The target of rapamycin complex 1 (TORC1) is a central regulator of eukaryotic cell growth that is activated by a variety of hormones (e.g., insulin) and nutrients (e.g., amino acids) and is deregulated in various cancers. Here, we report that the yeast Rag GTPase homolog Gtr1, a component of the vacuolar-membrane-associated EGO complex (EGOC), interacts with and activates TORC1 in an amino-acid-sensitive manner. Expression of a constitutively active (GTP-bound) Gtr1(GTP), which interacted strongly with TORC1, rendered TORC1 partially resistant to leucine deprivation, whereas expression of a growth inhibitory, GDP-bound Gtr1(GDP), caused constitutively low TORC1 activity. We also show that the nucleotide-binding status of Gtr1 is regulated by the conserved guanine nucleotide exchange factor (GEF) Vam6. Thus, in addition to its regulatory role in homotypic vacuolar fusion and vacuole protein sorting within the HOPS complex, Vam6 also controls TORC1 function by activating the Gtr1 subunit of the EGO complex.
The target of rapamycin complex 1 (TORC1) is a central regulator of eukaryotic cell growth that is activated by a variety of hormones (e.g., insulin) and nutrients (e.g., amino acids) and is deregulated in various cancers. Here, we report that the yeast Rag GTPase homolog Gtr1, a component of the vacuolar-membrane-associated EGO complex (EGOC), interacts with and activates TORC1 in an amino-acid-sensitive manner. Expression of a constitutively active (GTP-bound) Gtr1\(^{\text{GTP}}\), which interacted strongly with TORC1, rendered TORC1 partially resistant to leucine deprivation, whereas expression of a growth inhibitory, GDP-bound Gtr1\(^{\text{GDP}}\), caused constitutively low TORC1 activity. We also show that the nucleotide-binding status of Gtr1 is regulated by the conserved guanine nucleotide exchange factor (GEF) Vam6. Thus, in addition to its regulatory role in homotypic vacuolar fusion and vacuole protein sorting within the HOPS complex, Vam6 also controls TORC1 function by activating the Gtr1 subunit of the EGO complex.

INTRODUCTION

The target of rapamycin complex 1 (TORC1) is a structurally and functionally conserved, essential multiprotein complex that positively regulates cell growth by promoting anabolic processes (e.g., protein synthesis) and inhibiting catabolic processes (e.g., autophagy) in response to diverse signals, including mitogenic growth factors, energy/ATP levels, and amino acids (De Virgilio and Loewith, 2006a; Wullschleger et al., 2006). The mechanisms that couple growth factors and energy levels to mammalian TORC1 (mTORC1) have been characterized in considerable detail and implicate the phosphatidylinositol 3-kinase (PI3K), Akt, TSC1/TSC2, and Rheb, a small guanosine triphosphate (GTP)-binding protein that directly binds to and stimulates mTORC1 (Sarbassov et al., 2005). The mechanisms that control growth factors and energy levels to mammalian TORC1 (mTORC1) have been characterized in considerable detail and implicate the phosphatidylinositol 3-kinase (PI3K), Akt, TSC1/TSC2, and Rheb, a small guanosine triphosphate (GTP)-binding protein that directly binds to and stimulates mTORC1 (Sarbassov et al., 2005). The mechanisms through which amino acids signal to TORC1, in contrast, have largely remained elusive until very recently. Two complementary studies have reported that the conserved Rag GTPases act as upstream regulators of TORC1 and play important roles in coupling amino-acid-derived signals to TORC1 in both Drosophila and mammalian cells (Kim et al., 2008; Sancak et al., 2008). RagA and RagB are very similar to each other and orthologous to yeast Gtr1, whereas RagC and RagD are similar and orthologous to yeast Gtr2 (Hirose et al., 1998; Schüermann et al., 1995; Sekiguchi et al., 2001). Rag and Gtr proteins function in heterodimeric complexes, which contain one Gtr1-like GTPase and one Gtr2-like GTPase (Nakashima et al., 1999; Sekiguchi et al., 2001). Importantly, amino acid signals are thought to impinge on GTP loading of RagA/B, but it is not known which factors regulate the GTP loading of these GTPases.

