a semi-infinite substrate. The real
part of the optical conductivity, $\sigma_1(\omega)$, obtained from this inversion is shown in Fig. 5.

4. Optical conductivity in the MIR range

Below 6000 cm$^{-1}$, the complex dielectric function of the film was obtained using a similar approach to the one used in our previous experiments. As a first step we performed a simultaneous fit to the dc conductivity, transmission of the film+substrate system (via the Fresnel equations), and the dielectric function of the film at higher frequencies. The fit used a model dielectric function which is the combination of one Drude and a limited number of Lorentz oscillators

$$\epsilon(\omega) = \epsilon_\infty - \frac{\omega_p^2}{\omega(\omega + i\Gamma)} + \sum_j \frac{\omega_{\text{r},j}^2}{(\omega_{\text{r},j}^2 - \omega^2) - i\omega\Gamma'},$$

(1)

where ω_p, $\omega_{\text{r},j}$ (plasma frequency), and Γ (scattering rate) give, respectively, the position, strength, and width of the oscillator. ϵ_∞ is the high-frequency dielectric constant. This Drude-Lorentz (DL) fit sets extrapolations below and above the measured range. Finally, a Kramers-Kronig (KK) constrained variational fitting of spectra is used where every detail of the measured data is reproduced by introducing an arbitrary number of oscillators on top of the previous fit.

The real part of the optical conductivities obtained in this way are plotted in Fig. 5. As in the usual KK transformation, the obtained optical conductivity depends on the extrapolations. Since we have used the dielectric function obtained from ellipsometry at a rather broad energy range, the most influential are the low frequency extrapolations. To estimate the uncertainties coming from this factor, we have repeated the described procedure using different extrapolations (all of them congruent with the dc conductivity). The associated error bars are small for though rather large for the low-frequency oscillations. This is not a surprise since the transmission is mostly determined by the absorptive part of the optical conductivity, $\sigma_1(\omega)$. Moreover, we have repeated the same calculations assuming an error as large as 5% in the measured transmission. The total uncertainty related with both sources of errors is indicated by the error bars of Fig. 5.

The last point we would like to comment in this section is the influence of the temperature-dependent variation of the substrate. This is indeed important as it turns out that the penetration depth of the films is of the order of the film thickness. Therefore, we have made a complete analysis of such effect in our data. With the raw data of the substrate +film system at 5 K, we repeated the calculations described above but using the dielectric function of STO at low temperatures. The result of this analysis is presented in the middle and bottom panels of Fig. 3, which shows a variation smaller than 1% of the film optical conductivity. Consequently we may exclude any spurious effect on the dielectric function displayed in Fig. 5 due to the temperature dependence of the substrate.
III. RESULTS AND DISCUSSION

A. Optical conductivity and assignment of peaks

The obtained optical conductivities are shown in Figs. 5 and 6. The most important observation is that, while above T_C the samples with 16O and 18O have almost identical optical conductivities, at low temperatures significant differences appear. Nevertheless, even at low temperatures, the conductivities of the two isotope-substituted samples demonstrate qualitatively the same set of peaks (Fig. 7). This allows us to discuss the provenance of the main spectral features for the two samples.

In agreement with previous measurements (see, for example, Ref. 20), we observe a significant transfer of spectral weight from the high-frequency region (1–4 eV) to low frequencies as the system goes from the paramagnetic to FM state (see the opposite trends in the temperature dependence of $\sigma_1(\omega)$ at 3000 and 12 000 cm$^{-1}$, shown in the insets of Fig. 5). Also notice that at 3000 cm$^{-1}$ the optical conductivity increase below T_C is larger in the more metallic S16 sample. Other point to mention is that the frequency dependence of the optical conductivity, at different temperatures, is similar to that obtained from reflectivity measurements on polished samples. In particular, both samples exhibit a MIR peak which seems to be accompanied by a narrow zero-frequency mode in the S16 sample. Note that Takenaka et al. claimed that nonpolished (cleaved) single crystals do not demonstrate any separation of the Drude and MIR peaks.

The DL oscillator fit described in Sec. II B allowed us to separate the different contributions to the optical conductivity and their temperature dependencies. At all temperatures and in both samples, we used the same number of oscillators. For example, at 10 and 296 K, the oscillators used in the fit can be seen in Fig. 7 while the fit parameters at 10 K are given in Table I. The limited spectral range of our measurements did not allow us to extract the exact shape of the narrow Drude peak. Therefore we had to keep the width of the Drude peak constant at a small value and adjust its strength according to the value of σ_{dc}. In our case the width of the
Drude peak is largely an \textit{ad hoc} assignment but it is in agreement with what has been shown in polished samples\cite{28} and thin films.\cite{28} Nevertheless, it does not affect the main conclusions presented below. We have also fixed the position of the highest-frequency oscillator, which falls outside our spectroscopic window.

