Adapting teacher training to new evolution research approaches

LOMBARD, François, BLATTER, Marie-Claude

Abstract

As research methods have evolved to include new genomic approaches, based on freely available data and tools, an opportunity for proving and teaching evolution has been translated into teacher training programs in Geneva. The data from countless entire genomes and tools for comparing and extracting evolution evidence in conserved patterns, (BLAST, etc.) or building phylogenetic trees (Phylopondron,...) can be easily accessed via Internet. Ever more research in evolution is based on sequence analysis, providing new and very strong evidence. This authentic data and tools can be freely used by any student or teacher, opening new educational opportunities to explore, test and validate hypotheses. Possibly the strongest evidence ever is directly available to all schools. However new knowledge and competencies need to be developed to allow teachers to integrate these approaches into their classes. Indeed, these new information processing approaches in biology might be unfamiliar to biologists trained only a few years ago. As part of a comprehensive teacher training program in Geneva, evolution teaching and inquiry modules were [...]
As research methods have evolved to include new genomic approaches, based on freely available data and tools, an opportunity for proving and teaching evolution has been translated into teacher training programs in Geneva. The data from countless entire genomes and tools for comparing and extracting evolution evidence in conserved patterns, (BLAST, etc.) or building phylogenetic trees (Phylodendron,…) can be easily accessed via Internet. Ever more research in evolution is based on sequence analysis, providing new and very strong evidence. This authentic data and tools can be freely used by any student or teacher, opening new educational opportunities to explore, test and validate hypotheses. Possibly the strongest evidence ever is directly available to all schools. However new knowledge and competencies need to be developed to allow teachers to integrate these approaches into their classes. Indeed, these new information processing approaches in biology might be unfamiliar to biologists trained only a few years ago. As part of a comprehensive teacher training program in Geneva, evolution teaching and inquiry modules were developed within Geneva university in a collaboration of researchers in educational science LDES (Prof Giordan), TECFA and genomics (UniProtKB - Swiss-Prot,) and was deployed in teacher training programs since 5 years, and the scenario-based modules are freely available. How to include this new approach of evolution teaching in various chapters of biology, opportunities for new inquiry tracks for students will be discussed. Conditions and reasons for uneven acceptance of acceptance by institutions or teachers, and possible solutions will be discussed.
enhanced Biology that seem relevant to education:
• Bioinformatics, the application of computers in biological sciences and especially storage and analysis of biological sequence data (DNA and proteins), and other experimental data such as 3D structure or microarrays, all the range of ‘omics: genomics, transcriptomics, proteomics, etc.
• Other biological databases such as botanical zoological or georeferenced data (e.g. Google Earth).
• Systems biology, synthetic biology and simulations.
• Knowledge building in an infodense world: the ability to locate, use, and evaluate information (National Research Council, 2000) “For life sciences ranging from ecology, botany, zoology, and developmental biology to cellular and molecular biology […] IT is essential to collect key information and organize biological data in methodical ways in order to draw meaningful observations. Massive computing power, novel modeling approaches, new algorithms and mathematical or statistical techniques, and systematic engineering approaches will provide biologists with vital and essential tools for managing the heterogeneity and volume of the data and for extracting meaning from those data.” (Wooley and Lin, 2005). This new expansion of biology offers new way of experimenting, of building knowledge and of publishing science (Lombard, 2007). In fact informal surveys have shown biologists spend more than half their time practising this IT-rich biology. Most research published in high impact magazines relies crucially of even only on this sort of experimenting (Pollard, et al., 2006; Bakewell, et al., 2007; Gibbons, 2007). Massive new data and new tools offer opportunities to explore, test and validate hypotheses, which define experimental biology. We shall therefore speak of experimenting for searching, comparing, and other explorations of the massive amounts of authentic data accessible in classrooms. Some may recoil at this, but we would like to argue that in terms of learning potential, these “experimental approaches” are best thought of as we do for experimental, hands-on laboratory work.

Should evolution teaching change?
The field of research in evolution is also evolving with IT, but let’s just make it clear this article is not about new teaching tools using IT (e.g. Sandoval & Reiser, 2003). In contrast we suggest integrating IT-rich biology in most chapters of biology education with some of the data, the tools and methods used by today's evolution researchers. Moore says "Science teaching must evolve". He argues that "Many teachers are not scientifically capable of teaching evolution using modern approaches." (Moore, 2008) Our own research (Lombard, 2008) suggests that education is slow in recognizing this new IT-Rich biology, and that new stimulating opportunities for authentic learning have arisen. Indeed Thomas Kuhn (Kuhn, 1972) predicts that when a paradigm changes, as it changes the fundamentals on which our professional identity relies, most practitioners will resist the change. Many of us will remember how strongly the expansion of biology to include molecular approaches was resisted in schools and universities some 30-40 years ago. We will attempt to address in this article how to integrate new approaches to evolution in curricula and classroom practices.