We previously reported that the EGO complex in yeast, consisting of Ego1/Meh1, Ego3/Slm4, Gtr2, and Gtr1, which was identified subsequently (Gao and Kaiser, 2006; Gao et al., 2005), may function upstream of TORC1 to mediate amino acid signaling (De Virgilio and Loewith, 2006a, 2006b; Dubouloz et al., 2005). In this study, we provide evidence that the EGO complex indeed functions directly upstream of TORC1. TORC1 activity is dictated by the nucleotide-bound state of Gtr1, and this is dependent on the presence of Tco89, a nonessential component of TORC1. Furthermore, we demonstrate that Vam6 colocalizes with the EGO complex/TORC1 at the limiting membrane of the vacuole and functions as a guanine nucleotide exchange factor (GEF) for Gtr1. Thus, in addition to its regulatory role in homotypic vacuolar fusion and vacuole protein sorting as part of the HOPS complex, Vam6 also controls the activity of TORC1 by activating the Gtr1 subunit of the EGO complex.

RESULTS AND DISCUSSION

EGOC Acts Upstream of TORC1

Loss of EGO complex (Ego1, Ego3, Gtr1, and Gtr2) or TORC1 (Tco89) subunits results in an inability to restart growth following exposure to rapamycin (Figure 1A; Dubouloz et al., 2005). Similar to wild-type cells treated with rapamycin or the more recently described TORC1 inhibitor caffeine (Kuranda et al., 2006; Reinke et al., 2006; Wanke et al., 2008), these mutants also possess decreased TORC1 activity as assessed by monitoring phosphorylation of the TORC1 substrate Sch9 (Urban et al., 2007) (Figure 1A). Moreover, the potent increase in TORC1 activity observed in wild-type cells treated with cycloheximide, a translation elongation inhibitor that may indirectly boost the levels of free intracellular amino acids (Beugnet et al., 2003; Urban...
et al., 2007), was partially dependent on the presence of Ego1, Ego3, Gtr1, and Gtr2, further supporting the idea that the EGO complex may function upstream of TORC1 (Figure 1A). Observations from several genetic experiments are in line with this interpretation. First, expression of Gtr1GTP or Gtr1GDP alleles, which are predicted to be restricted to either a GTP- or GDP-bound conformation (Gao and Kaiser, 2006; Nakashima et al., 1999), did not alter the intrinsically low TORC1 activity or the inability to recover following rapamycin treatment of tco89Δ cells (Figure 1B). Second, overexpression of Gtr1GDP reduced growth rate on rich media, whereas overexpression of Gtr1GTP reduced growth rate on media containing poor nitrogen sources (proline and urea), and immunoblots were probed with anti-HA antibodies (only the migration pattern of the C terminus of Sch9 is shown). The extent of Sch9 phosphorylation (and, by proxy, TORC1 activity) was determined by quantifying the signal of the slowest migrating (most highly phosphorylated) species of Sch9 (*) and dividing this by the total signal observed for all species. For comparison, this ratio was set to 100% for wild-type cells and calculated correspondingly (in percent) for the indicated mutants (numbers below lowest chart; standard deviations were below 5% in each case).

(B) Gtr1GTP suppresses neither the defects in recovery following rapamycin treatment nor the intrinsically low TORC1 activity in tco89Δ cells. Wild-type and double gtr1Δ tco89Δ mutant strains were transformed with an empty vector or vectors that express GTR1, GTR1GTP, or GTR1GDP from the endogenous promoter and were assayed as in (A).

(C) Growth inhibition following overproduction of Gtr1GDP and growth inhibition on nitrogen poor (proline- and urea-containing) media following overproduction of Gtr1GTP depend on the presence of Tco89. Single gtr1Δ and double gtr1Δ tco89Δ mutant strains were transformed with an empty vector or vectors that express GTR1, GTR1GTP, or GTR1GDP from the doxycycline-inducible TetON promoter; were grown to exponential phase in doxycycline-containing media; and were spotted on plates containing, or not, doxycycline (DOX; 5 μg ml⁻¹) and rapamycin (RAP; 10 ng ml⁻¹) and either 75 mM NH₄⁺ (top three panels), 10 mM proline, or 10 mM urea as nitrogen source as indicated.