To facilitate further discussion, we reproduce in Fig. 8(a) the energy diagram proposed for the manganites (see the figure caption for details).\cite{1,11} The possible transitions, depicted in Fig. 8(b), are:

\begin{itemize}
 \item \textit{I}: A transition between different e_g levels in the same site. This transition is not dipole allowed and, therefore, is expected to be weak.\cite{20,37} However, it has been argued\cite{38,39} that due to the strong hybridization between the e_g and O 2p bands, and the strong local distortion of the Mn-O octahedra, these transitions can be allowed.
 \item \textit{II, III}: Interatomic $e_g \rightarrow e_g$ transitions, i.e., from a Mn$^{3+}$ ion to either another Mn$^{3+}$ ion or to a Mn$^{4+}$ ion. In both cases, the promoted electron can end up being parallel or antiparallel to the t_{2g} core spin.
 \item \textit{IV, V}: Charge transfer transitions, O 2p \rightarrow e_g.
\end{itemize}

Now we address the possible assignments to the peaks recognized by the DL fit (see Fig. 7). Let us start from the high frequency features. The strong absorption starting at around 2.5 eV is represented by peaks 4 and 5 which, taken together, show a small temperature dependence and almost no isotope effect. There is a general consensus that this feature stems from the charge-transfer transitions (\textit{IV} and \textit{V}) from the O 2p band to bands of Mn d character, namely the unoccupied e_g levels.\cite{19,20,38}

The most interesting oscillators are the two low-frequency peaks, 2 (\sim0.5 eV) and 3 (\sim1.5 eV), which show a strong temperature dependence (see Fig. 7). At high temperatures, in both samples, only peak 3 is clearly visible and does not significantly change down to T_C. From this point its intensity decreases in favor of peak 2. This transfer of spectral weight is accompanied by a small displacement of peak 2 to low frequencies and some shift of peak 3 towards high frequencies. This process stops at around 100 K in S16 and 75 K in S18. Thus, one can conclude that peak 2 is more favored in the metallic state, while peak 3 is characteristic of the insulating phase.

Peak 2 most likely corresponds to the processes \textit{II} or \textit{III}, where the spin of the final state is parallel to the t_{2g} core. The fact that it does not form a Drude peak is due to its polaronic nature, probably enhanced by strains present in films and polished samples. There has also been some discussion about whether it transforms from small to large polaron or remains small in the whole temperature range [the first has been suggested from studies in La$_{1-x}$Ca$_x$MnO$_3$ (Ref. 24) and several compounds of the form A$_{0.7}$R$_{0.3}$MnO$_3$ (A=Nd, La; R=Sr, Ca) (Refs. 20, 37) while the second has been proposed by studying La$_{2/3}$Ca$_{1/3}$MnO$_3$ thin films\cite{28}]. A careful fit to the corresponding analytical expressions allowed to recognize, at least in La$_{2/3}$Ca$_{1/3}$MnO$_3$, as always being a small polaron.\cite{28}

The temperature dependence of its position was found to be much larger than in the case of La$_{2/3}$Sr$_{1/3}$MnO$_3$ where the polaron seems to be large. The temperature dependence of

\begin{table}
\centering
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline
Sample & $\omega_{p,1}$ & Γ_1 & $\omega_{p,2}$ & Γ_2 & $\omega_{p,3}$ & Γ_3 \\
\hline
S16 & 8320 & 632 & 2853 (0.35) & 21154 & 7725 & 13155 (1.63) & 12872 & 9300 \\
S18 & 2449 & 632 & 3054 (0.38) & 15999 & 6132 & 13559 (1.68) & 18091 & 9426 \\
\hline
Sample & $\omega_{o,4}$ & $\omega_{p,4}$ & Γ_4 & $\omega_{o,5}$ & $\omega_{p,5}$ & Γ_5 \\
\hline
S16 & 32236 (3.99) & 29631 & 16843 & 43600 (5.41) & 55234 & 47633 \\
S18 & 30930 (3.84) & 31347 & 18300 & 43600 (5.41) & 53329 & 24540 \\
\hline
\end{tabular}
\caption{Parameters, in cm$^{-1}$(eV), corresponding to the oscillators used to describe the optical conductivity of the two films at 10 K.}
\end{table}
the position of peak 2, in both S16 and S18, is more similar to the one found for the small polaron case.

