Analysis by Its History

HAIMER, Ernst, WANNER, Gerhard

Abstract

This book presents first-year calculus roughly in the order in which it first was discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.

Reference

DOI : 10.1007/978-0-387-77036-9

Available at:
http://archive-ouverte.unige.ch/unige:12341

Disclaimer: layout of this document may differ from the published version.
Undergraduate Texts in Mathematics

Readings in Mathematics

Editors
S. Axler
K.A. Ribet
Graduate Texts in Mathematics
Readings in Mathematics

- Ebbinghaus/Hermes/Hirzebruch/Koecher/Mainzer/Neukirch/Prestel/Remmert: *Numbers*
- Fulton/Harris: *Representation Theory: A First Course*
- Murty: *Problems in Analytic Number Theory*
- Remmert: *Theory of Complex Functions*
- Walter: *Ordinary Differential Equations*

Undergraduate Texts in Mathematics
Readings in Mathematics

- Anglin: *Mathematics: A Concise History and Philosophy*
- Anglin/Lambek: *The Heritage of Thales*
- Bressoud: *Second Year Calculus*
- Hairer/Wanner: *Analysis by Its History*
- Hämmerlin/Hoffmann: *Numerical Mathematics*
- Isaac: *The Pleasures of Probability*
- Knoebel/Laubenbacher/Lodder/Pengelley: *Mathematical Masterpieces: Further Chronicles by the Explorers*
- Laubenbacher/Pengelley: *Mathematical Expeditions: Chronicles by the Explorers*
- Samuel: *Projective Geometry*
- Stillwell: *Numbers and Geometry*
- Toth: *Glimpses of Algebra and Geometry, Second Edition*
E. Hairer G. Wanner

Analysis by
Its History

Springer
Preface

... that departed from the traditional dry-as-dust mathematics textbook.
(M. Kline, from the Preface to the paperback edition of Kline 1972)

Also for this reason, I have taken the trouble to make a great number of drawings.
(Brieskorn & Knörrer, Plane algebraic curves, p. ii)

... I should like to bring up again for emphasis ... points, in which my exposition differs especially from the customary presentation in the textbooks:
1. Illustration of abstract considerations by means of figures.
2. Emphasis upon its relation to neighboring fields, such as calculus of differences and interpolation ...
3. Emphasis upon historical growth.

It seems to me extremely important that precisely the prospective teacher should take account of all of these. (F. Klein 1908, Engl. ed. p. 236)

Traditionally, a rigorous first course in Analysis progresses (more or less) in the following order:

\[
\text{sets, mappings } \Rightarrow \text{ limits, functions } \Rightarrow \text{ continuous } \Rightarrow \text{ derivatives } \Rightarrow \text{ integration.}
\]

On the other hand, the historical development of these subjects occurred in reverse order:

\[
\begin{align*}
\text{Cantor 1875} & \quad \text{Weierstrass} & \quad \text{Archimedes} \\
\text{Dedekind} & \quad \text{Cauchy 1821} & \quad \text{Kepler 1615} \\
& \quad \text{Newton 1665} & \quad \text{Leibniz 1675} & \quad \text{Fermat 1638}
\end{align*}
\]

In this book, with the four chapters

Chapter I. Introduction to Analysis of the Infinite
Chapter II. Differential and Integral Calculus
Chapter III. Foundations of Classical Analysis
Chapter IV. Calculus in Several Variables

we attempt to restore the historical order, and begin in Chapter I with Cardano, Descartes, Newton, and Euler’s famous Introductio. Chapter II then presents 17th and 18th century integral and differential calculus “on period instruments” (as a musician would say). The creation of mathematical rigor in the 19th century by Cauchy, Weierstrass, and Peano for one and several variables is the subject of Chapters III and IV.

This book is the outgrowth of a long period of teaching by the two authors. In 1968, the second author lectured on analysis for the first time, at the University of Innsbruck, where the first author was a first-year student. Since then, we have given these lectures at several universities, in German or in French, influenced by many books and many fashions. The present text was finally written up in French for our students in Geneva, revised and corrected each year, then translated into English, revised again, and corrected with the invaluable help of our colleague John Steinig. He has corrected so many errors that we can hardly imagine what we would have done without him.
Preface

Numbering: each chapter is divided into sections. Formulas, theorems, figures, and exercises are numbered consecutively in each section, and we also indicate the section number, but not the chapter number. Thus, for example, the 7th equation to be labeled in Section II.6 is numbered “(6.7)”. References to this formula in other chapters are given as “(II.6.7)”.

References to the bibliography: whenever we write, say, “Euler (1737)” or “(Euler 1737)”, we refer to a text of Euler’s published in 1737, detailed references to which are in the bibliography at the end of the book. We occasionally give more precise indications, as for instance “(Euler 1737, p. 25)”. This is intended to help the reader who wishes to look up the original sources and to appreciate the often elegant and enthusiastic texts of the pioneers. When there is no corresponding entry in the bibliography, we either omit the parentheses or write, for example, “(in 1580)”.

