Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO$_3$

SCHERWITZL, Raoul, et al.

DOI: 10.1063/1.3269591
Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO$_3$

R. Scherwitzl, P. Zubko, C. Lichtensteiger, and J.-M. Triscone

Citation: Appl. Phys. Lett. 95, 222114 (2009); doi: 10.1063/1.3269591
View online: http://dx.doi.org/10.1063/1.3269591
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v95/i22
Published by the American Institute of Physics.

Related Articles
Heteroepitaxial VO$_2$ thin films on GaN: Structure and metal-insulator transition characteristics
Pressure dependence of the Verwey transition in magnetite: An infrared spectroscopic point of view
Temperature induced delocalization of charge carriers and metallic phase in Co0.6Sn0.4Fe2O4 nanoparticles
Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN
Anderson localization in strongly coupled gold-nanoparticle assemblies near the metal–insulator transition

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO₃

R. Scherwitzl, P. Zubko, C. Lichtensteiger, and J.-M. Triscone

DPMC, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Genève 4, Switzerland

(Received 18 September 2009; accepted 8 November 2009; published online 4 December 2009)

Epitaxial ultrathin films of the metallic perovskite LaNiO₃ were grown on (001) SrTiO₃ substrates using off-axis rf magnetron sputtering. The film structure was characterized and their electrical properties investigated. Films thinner than 8 unit cells display a metal-insulator transition at a thickness dependent characteristic temperature. Hall measurements revealed p-type conduction, which was confirmed by electric field-effect experiments. Large changes in the transport properties and the metal-insulator transition temperature were observed for the thinnest LaNiO₃ films as the carrier density was electrostatically tuned. © 2009 American Institute of Physics. [doi:10.1063/1.3269591]

The perovskite nickelates (RNiO₃, where R is a rare earth) are a fascinating family of compounds that display sharp temperature-driven metal-insulator (M-I) transitions with resistance changes of up to four orders of magnitude.¹,² The conduction band is believed to be formed by the overlap of the Ni d orbitals and the O p orbitals. This overlap is thought to induce the M-I transition.³ The precise mechanism for the gap opening, however, is still under debate, with the most recent data showing that charge disproportionation (2Ni³⁺→Ni¹⁺²⁺Ni³⁻⁵⁻) with an accompanying symmetry change from orthorhombic to monoclinic may be at the origin of the localization for the entire RNiO₃ series.⁵,⁶ To date, the most technologically relevant of the nickelates is LaNiO₃. It is the only member of the family that does not display a M-I transition in its bulk form, remaining metallic down to the lowest temperatures. Bulk and thin films of this metallic oxide have been studied extensively in the past⁷,⁹ and LaNiO₃ is a popular choice as an electrode material in oxide electronics. For instance, in the area of ferroelectric memories and devices, the use of conducting perovskite oxides such as LaNiO₃ and SrRuO₃ allows coherent growth of fully strained epitaxial perovskite thin films and is believed to improve device properties. One should also note that very thin oxide metallic films are of importance in devices with a low strain budget that require the thinnest possible electrodes. The metallicity of thin films can however be affected by several parameters. It was reported that a M-I transition can take place in LaNiO₃ if the amount of disorder is sufficiently increased, e.g., by introducing oxygen vacancies.¹⁰,¹¹ In this letter, we show that epitaxial LaNiO₃ thin films grown coherently on (001) SrTiO₃ exhibit a M-I transition as the film thickness is reduced below 8 unit cells (u.c.). The transition temperature Tₑ is found to be tunable by up to 24 K using the electric field effect and resistivity changes of up to 10% were observed. The successful field tuning of the Tₑ in LaNiO₃ paves the way to orders of magnitude larger field-induced resistivity changes that should be achievable by exploiting the intrinsic M-I transition of the other RNiO₃ compounds, and hence to the possibility of electronic devices based on nickelate thin films.¹¹ In addition, the field effect measurements, as well as Hall effect studies, reveal p-type conduction in our LaNiO₃ thin films, in contrast to previously published reports.