Peak 3 has been given two interpretations. From studies in various samples of La$_{1-x}$Ca$_x$MnO$_3$, it has been assigned to a transition of type I (see also the theoretical analysis given in Ref. 39). This kind of transition, though not allowed, can be enhanced by local distortions and strong hybridization. It was also argued that its spectral weight decreases with temperature lowering because lattice distortions also become weaker. However, a dipole forbidden transition is unlikely to have such a large spectral weight possessed by peak 3. To our point of view, a more probable candidate is an interatomic transition II or III where the final state is antiparallel to the t_{2g} core spin. This gives a rather small value of J_H of about 0.75 eV. Recent dynamical mean-field calculations of the critical temperature, spin-wave stiffness, and optical spectral weight changes provided a two times larger value of J_H, which is nevertheless much closer to 0.75 eV compared to initial estimates. In a homogeneous fully spin-polarized state the antiparallel process should disappear. However, we observe that even at low temperatures the intensity of peak 3 remains finite. We will see later, that this can ascribed to the formation of an phase-separated state, which consists of insulating and conducting domains.

Regarding this assignment of peak 3, we have to mention that in their study of compounds of the form A_x-R_{y}, it has been associated with the antiparallel transitions with a feature at 3 eV (giving J_H ~ 1.5 eV) observed on the differential conductivity spectra. Following the same procedure, we plot the difference between $\sigma_1(\omega)$ at any given temperature and $\sigma_1(\omega)$ at 10 K (see Fig. 9). As in Ref. 20, we can also see that the conductivity in a broad region around 2.7 eV (22 000 cm$^{-1}$) is suppressed below T_C. However, the temperature dependence of conductivity at 2.7 eV, seen in the insets in Fig. 10, does not show any feature at T_C that would be natural to expect from transitions which are so sensitive to the magnetic order. On the other hand, the temperature dependence at about 1.5 eV (12 000 cm$^{-1}$) does show a clear feature at T_C, giving extra support for our assignment.

Another relevant issue is the importance of the correlation (or Hubbard-U) effects. A large value of U would shift the energy of the process of type III or V to higher energies. For the d^4 configuration, which is the case for the Mn$^{2+}$ atoms, the lower estimate of U is about 1.3 eV if a full metallic screening is assumed. In manganites the screening is expected to be smaller, thus giving an even larger value of U. The analysis of photoemission and x-ray absorption spectroscopy yields U at least larger than 3 eV. Then we have to conclude that transitions of the type III and V are located at rather high frequencies. However, in Ref. 21 it has been argued that the integrated conduction-band spectral weight agrees well with the band calculations, meaning that the spectral weight transfer due to the Hubbard-U effects is small.

B. Phase separation

Substitution of 16O with 18O makes the system less metallic in the FM state, without affecting it noticeably above T_C. In accordance, as can be seen in Fig. 6(b), the conductivity of the sample S18 shows at low temperature a much larger peak at 1.5 eV (characteristic of the insulating state) and much smaller peak at 0.5 eV (characteristic of the ferromagnetic metallic state) compared to the sample S16. What is interesting, however, is that the effect of the isotope exchange on finite-frequency conductivity is yet much smaller
than the one on the dc conductivity (the ratio of σ_{dc}’s amounts to more than one order of magnitude for our samples). In view of numerous indications of the phase separation in manganites (see Ref. 7, and references therein; see also Ref. 8), it is reasonable to associate the different scale of the isotope dependence of σ_{dc} with the percolation of conducting domains.

The idea of phase separation is intimately related with the oxygen isotope effect itself. In this scenario, at high temperatures the insulating phase is dominating. When the temperature is lowered, there is first tendency to charge ordering temperatures the insulating phase is dominating. When the temperature variation of the spectral weights of peaks 2 and 3 are consistent with this interpretation (see Fig. 10). That is, at low temperatures, the intensity of both peaks tends to saturate. Moreover, this temperature dependence is similar to the one seen in the MIR peak of La$_{7/8}$Sr$_{1/8}$MnO$_3$ where it was also suggested to be caused by phase separation.

The changes in the optical conductivity produced by the isotope substitution are also consistent with phase separation. In this picture, the large isotope effect seen in these compounds results from the fact that the small change induced by the isotope substitution shifts the relative stability of one phase over the other, especially close to the phase boundary. In the present case, the 18O substitution favors the insulating phase. Accordingly, we can see this effect when comparing the strengths of peaks 2 and 3 between S16 and S18 at the lowest temperature. In S18 (the less metallic of the two), the former oscillator is weaker while the latter is stronger.

As discussed in Ref. 16, the isotope substitution changes the effective hopping integral, t_{eff}, which actually determines the relative stability of the different phases. The change produced by the isotope substitution is small but can be enhanced if the charge carriers have polaronic nature. This, as we have seen in the previous section, is the case in the samples studied here, and may help to explain the large isotope effect.