(D) Hyperactive TOR1A1957V and TOR1I1954V alleles, unlike wild-type or the hypoactive TOR1W2176R allele, suppress the defect in recovery following rapamycin treatment in gtr1Δ, but not tco89Δ cells. Wild-type and single gtr1Δ and tco89Δ mutant strains were transformed with an empty vector or vectors that express TOR1, TOR1A1957V, TOR1I1954V, or TOR1W2176R from the endogenous promoter and were assayed as in (A).
and nuclear localization of the transcription factor Gln3 (Beck and Hall, 1999), an event that is growth inhibitory for cells. Deletion of GLN3 suppressed the defect in recovery from rapamycin treatment, but not the TORC1 activity defect of EGO complex mutants (Figure S1 available online). Collectively, these observations support the idea that the EGO complex signals, both positively and negatively, to TORC1 and further suggest that this signal is mediated by the TORC1 component Tco89.

EGOC Does Not Control TORC1 Indirectly via Gap1 Sorting

In a previous study (Gao and Kaiser, 2006), all four subunits of the EGO complex were shown to be required for intracellular sorting of the general amino acid permease Gap1, a process that is controlled by the quality of the external nitrogen source. Accordingly, in wild-type cells grown on a relatively poor nitrogen source such as urea, Gap1 is sorted to the plasma membrane (where it is active for transport), whereas in cells grown on rich nitrogen sources such as glutamate/glutamine or ammonium (\(\text{NH}_4^+\)), active Gap1 is internalized and directed to the vacuole for degradation (Springael and André, 1998), and newly synthesized Gap1 is directly sorted from the trans-Golgi to the vacuole (De Craene et al., 2001). Although we observed that loss of EGOC affected TORC1 activity even when cells were grown on rich nitrogen sources, i.e., under conditions in which Gap1 is transcriptionally repressed and not sorted to the plasma membrane (De Craene et al., 2001; Jauniaux and Grenson, 1990), we decided to address the possibility that the EGOC may indirectly affect TORC1 activity via a potential effect on Gap1 sorting. To our surprise, examination of the subcellular distribution of Gap1-GFP, which was transiently expressed from a galactose-inducible GAL1 promoter (Nikko et al., 2003), revealed that sorting of Gap1 from exclusively intracellular compartments (in cells grown on \(\text{NH}_4^+\)-containing medium) to the plasma membrane (in cells shifted to urea-containing medium) occurred normally in both wild-type and egoc mutant cells (Figure 2A). Similarly, when assayed by subcellular fractionation analysis, loss of Gtr2, which was suggested to be particularly important for Gap1 sorting (Gao and Kaiser, 2006), had no impact on the cells’ ability to...
sort Gap1 to the plasma membrane when grown on urea-containing medium (Figure 2B).

In trying to understand why our above results were so strikingly different from the previously reported observations, we noted that, in contrast to various wild-type strains, including S1278b (Grenson, 1983), KT1960 (see below), and the S288C-derived BY4741/2 (Brachmann et al., 1998) used here, the wild-type strain used by the Kaiser group appears to be defective for NH4+-inactivation of Gap1 (Gao and Kaiser, 2006). In this context, Roberg and colleagues have previously noted that this particular phenotype of their wild-type strain is due to a loss-of-function allele at the PER1 locus (Roberg et al., 1997), which apparently is closely linked to (and possibly within the same transcriptional unit as) the NADP+-dependent glutamate dehydrogenase-encoding GDH1 gene (Courchesne and Magasanik, 1983). Remarkably, defects in per1 are associated with a pleiotropic phenotype, including aberrant responses of various amino acid permeases (including Gap1) to environmental nitrogen signals (Courchesne and Magasanik, 1983). Although beyond the scope of this present study, it would be interesting to further characterize the potential synthetic interactions between EGOC/TORC1 and Per1/Gdh1 in future studies.

Figure 3. Alternative Nucleotide-Bound States of Gtr1 and Gtr2 Are Required for Amino-Acid-Dependent Control of TORC1

(A) The nucleotide-binding states of Gtr1 and Gtr2 control both the cell’s ability to recover from rapamycin treatment and TORC1 activity. Rapamycin recovery and TORC1 activity assays (as in Figure 1A) were determined in a gtr1Δ gtr2Δ double-mutant strain carrying all combinations of plasmids between pGTR1, pGTR1GTP, or pGTR1GDP and pGTR2, pGTR2GTP, or pGTR2GDP.