The primitive cell of bulk LaNiO₃ is rhombohedral, with lattice parameter a=5.46 Å, and rhombohedral angle α=60.49°. It is well approximated by a pseudocubic cell with a=3.84 Å.¹² The LaNiO₃ films thus experience tensile strain when grown on SrTiO₃ (α=b=3.905 Å) due to the 1.7% lattice mismatch between the two materials. The growth of LaNiO₃ thin films onto (001) insulating SrTiO₃ substrates was carried out by off-axis rf magnetron sputtering in 0.180 mbar of an oxygen/argon mixture of ratio 1:3 at a substrate temperature of 510 °C. Epitaxial c-axis oriented LaNiO₃ films with thicknesses ranging from 4 u.c. to more than 75 u.c. were successfully grown using these conditions. It was found that the LaNiO₃ lattice parameters, as well as the presence of parasitic phases, depend strongly on the oxygen stoichiometry which could be controlled either by changing the partial oxygen pressure during growth or by postannealing the samples in oxygen.

Detailed x-ray measurements were performed with a high-resolution PANalytical X’Pert PRO diffractometer using the Cu Kα₁ radiation. The θ-2θ scans around the (001) SrTiO₃ and LaNiO₃ diffraction peaks for samples with different thicknesses were obtained with a triple axis detector and are shown in Fig. 1(a). Finite size Fresnel oscillations were observed around the diffraction peak and simple fits to these curves allow the thickness and c-axis lattice parameter of the films to be obtained. The lattice parameter was found to be approximately 3.80–3.81 Å for all the samples measured. The thickness obtained was also confirmed by reflectometry measurements. Atomic force microscopy (AFM) investigations of the film surfaces revealed atomically smooth terraces separated by a step height of 1 u.c. [see inset of Fig. 1(a)]. The full width at half-maximum of the rocking curves matched the one of the substrates. Finally, reciprocal space maps were made with a pixel detector to investigate the coherence of the LaNiO₃ films grown onto the SrTiO₃. Measurements around the (003) diffraction peaks for the film and the substrate, Fig. 1(b), showed that the in-plane lattice pa-
The thickness of the films decreases below 8 u.c. a M-I transition can be observed. For 7 and 6 u.c. an upturn in resistivity is observed, respectively, around 20 and 40 K, while for a thickness of 5 u.c. the behavior is insulating over the entire temperature range. Using the free electron model, the elastic scattering length in these thin films is found to be about ~20 Å, a value comparable to the thickness of the thinnest films. An enhancement of the scattering at the film surface may contribute to the observed increase in resistivity. We note that rather similar M-I transitions have been observed in SrRuO$_3$ samples thinner than 4 u.c.

The nature of the observed M-I transition as a function of thickness is not at present understood. The simple explanation that the concentration of oxygen vacancies is larger near the interface with the substrate, thus increasing the relative fraction of nonstoichiometric material as films get thinner, seems unlikely due to lack of qualitative changes in behavior upon annealing the samples in oxygen. The weak localization scenario proposed to explain the M-I transition in bulk LaNiO$_3$, combined with a progressive change in dimensionality as the sample thickness is reduced could explain the observed behavior. Further studies are however necessary to be able to draw firm conclusions on this point.

In order to elucidate the nature of charge carriers in LaNiO$_3$ films, Hall measurements were carried out from 1.5 to 260 K in a pumped He cryostat equipped with a superconducting magnet enabling magnetic fields up to 8 T. This setup also allows one to perform detailed magneto-resistance studies, which are currently underway and should help clarify the nature of the M-I transition. For samples thicker than 8 u.c. we obtain room temperature carrier densities of ~2 × 1022 cm$^{-3}$, a value close to the 1.7 × 1022 cm$^{-3}$ expected if each Ni atom contributes one carrier. For thinner films, the charge density is gradually reduced to 1.5 and 1.0 × 1022 cm$^{-3}$ for 7 and 6 u.c. samples, respectively. The carriers are found to be positive, i.e., holes rather than electrons, a result in contradiction with other studies.