Evolution teaching: new opportunities
As our research suggests (Lombard, 2007) that the change of biology is widespread, and affects most if not all aspects of evolution, it follows that there is no need to add a new chapter to biology, or evolution but that knowledge related to these new approaches (fundamentals such as sequence coding, database organisation, concepts such as alignment, underlying concepts such as parsimony principle for cladograms, etc.) and competencies to manage this knowledge (how to extract a sequence, health and evolution information related to a gene, and similar sequences, how to compare them) are needed. Moore mentions
that "there is a big difference between mere information and a teaching unit: teachers generally have no time or guidance to elaborate new course units from raw materials." Rather than producing teaching units, we would argue for training teachers to use real authentic tools available everywhere via internet for free. Much research (Schwartz, et al, 2004), (Educational Researcher, 1990) point to the importance of authenticity "engagement in inquiry activities similar to those of scientists" (Schwartz, et al, 2004) Authenticity goes three levels (Educational Researcher, 1990): A first level involves the facts: true research data is more authentic than carefully selected, educationally polished data. A second level involves the tools and methods: involving students in similar tasks, with the same tools and methods as professional. A third level would involve students in "doing real research"; creating new knowledge. Quite a lot of research or standards (AAAS, 1993) encourages empowering learners to face real, complex problems rather than oversimplify in an attempt to make learning easier (Jonassen, 2003): "The greatest intellectual sin that we educators commit is to oversimplify most ideas that we teach in order to make them more easily transmissible to learners. In addition to removing ideas from their natural contexts for teaching, we also strip ideas of their contextual cues and information and distill the idea to their "simplest" form so that students will more readily learn them. But what are they learning? That knowledge is divorced from reality, and that the world is a reliable and simple place. But the world is not a reliable and simple place, and ideas rely on the contexts they occur in for meaning "(Jonassen, 2003) Consequently rather than developing new educational resources about this new IT-Rich biology, we set off to develop around existing authentic tools and data new teaching designs that might allow engaging student in authentic activities at level 1 and 2. This is possible because of the wide availability of authentic biological data, through the web (all the range of 'omics, but also systematic (e.g. UniProt Taxonomy), zoological and botanical (GBIF), biogeographic ecological etc) and freely available tools such as BLAST, alignment (e.g. ClustalW), Phylogenetic trees (Phylodendron), PhyML, etc.) Our examples have been developed to integrate modern IT-Rich biology’s authentic tools into most chapters of biology. Indeed paralleling the evolution of our science, we see, in accord with Moore (Moore, 2008) but for the rest of biology too, an opportunity for science education to move closer to science.

Opportunities for new inquiry tracks and strong evidence for Evolution
The push to change of education towards more experimenting and inquiry strategies (Rocard, et al, 2006; NRC, 2000; NRC, 1996) is strong worldwide. And has translated into lab and field opportunities for learners to observe and experiment. One of the problems of evolution teaching is that typical courses offer limited opportunities for experimenting. It is ironical that the field of evolution that brought biology out of a purely descriptive science into explanation of causes (Wooley & Lin, 2005) has been so resistant to experimental approaches in education. Indeed, evolution changes often happen in a time frame incompatible with schools: over the course of millions of years - or within tiny invisible species such as bacteria. In both cases they remain rather abstract to most students. Availability of authentic data and tools that can be freely used by any student or teacher, opens new educational opportunities to explore, test and validate hypotheses. There are indeed simulations (e.g. MacEvolut one of us developed for simulating giraffe height evolution) and semi-authentic data such as plastic models of skulls, bones and a few fossils are typically available in class. Possibly the strongest evidence and experimental exploration ever for evolution - based on authentic research data - is now directly available to all schools. Evolution, or as Darwin put it "Descent with Modification" (Darwin & Carroll, 2003),

Adapting teacher training to new evolution research approaches 72
refers to common origin and evidence of gradual change, that can be related to environment. Vast amounts of sequences easily available offer strong opportunities to test common origin by exploring and showing the universality of DNA, and ‘quasi-universality’ of the genetic code. Numerous proteins with similar function in different species (orthologs) are easy to find and constitute strong evidence of common origin. Aligning their sequences reveals similarities and graduated differences, which constitute evidence of progressive change. Differences in function of similar/homologous genes within a given species (paralogs) reveals common origin (gene duplication) and how random changes can produce slightly different proteins can be explored. Convergence of gene-function can be discovered.