(B) Intracellular pools of free amino acids increase rapidly following CHX treatment. Intracellular, free amino acids were determined in prototrophic wild-type cells subjected to CHX (25 μg ml⁻¹) treatment for the times indicated and expressed as fold increase compared to the levels detected in exponentially growing (EXP) cells. Cells were grown on YPD (+ 0.2% glutamine) or (as indicated) on SD without amino acids (NH4+). Experiments were done in triplicate and expressed as mean ± SD. As assessed by one-way analysis of variance (ANOVA) followed by posttest analysis, the CHX-induced increases are statistically significant for all amino acids (except for arginine) with P values that are < 0.05 for glutamate and methionine and < 0.001 for all other amino acids.

(C) TORC1 is reversibly inactivated in response to amino acid starvation. Leucine (leu2Δ; top two panels), lysine (lys2Δ), and histidine (his3Δ) auxotrophic wild-type strains were grown to exponential phase (EXP) in medium containing leucine (LEU), lysine (LYS), or histidine (HIS), respectively, and were then transferred to a medium lacking the corresponding amino acid. Leucine (2.8 mM), lysine (0.4 mM), and histidine (0.5 mM) were readded after 90 min of starvation. Samples were taken at the times indicated following the medium changes and were assayed as in Figure 1A. The leucine starvation experiment was also carried out in the presence of cycloheximide (25 μg ml⁻¹), which was added at time point 0 (before starvation; second panel from top).

(D) TORC1 is partially insensitive to leucine deprivation in cells expressing Gtr1GTP. Leucine auxotrophic wild-type and gtr1Δ cells carrying the empty vector or vectors that express GTR1, GTR1GTP, or GTR1GDP from the doxycycline-inducible TetON promoter were assayed for TORC1 activity (as in C).
Regarding the present study, loss of Gap1 did not reduce the cells’ ability to recover from a rapamycin treatment (Figure 2C) and had no impact on TORC1 activity in cells grown on rich (YPD + 0.2% glutamine or SD-NH₄⁺) or on poor (urea) nitrogen sources (Figure 2D). Taken together, these results, which were also reproducible in the completely unrelated KT1960 strain background (Pedruzi et al., 2003; Stuart et al., 1994; data not shown), show that EGOC does not affect TORC1 via Gap1 sorting.

Alternative Nucleotide-Bound States of Gtr1 and Gtr2 Are Required for Amino-Acid-Dependent Control of TORC1

To further examine the role of Gtr1 and Gtr2 in TORC1 regulation, we tested different combinations of nucleotide-restricted GTR1 and GTR2 alleles (Gao and Kaiser, 2006; Nakashima et al., 1999) for their effect on TORC1 activity and the cells’ ability to recover from a rapamycin treatment. Expression of Gtr1GTP combined with Gtr2 or Gtr2GDP activated TORC1 (when compared to the corresponding heterodimers containing wild-type Gtr1) (Figure 3A). In contrast, expression of Gtr2GTP combined with Gtr1 inhibited TORC1 (when compared to the wild-type heterodimer). Moreover, expression of Gtr1GDP, irrespective of the nucleotide-binding status of Gtr2, was dominant-negative, as it abolished TORC1-controlled Sch9 phosphorylation under all conditions (including cycloheximide treatment) (Figure 3A). Consistent with previous studies (Kim et al., 2008; Sancak et al., 2008), these observations demonstrate that GTP-loaded Gtr1 and GDP-loaded Gtr2 stimulate TORC1, whereas GDP-loaded Gtr1 and GTP-loaded Gtr2 inhibit TORC1.

Activation of TORC1 by expression of Gtr1GTP and by cycloheximide treatment was not additive, suggesting that amino-acid-dependent control of TORC1 may be controlled, at least in part, by the nucleotide-binding status of Gtr1 (Figure 3A). To explore this possibility further, we first sought to verify that cycloheximide treatment causes, as speculated, an increase in the pools of free intracellular amino acids. In prototrophic wild-type cells, we observed a significant accumulation of various amino acids within 5–15 min following cycloheximide treatment (Figure 3B). This effect (which was comparable in gtr1Δ cells; data not shown) and the corresponding activation of TORC1 were both observed to a similar extent in cells growing on YPD (+ 0.2% glutamine) and in cells growing on SD without amino acids (Figures 3B and S2), indicating that the accumulation of free amino acids following cycloheximide treatment does not depend on the uptake of extracellular amino acids. Interestingly, among the various amino acids, leucine appeared to accumulate most strongly and, hence, may play a particular role in TORC1
Figure 5. Vam6 Is a Gtr1 Nucleotide Exchange Factor

(A) Overproduction of Gtr1GDP results in a synthetic growth defect when combined with gtr1Δ or vam6Δ, but not when combined with ypt7Δ. Indicated strains expressing GTR1 or GTR1GDP from the galactose-inducible GAL1 promoter were grown overnight to exponential phase and spotted on galactose-containing plates.