Indeed, previous work on bulk ceramics reports negative thermopower coefficients, concluding that electrons are the dominant charge carriers. Hall measurement data are scarce and less consistent. Noun et al. report electronic transport with n ≈ 4 × 1022 cm$^{-3}$ in their epitaxial films grown on SrTiO$_3$, whereas Gayathri and co-workers measure a positive Hall coefficient, attributed to holelike pockets arising from charge transfer from the oxygen p to the metal d band. At the same time, Gayathri et al. also observe a negative Seebeck coefficient S. It is interesting to note that most of the previous measurements have been performed on either bulk ceramics or relaxed films with lattice parameters close to the bulk LaNiO$_3$ values. Our single crystalline films are lattice matched and fully strained to the substrate. First-principles calculations have shown that hypothetical cubic LaNiO$_3$ has a large hole Fermi surface, confirmed by recent photoemission measurements on tetragonal LaNiO$_3$ films. A setup for thermopower measurements is currently being developed in order to clarify this issue.

Another way to probe the nature of the carriers is to perform electric field-effect experiments, where the carrier density is modulated by applying an electric field between a gate and the conducting channel across a dielectric. Due to the large carrier density in LaNiO$_3$, ultrathin films with thicknesses below 30 Å are necessary to obtain substantial charge modulation. In our field effect experiments, a backgate geometry was used, the dielectric being the SrTiO$_3$ substrate itself. The gate is a gold electrode deposited on...
the backside of the substrate, opposite to the channel area. This configuration benefits from the high dielectric constant of SrTiO$_3$, which increases substantially at low temperatures.3,14 The large thickness of the dielectric (0.5 mm) compared to the small width of the conducting channel (typically 10 to 100 μm) allows a further enhancement of the charge modulation due to the fringing field effect. Dynamic capacitance measurements as a function of gate voltage revealed that the average charge density modulation in the LaNiO$_3$ electrode was -8 μC cm$^{-2}$ at 200 V and 4.2 K.

Figure 3 shows sheet resistance measurements for a 6 u.c. thick film and for different applied gate voltages. The inset shows the sheet resistance vs applied voltage at 4.2 K and vs applied voltage at 4.2 K.

In conclusion, high-quality epitaxial LaNiO$_3$ thin films with thicknesses down to 4 u.c. were grown epitaxially and coherently on (001) SrTiO$_3$. It was found that the LaNiO$_3$ films are metallic down to 30 mK for films thicker than 7 u.c. Below this critical thickness, a M-I transition appears at 20 and 40 K for the 7 and 6 u.c. thick films, respectively, while a 5 u.c. thick film already displays a negative $d\rho_{\text{sheet}}/dT$ at room temperature. Field-effect experiments performed on ultrathin films reveal a large resistivity and charge modulation of about 10% and directly indicate that coherent LaNiO$_3$ films grown on SrTiO$_3$ display p-type conduction, a result confirmed by Hall measurements. Finally, the M-I transition could be tuned by up to 24 K using an applied electric field.

We thank A. Caviglia, S. Gariglio, and M. Bavinck for help with transport measurements, N. Stucki and M. Lopes for technical support, and G. Catalan for fruitful discussions. This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research, “Materials with Novel Electronic Properties, MaNEP” and division II.

1 G. Catalan, \textit{Phase Transitions} 81, 729 (2008).

The scattering length l was calculated as follows: $l = (m u_3)/(n_e p) = (\hbar k)/(n_e p)$, where $k = 3.10^{-5}$ Å$^{-1}$. Using the values measured at 4.2 K for a 30 u.c. film ($p = 100$ μm cm and $n = 1.5 \times 10^2$ cm$^{-3}$), we obtain $l = 20$ Å.