A comprehensive teacher training program in Geneva
All too often interactions between universities and in-service teachers amount to a conference given by a specialist to very impressed teachers, who then go back to school and teach as ever before. Although these courses involved high profile researchers of the Geneva university, the course was designed so as to spend most of the time in interactions around how to integrate this new knowledge into classrooms, as this is known to be a key difficulty. Indeed the obstacles to information transfer (Huberman, 1986) effectively to teachers are known: such as differing values, immediate usability, close availability, etc.

Synergy of scientific specialist and education specialist
In a collaborative scheme involving the Geneva University (Swiss Institute of Bioinformatics (Swiss-Prot group), LDES and TECFA) and Geneva High School teacher training, we developed many scenarios and trained teachers to integrate in their teaching many of the new approaches that IT-rich Biology offers. We took time to build a common language, and identified the implicit differences between meanings of same terms, data representation, knowledge structure and priorities that are embodied in the databases etc. Indeed tools such as BLAST, alignments, phylogenetic tree building are not “just tools”: they are neither transparent nor free of assumptions which influence the manner in which they can be used (Rabardel, 1995) and induce change in the strategies and their affordances need to be learned. This constant need for mediation, translation structured the design: Two trainers embodied two poles of didactic transposition (Brousseau, 1998): a bioinformatics specialist (M.-C. Blatter) in the role of the expert bringing her scientific knowledge and a didactics specialist (F. Lombard) playing the role of a naive journalist asking questions to highlight crucial differences or possible misunderstandings. Similarly, for the participants, a lot of the training time was organized around dialoguing between specialists of content (researchers) and specialist of teaching (teachers). With time this interaction of researchers and teachers meeting halfway from the lab to classrooms was pushed one step further: an expert presented how his field of biology is expanded by IT, how he imagined this could/ should be imply changes in education, and discussed with teachers how classroom and curriculum realities could accommodate this.

Focused on scenarios
Since teacher’s activity is mainly organized around what happens in class, the design was built around scenarios embodying the knowledge into class-usable scenarios. The scenarios were designed to empower the participants to use authentic research data and tools. As it has often been observed that teachers need to modify, adapt and personalize whatever teaching material they use, the scenarios are open to customization. In fact it has been shown that reusability is great for the technical part of scenarios, but minor for the pedagogical part (Pernin & Lejeune, 2004). Each step of the scenarios is guided with detailed instruction and
Adapting teacher training to new evolution research approaches

Comments. Links allow picking up the scenario at any point. All these scenarios are online and freely available on our web page http://tecfa.unige.ch/perso/lombardf/bist/.

Explicit place of insertion in the curriculum was discussed. Most of the time one key use of data and tools could be implemented in different chapters. E.g. finding the sequence of Insulin could be used while discussing the physiology of glucose regulation or as an example for biosynthesis of proteins or in evolution to establish the existence and similarities of such proteins in various species, and align them to form a phylogenetic tree. Cross-opportunities to establish the evolutionary evidence within physiology, molecular biology or ecology were highlighted. E.g. when searching for human cytochrome in the context of cellular respiration the fact that other similar cytochromes from other species than ours turned up could be incidentally highlighted.

Each scenario was explored by teachers during a course lasting 1-2 days offered to in-service secondary biology teachers. The training involved a guided exploration of the experimentation scenarios and the participants had time to explore and get familiar with using the scenario and trying to customize them, e.g. by using their favourite protein, or adapting them to their specific teaching context with the help of the trainers. The scenarios being available online remain available for use in any school.