(B and C) Loss of Vam6, like loss of the EGOC subunits Gtr1 and Gtr2, causes a defect in recovery from a rapamycin-induced growth arrest (B) and decreases TORC1 activity (C). For experimental details, see Figure 1A.

(D) Overproduction of Vam6 from a doxycycline-inducible TetON promoter renders wild-type cells, but not gtr1Δ or tco89Δ strains, resistant to low rapamycin concentrations. Strains carrying the indicated plasmids were grown overnight to exponential phase and spotted (in serial 10-fold dilutions) on plates containing 5 mg ml-1 doxycycline and 3 ng ml-1 rapamycin.
Gtr1, Preferentially in Its GTP-Bound Form, Physically Interacts with TORC1

To examine whether Gtr1 may directly interact with TORC1, we coexpressed C terminally TAP-tagged versions of the TORC1 subunits Tco89 or Kog1 (the yeast homolog of mammalian raptor; Loewith et al., 2002) and different GST-tagged Gtr1 variants. Using coimmunoprecipitation assays, we were able to demonstrate that both TORC1 subunits specifically and preferentially interacted with GTP-bound Gtr1, whereas the corresponding interactions with Gtr1GDP were close to background levels (Figures 4A and 4B). Employing a membrane-based two-hybrid system, we confirmed that Gtr1 and, more efficiently, Gtr1GTP, but not Gtr1GDP, specifically associated with Tco89 as well as with the EGO complex subunit Ego1 (Figure 4C). Given the role of Gtr1 in mediating an amino acid signal to TORC1, we also evaluated whether amino acids regulate the interaction between Gtr1 and TORC1. We found that the Gtr1-TORC1 interaction was sensitive to leucine starvation, whereas Gtr1GTP remained associated with TORC1 under the same conditions (Figures 4D and 4E).

Vam6 Is a Gtr1 Nucleotide Exchange Factor

Our findings above indicate that Gtr1 controls TORC1 function and that amino acid signals may impinge on this process by dictating the nucleotide-binding status of Gtr1. Accurate experimental determination of the Gtr1 nucleotide-binding status in vivo is not straightforward because Gtr1 and Gtr2 appear to be asymmetrically loaded with guanine nucleotides within heterodimeric complexes. To corroborate our model by alternative means, we therefore sought to isolate the Gtr1 GEF, which would allow us to more specifically modulate the nucleotide-binding status of Gtr1 within cells. Based on our finding that overproduction of Gtr1GTP was semidominant with respect to growth inhibition, we reasoned that loss of the Gtr1 GEF, like loss of Gtr1 (Figure 5A), should yield a strong synthetic growth defect when combined with a construct that allows accumulation of Gtr1GDP. Consequently, we carried out a systematic, genome-wide synthetic dosage lethal (SDL) screen (Measday et al., 2005) in which we overproduced Gtr1GTP and tracked down corresponding synthetic growth defects. The two strongest positive hits in this screen included gtr1Δ—confirming the validity of our screening procedure—and vam6Δ (Figure 5A). The conserved Vam6 protein is a subunit of the homotypic fusion and vacuole protein sorting (HOPS/class C-Vps) complex in yeast (Caplan et al., 2001; Ostrowicz et al., 2008), which has recently also been suggested to control, via an unknown mechanism, TORC1 signaling in response to amino acids (Zurita-Martinez et al., 2007). Intriguingly, the HOPS complex is thought to facilitate the transition from tethering to trans-SNARE pairing during fusion at the vacuole, in part by Vam6-mediated nucleotide exchange on Ypt7, which is homologous to the mammalian Rab-7 GTPase (Wurmser et al., 2000). Combined with our data above (and the fact that Vam6, but not Ypt7, is required for cells to grow in the presence of elevated Gtr1GDP levels; Figure 5A), this led us to speculate that Vam6 may have a dual role in activation of both Ypt7 and Gtr1.