We also would like to remark that the phase separation scenario seems to be relevant only to samples with 16O and somewhat low content of 18O. Studies of the effect of partial 16O-18O substitution on (La$_{0.22}$Pr$_{0.78}$)$_3$Ca$_{0.3}$MnO$_3$ ceramic samples indicate that the increasing of 18O enrichment produced a percolationlike transition to the insulating at a concentration of around 60%. Moreover, magnetic and neutron diffraction measurements indicate that above 60% there exists only a pure antiferromagnetic insulating phase. In the same fashion, it is expected that samples of (La$_{0.5}$Pr$_{0.5}$)$_3$Ca$_{0.3}$MnO$_3$ with 18O content larger than 85% should be antiferromagnetic without phase separation.

C. Spectral weight

Finally, we discuss the integrated spectral weight, which can be conveniently expressed in terms of the effective number of carriers

$$N_{eff}(\omega) = \frac{2mV}{\pi e^2} \int_0^\omega \sigma(\omega')d\omega',$$ \hspace{1cm} (2)

where m and e are the electron mass and charge, respectively, and V is the volume of one formula unit. By applying this formula to the optical conductivity, we obtain the results presented in Fig. 11. The amount and energy scale of the spectral weight redistribution caused by the metal-insulator transition can be assessed by the comparison of $N_{eff}(\omega)$ for different temperatures. To facilitate this comparison, in the insets of the same figure we have also plotted the temperature dependence of $\Delta N_{eff} = N_{eff}(T) - N_{eff}(10 \text{ K})$ at two different frequencies.

According to the discussion in the previous sections, at temperatures larger than T_C, the spectral weight is approximately the same for both samples and shows also small temperature dependence. Below their respective T_C, the spectral weight at low frequencies of both samples increase but, at the lowest temperature, is much smaller in S18 which is also the sample with smaller T_C. However, we have not found scaling between N_{eff} at 0.5 eV and T_C as seen for (La$_{1-y}$Pr$_y$)$_3$Ca$_{0.3}$MnO$_3$ samples with different Pr concentrations. Another point to notice is that the spectral weight in the S18 sample is recovered in a smaller frequency range than the one containing 18O.

It is also interesting to compare different compounds where the distribution of spectral weight has also been stud-
ied. In the manganites studied here, the increase of spectral weight at low frequencies due to the formation of the metallic state is recovered at around 4 eV. This is an indication of the width of the d bands involved in the physical process. In heavy fermion systems, the spectral weight is recovered in an energy range of 0.2 eV which indicates the narrowness of the f bands participating in the process of forming the heavy fermion coherent state. On the other hand, in FeSi the spectral weight lost in the formation of the Kondo insulating phase is not recovered below 4 eV. This is also an indication of the width of the d bands describing its behavior.

IV. CONCLUSIONS

We have presented the optical properties of two ($La_{0.5}Pr_{0.5}$)$_2$CaO$_3$MnO$_3$ films, grown on SrTiO$_3$ substrate, each of one contains different oxygen isotopes. The mismatch between the film and substrate lattice constants makes the films to be under high strains that change the properties and make them more susceptible to phase separate. Evidence of this behavior was found in the observed optical response at low frequencies. In the paramagnetic insulating phase the optical conductivity of both films is similar and is dominated by a large peak at 1.5 eV, most probably corresponding to the transition $\Gamma [\varepsilon_{g}(\text{Mn}^{3+}) \rightarrow \varepsilon_{t}(\text{Mn}^{3+})]$ where the moved electron ends up being antiparallel to the t_{2g} core.

At temperatures below T_C, it loses intensity until it saturates at around 100 K. In the less metallic sample (the one containing 16O), the intensity of this peak at low temperatures is larger than the more metallic one (the one with 18O). On the other hand, the decrease in intensity of this transition is accompanied by the increase of another peak located at about 0.5 eV. This latter peak has been identified as the same kind of transition but where the excited electron ends up being parallel to the spin of the t_{2g} electrons. The intensity of this peak is larger in the more metallic sample. These observations taken together suggest that below T_C the samples separate in two phases, one ferromagnetic metallic and one paramagnetic insulating. The relative volume of these phases is dependent on the isotope content, the metallic phase being more abundant in the sample containing 16O.

ACKNOWLEDGMENTS

We would like to thank D. I. Khomskii and A. J. Millis for fruitful discussions, and E. van Heumen for his help in performing the ellipsometry measurements in STO. This investigation was supported by the Netherlands Foundation for Fundamental Research on Matter (FOM) with financial aid from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). It was also partially supported by MaNEP (Switzerland).

2 C. Zener, Phys. Rev. 82, 403 (1951).
32 For the corresponding Fresnel equations see for example: O. S. Heavens, *Thin Film Physics* (Methuen, London, 1970).
46 For a review in the optical properties of heavy fermion systems see L. Degiorgi, Rev. Mod. Phys. 71, 687 (1999).