The scenarios aimed at:

• Develop a global view of the main databases and basic understanding of their specificities, so as to be able to find nucleotide (Genbank, EntrezGene, etc) and protein (UniProtKB/SwissProt, etc) sequences from the names of genes and proteins, to be able to get research up-to-date information about genetic illnesses (Genes&Diseases), genes, proteins. To find and visualize 3D structure of the proteins, or PubMed for articles. • Have a basic familiarity with the crosslinks and context indices so as to keep track and know enough to understand what is being viewed. • Develop a minimal familiarity with the basic tools, such as o BLAST allowing to find genes and proteins from their sequence (such as read from a gel), or to find similar sequences o ClustalW (e.g) for aligning them to show conserved regions or prepare for trees o PhyML, PhyloPhylo (e.g) for producing phylogenetic trees • Develop a basic knowledge of the concepts and terms. • Understand the logic of organizing of theses databases which is research-oriented and often differs from the way teachers might expect the information to be structured: e.g. that RNAs are recorded as their cDNA sequences showing no Uracil, or that there are as many sequences for a protein as there have been researchers publishing about that sequence. • More generic information high-level literacy competencies appeared as critical: being capable of teaching and learning efficiently without understanding all the information offered: exhaustivity-resistance. Capacity to synthesize from very different, fluctuating information sources, etc.

An example of scenario

One group of scenarios searches differences in equivalent proteins (orthologs) and builds phylogenetic trees, which can be compared with those built with other types of data: morphological and physiological characters for example. As an example we will develop in some detail a representative scenario: building a phylogenetic tree from sequences of a given protein (insulin for example) in different species Like most other scenarios, we proposed 3 different levels in terms of authenticity: 1) Basic level: Relies on a piece of on-line software (PhyloPhylo) developed by the Swiss-Prot group specifically for educational purposes: It guides the learner along the key steps of a phylogenetic sequence analysis: choice of the sequences from proteins for which sequences are available from many species, comparison of these sequences (multiple alignment), building and visualization of the tree. Results are then discussed. By limiting the steps and offering a minimum of options this scenario reduces the risk of getting lost, and could helps focus on the main concepts. Doing so trades authenticity for simplicity of
use and offers teachers a reassuring linear route by which students are guided. However, this might give the idea that the biological concepts explored are simple and straightforward. 2) Medium level: This scenario uses authentic databases (UniProKB) for selecting proteins from their name, the on-line tools for aligning sequences and formatting (ClustalW), then uses a simplified research tool (Phylodendron) for producing and visualizing the tree. As such this scenario is more complex but more authentic, giving students a glimpse into the richness of data available but guiding them enough to produce meaningful results. As for any hands-on lab activity, the guidance and perspective the teacher gives is crucial to help students build real knowledge and not only go through the motions, in what Bereiter calls “reduction to activity” (Bereiter, 2002). (Scenario 5) 3) Advanced level: this scenario uses the tools available on the web as researchers in their lab (Scenario 5pro). This scenario differs mainly in that it explores into more depth the options of how the same alignment can often lead to slightly different trees depending on the assumptions made. And allows students to develop perspective on the assumptions implicit in building trees. These scenarios have been integrated to some degree or other in many secondary and high schools in Geneva.

Conclusion
We believe the time is ripe for integrating IT-rich evolution into classrooms, and that this needs proper teacher training. We suggest explicitly addressing the fact biology is changing, in particular by having recognized biology researches describe how IT plays into their work. We suggest that a design based on the confrontation of biology experts (researchers) and experts in education around scenarios can be very fruitful. We suggest this includes helping teachers develop information literacy strategies to avoid information overload, which should be thought of as a long-term training effort, which could be supported by adequate frequent updating media such as blogs or newsletters bridging research literature and educational practitioners. We propose the following design rules: approach IT-rich biology as experimental lab work, empower students to use authentic data and tools whenever possible, design very precisely the technical part and loosely suggest the pedagogical part of scenarios.

References

François Lombard has been involved since 1980 in biology education as a teacher, an educational software developer, a teacher trainer and since 1999 he is a lecturer and a researcher at Geneva University. There he has been in charge of a pre-service teacher training course in integration of Information Technology to support education. He now teaches biology didactics for pre-service biology teachers at IUFE in Geneva university.

His research has been focused on the use of technology in education, in particular computer supported science knowledge building.

He now explores designs to integrate the deep changes biology is undergoing (information technology-rich biology such as bioinformatics, genomics, systems biology, etc.) in school practice.

After a PhD in Biochemistry at the Geneva University, Marie-Claude Blatter has worked as post-doc at the Geneva Hospital where she studied the genetic and environmental risk factors for cardiovascular diseases. She joined the Swiss-Prot team of the SIB Swiss Institute of Bioinformatics in 1997. She specializes in mammalian protein annotation for the UniProt protein knowledgebase. As head of the Swiss-Prot communication team, she is also involved in education and training activities (University of Geneva, hands-on bioinformatics training in Switzerland and Europe) and communication with the public at large.