In accordance with a model in which Vam6 activates Gtr1, we found that loss of Vam6, like loss of Gtr1 (or other EGOC subunits), resulted in a defect in recovery from rapamycin-induced growth arrest, constitutively reduced TORC1 activity, and reduced cycloheximide-induced TORC1 hyperactivation (Figures 5B and 5C). Moreover, overproduction of Vam6
Figure 6. TORC1 and EGO Complex Subunits Colocalize with Vam6 at Vacuolar and Endosomal Membranes

(A) GFP-Vam6, Gtr1-GFP, Ego1-GFP, Tor1-GFP, Tco89-GFP, and GFP-Sch9 all localize to the limiting membrane of the vacuole. Leucine (leu2) auxotrophic wild-type cells expressing functional versions of GFP-fusion proteins either from a plasmid (GFP-Sch9) or from the endogenous chromosomal locus (Gtr1-GFP, Tor1-GFP, Ego1-GFP, Tco89-GFP, GFP-Vam6) localize to the limiting membrane of the vacuole.

(B) Tor1-GFP, RFP-Vam6, Merge, Tco89-GFP, RFP-Vam6, Merge, Ego1-GFP, RFP-Vam6, Merge.

(C) WT, var6Δ, ypt7Δ.

(D) EXP, RAP, CHX.

The Vam6 GEF Controls TORC1 by Activating the EGOC
The Vam6 GEF Controls TORC1 by Activating the EGOC

rendered wild-type cells, but not gtr1Δ or tco89Δ cells, resistant to low rapamycin concentrations (Figure 5D) and suppressed the semidominant growth defect resulting from Gtr1GDP overproduction (Figure 5E). Finally, expression of hyperactive TOR1G1957V and TOR1G1954V rendered rapamycin-sensitive vam6Δ cells as resistant to low rapamycin concentrations as wild-type cells and enabled vam6Δ cells to recover from a rapamycin-induced growth arrest (Figure 5F). Because these genetic experiments place Vam6 upstream of Gtr1, we determined whether Vam6 could interact with Gtr1. We found that Vam6 coprecipitated well with both GST-Gtr1 and the positive control GST-Ypt7; only very weakly with GST-Ras2, which is very closely related to Gtr1; and not at all with GST alone (Figure 5G).

Further, Vam6 stimulated GDP release both from its known target Ypt7 and from Gtr1, but not from Ras2 (Figure 5H), indicating that Vam6 acts as a GEF for Gtr1 in vitro. Addition of nucleotide-free GST-Gtr2 did not significantly alter the Vam6-mediated GDP release on Gtr1 (data not shown). To explore whether Vam6 functions as a GEF for Gtr1 in vivo, we made use of the fact that Gtr1GTP-TAP, but not Gtr1GDP-TAP, specifically coprecipitates with GST-Ego1 (Figure 5I); hence, the level of Ego1-associated Gtr1 can be used to estimate the relative amount of Gtr1GTP within cells. Using this assay, we noted that loss of Vam6, but not loss of Ypt7, severely reduced the interaction between Gtr1 and Ego1 (both prior to and following cycloheximide treatment), indicating that Vam6 also functions as a GEF for Gtr1 in vivo (Figure 5J). Taken together, our results show that Vam6 regulates the nucleotide-binding status of Gtr1 both in vitro and in vivo and suggest that Vam6 may integrate amino acid signals to coordinate the control of TORC1 activity and vacuolar fusion events.

TORC1 and EGO Complex Subunits Largely Colocalize with Vam6 at the Vacuolar Membrane

In line with previous reports (Araki et al., 2005; Gao and Kaiser, 2006; Jorgensen et al., 2004; Nakamura et al., 1997; Reinke et al., 2004; Sturgill et al., 2008; Urban et al., 2007), we found that GFP-Vam6, Gtr1-GFP, Ego1-GFP, Tor1-GFP, Tco89-GFP, and GFP-Sch9 all localized predominantly at the vacuolar membrane in both exponentially growing and leucine-starved cells (Figure 6A). In addition, all GFP fusion proteins (except for GFP-Sch9) occasionally localized to punctate structures adjacent to the vacuole, which in the case of Vam6, Gtr1, and Ego1 may correspond to late endosomes (Cabrera et al., 2009; Gao and Kaiser, 2006). Notably, RFP-Vam6 colocalized with TORC1 and EGO complex subunits (i.e., with Tor1-GFP, Tco89-GFP, and Ego1-GFP) at the vacuolar and the presumed endosomal membranes (Figure 6B). Unlike Tor1-GFP, Tco89-GFP, or Ego1-GFP, however, RFP-Vam6 (and similarly GFP-Vam6) was found specifically enriched at the contact sites between two adjacent vacuoles (Figures 6A and 6B), which underscores the previously described role of Vam6 in vacuolar fusion. To exclude the possibility that the reduced TORC1 activity observed in vam6Δ cells is simply a result of their abnormal, fragmented vacuolar morphology (Figure 6C), we also measured TORC1 activity in ypt7Δ cells, which exhibit similarly fragmented vacuoles as vam6Δ cells (Figure 6C). The corresponding experiments clearly showed that only loss of Vam6, but not loss of Ypt7, seriously reduced TORC1 activity and prevented CHX-induced TORC1 activation, indicating that vacuolar fragmentation per se does not have an impact on TORC1 activity control (Figure 6D). Thus, together with the observation that the EGO complex is not required for vacuolar fusion (Dubouloz et al., 2005), it appears that Vam6 regulates two effector branches: one to control vacuolar fusion (via Ypt7) and one to control TORC1 (via the EGO complex subunit Gtr1).

Conclusions

In conclusion, we have demonstrated that Vam6 activates Gtr1 and that Gtr1 and, by extension, the EGO complex act upstream of TORC1 to regulate its activity. Thus, our present work extends and confirms the evolutionarily conserved importance of Rag family GTPases as upstream regulators of TORC1. However, we were surprised that, in contrast to the situation in mammalian cells in which GTP-locked RagB apparently completely uncouples mTORC1 from signals derived from leucine availability (Sancak et al., 2008), GTP-locked Gtr1 had only a partial effect. Perhaps in yeast, there are other signaling routes by which amino acid availability is communicated to TORC1. Alternatively, it is possible that GTP loading must be followed by hydrolysis for Gtr1 to fully activate TORC1 in yeast; this later reaction would not be possible with the GTP-locked Gtr1 protein. In this context, it is also worth noting that mammalian cells express, due to alternative mRNA splicing, two RagB isoforms (RagB/RagBs and RagBβ), which are structurally significantly different from each other (Schüermann et al., 1995). It would, therefore, be of interest to also study the role of RagB1 in mTORC1 regulation.

Finally, our finding that leucine deprivation did not appreciably affect the localization of GFP-Vam6, Gtr1-GFP, Ego1-GFP, Tor1-GFP, Tco89-GFP, and GFP-Sch9 in yeast again contrasts with observations made in mammalian cells in which the Rag GTPases were proposed to mediate amino-acid-induced relocalization of mTOR within the endomembrane system to a compartment that contains the TORC1 activator Rheb (Sancak et al., 2008). Though this aspect of TORC1 regulation may have diverged during evolution—the budding yeast homolog of molecular Cell 35, 563–573, September 11, 2009 ©2009 Elsevier Inc. 571

Ego1-GFP, Tor1-GFP, and Tco89-GFP) or corresponding leu2Δ vam6Δ strains were stained with FM4-64 and analyzed during exponential growth in leucine-containing SC medium (+ LEU) or following a 60 min leucine starvation period on SC medium lacking leucine (− LEU), TR, transmission.

(B) RFP-Vam6 colocalizes with Tor1-GFP, Tco89-GFP, and Ego1-GFP at vacuolar and presumed endosomal (green/red dots) membranes. In addition, RFP-Vam6 is specifically enriched at vacuolar fusion sites (arrows; see also GFP-Vam6 in A). Functional RFP-Vam6 was expressed from a plasmid. For details, see (A).

(C) Loss of Vam6 or Ypt7 results in fragmentation of vacuoles. Exponentially growing wild-type, vam6Δ, and ypt7Δ strains were stained with FM4-64 and analyzed as in (A), TR, transmission.

(D) Ypt7 is not required for TORC1 activation by cycloheximide (CHX). For experimental details, see Figure 1A.
Rheb is unlikely to perform a similar function in TORC1 activation (De Virgilio and Loewith, 2006a)—it will be most interesting to study whether Vam6 homologs are implicated in the control of TORC1 function by mediating nucleotide exchange on Rag GTPases in higher eukaryotes.

EXPERIMENTAL PROCEDURES

Strains, Growth Conditions, and Plasmids

The S. cerevisiae strains used in this study are listed in Table S1. Unless stated otherwise, prototrophic strains were pregrown overnight in synthetic medium without amino acids (SD; 0.17% yeast nitrogen base, 0.5% ammonium sulfate, and 2% glucose). Before each experiment, cultures were diluted to an OD600 of 0.2 in YPD medium supplemented with 0.2% of glucose and grown until they reached an OD600 of 0.8. For amino acid deprivation experiments, strains that were specifically auxotrophic for one amino acid were grown to an OD600 of 0.8 on complete synthetic medium (SC; i.e., SC plus all amino acids), washed twice, and resuspended in starvation medium (SC-Leu, SC-Lys, or SC-His lacking specifically one relevant amino acid). For nitrogen starvation, prototrophic cells were grown to an OD600 of 1.0 on SD without amino acids, washed twice, and resuspended in the same medium without ammonium sulfate. Low-quality nitrogen media were SD media, which contained 10 mM urea or proline instead of ammonium sulfate. The plasmids used in this study are listed in Table S2.

Sch9 Phosphorylation Analyses

To analyze Sch9Tpo1-HA5 C-terminal phosphorylation, we used the chemical fragmentation analysis as described previously (Urban et al., 2007; Wanke et al., 2008). For quantifications of Sch9 phosphorylation, NTBC-cleared extracts were separated by 7.5% SDS-PAGE followed by immunoblotting with anti-HA antibody 12CA5, and fluorescence intensity was measured using the Odyssey Infrared Imaging System (LI-COR).

GDP Release Assay

To assay GDP release, 20 pmol of bacterially expressed GST-tagged G-proteins (i.e., GST-Gtr1, GST-Ypt7, and GST-Ras2) were preloaded by incubating with 40 pmol 5,8-[3H]GDP (52.8 Ci mmol−1; NEN) in preload buffer (20 mM HEPES [pH 7.2], 20 mM KOAc, 1 mM DTT, 5 mM EDTA, 1 μg ml−1 BSA) for 15 min at 30°C as described (Jones et al., 2000). At the end of the incubation, samples were placed on ice, and MgCl2 was added to 10 mM. Reactions were carried out in 50 μl containing 20 mM HEPES (pH 7.2), 5 mM Mg(OAc)2, 0.5 mM GDP, 0.5 mM GTP, 0.5 mM GST, 0.4 mg ml−1 BSA, and His6-HA-Vam6 or His6-HA-HA2, both purified from exponentially growing yeast. Exchange reactions were initiated by the addition of 10 pmol of the preloaded G-proteins. Incubations were carried out at 30°C for varying periods of time, as noted. At intervals, 5 μl samples were removed, added to 3 ml of ice-cold wash buffer (20 mM Tris-HCl [pH 7.5], 20 mM NaCl, 5 mM MgCl2, 1 mM DTT), and filtered through nitrocellulose filters, which were then washed twice with 3 ml of ice cold wash buffer. Radioactivity bound to filters was quantified by liquid scintillation spectrometry using Flotron-X (National Diagnostics, LS-201) scintillation fluid. In all experiments, initial values were ~2–4 × 105 cpm μl−1.

Miscellaneous

Coimmunoprecipitation experiments were essentially done as described (Dubouloz et al., 2005; Loweth et al., 2002). Tco89-TAP and Kog1-TAP were purified from lysates with magnetic beads (Invitrogen) that were precoated with 1 IgG (Sigma) in the presence of 1 M (NH4)2SO4 to facilitate the binding. For quantifications of free amino acids, cells (about 10 OD600) were harvested by filtration, washed three times, and resuspended in distilled water. Following boiling (15 min) and centrifugation (10 min at 13,000 rpm), free amino acids were quantified in the supernatant by pulsed gradient to increase the ionic strength.

SUPPLEMENTAL DATA

Supplemental Data include two tables and three figures and can be found with this article online at http://www.cell.com/molecular-cell/supplemental/S1097-2765(09)00474-2.

ACKNOWLEDGMENTS

We thank Christian Ungermann, Bruno André, and Ted Powers for strains, plasmids, and/or antibodies and Malika Jaquenoud and Patricia Matthey for technical assistance. This research was supported by the Swiss National Science Foundation (R.L. and C.D.V.), the Leenaards Foundation, and the Cantons of Geneva and Fribourg.

Received: March 3, 2009
Revised: May 9, 2009
Accepted: June 30, 2009
Published: September 10, 2009

REFERENCES

The Vam6 GEF Controls TORC1 by Activating the EGOC