Quotations: we have included many quotations from the literature. Those appearing in the text are usually translated into English; the non-English originals can be consulted in the Appendix. They are intended to give the flavor of mathematics as an international science with a long history, sometimes to amuse, and also to compensate those readers without easy access to a library with old books. When the source of a quotation is not included in the bibliography, its title is indicated directly, as for example the book by Brieskorn and Knörrer from which we have quoted above.

Acknowledgments: the text was processed in plain TeX on our Sun workstations at the University of Geneva using macros from Springer-Verlag New York. We are grateful for the help of J.M. Naef, “Mr. Sun” of the “Services Informatiques” of our university. The figures are either copies from old books (photographed by J.M. Meylan from the Geneva University Library and by A. Perruchoud) or have been computed with our Fortran codes and included as Postscript files. The final printing was done on the 1200dpi laser printer of the Psychology Department in Geneva. We also thank the staff of the mathematics department library and many colleagues, in particular R. Bulirsch, P. Deuflhard, Ch. Lubich, R. März, A. Ostermann, J.-Cl. Pont, and J.M. Sanz-Serna for valuable comments and hints. Last but surely not least we want to thank Dr. Ina Lindemann and her équipe from Springer-Verlag New York for all her help, competent remarks, and the agreeable collaboration.

March 1995

Preface to the 2nd, 3rd, and 4th Corrected Printings. These new printings allowed us to correct several misprints and to improve the text in many places. In particular, we give a more geometric exposition of Tartaglia’s solution of the cubic equation, improve the treatment of envelopes, and give a more complete proof of the transformation formula of multiple integrals. We are grateful to many students and colleagues who have helped us to discover errors and possible improvements, in particular R.B. Burckel, H. Fischer, J.-L. Gaudin, and H.-M. Maire. We would like to address special thanks to Y. Kanie, the translator of the Japanese edition.

March 1997, April 2000, Sept 2007
Contents

Chapter I Introduction to Analysis of the Infinite

I.1 Cartesian Coordinates and Polynomial Functions 2
 Algebra ... 2
 “Algebra Nova” 6
 Descartes’ Geometry 8
 Polynomial Functions 10
 Exercises 14

I.2 Exponentials and the Binomial Theorem 17
 Binomial Theorem 18
 Exponential Function 25
 Exercises 28

I.3 Logarithms and Areas 29
 Computation of Logarithms 30
 Computation of Areas 33
 Area of the Hyperbola and Natural Logarithms 34
 Exercises 39

I.4 Trigonometric Functions 40
 Basic Relations and Consequences 43
 Series Expansions 46
 Inverse Trigonometric Functions 49
 Computation of Pi 52
 Exercises 55

I.5 Complex Numbers and Functions 57
 Euler’s Formula and Its Consequences 58
 A New View on Trigonometric Functions 61
 Euler’s Product for the Sine Function 62
 Exercises 66

I.6 Continued Fractions 68
 Origins ... 68
 Convergents 71
 Irrationality 76
 Exercises 78

Chapter II Differential and Integral Calculus

II.1 The Derivative 81
 The Derivative 81
 Differentiation Rules 84
 Parametric Representation and Implicit Equations .. 88
 Exercises 89

II.2 Higher Derivatives and Taylor Series 91
 The Second Derivative 91
 De Conversione Functionum in Series 94
 Exercises 97

II.3 Envelopes and Curvature 98
 Envelope of a Family of Straight Lines 98
 The Caustic of a Circle 99
 Envelope of Ballistic Curves 101
 Curvature 101
 Exercises 105

II.4 Integral Calculus 107
 Primitives 107
Contents

Chapter III Foundations of Classical Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.5 Functions with Elementary Integral</td>
<td>118</td>
</tr>
<tr>
<td>Functions with Elementary Integral</td>
<td>118</td>
</tr>
<tr>
<td>Integration of Rational Functions</td>
<td>123</td>
</tr>
<tr>
<td>Use of Rational Functions</td>
<td>128</td>
</tr>
<tr>
<td>Asymptotic Expansions</td>
<td>131</td>
</tr>
<tr>
<td>Exercises</td>
<td>132</td>
</tr>
<tr>
<td>II.6 Approximate Computation of Integrals</td>
<td>126</td>
</tr>
<tr>
<td>Approximate Computation of Integrals</td>
<td>128</td>
</tr>
<tr>
<td>Numerical Methods</td>
<td>131</td>
</tr>
<tr>
<td>Exercises</td>
<td>132</td>
</tr>
<tr>
<td>II.7 Ordinary Differential Equations</td>
<td>134</td>
</tr>
<tr>
<td>Ordinary Differential Equations</td>
<td>139</td>
</tr>
<tr>
<td>Second Order Differential Equations</td>
<td>140</td>
</tr>
<tr>
<td>Exercises</td>
<td>143</td>
</tr>
<tr>
<td>II.8 Linear Differential Equations</td>
<td>144</td>
</tr>
<tr>
<td>Linear Differential Equations</td>
<td>145</td>
</tr>
<tr>
<td>Homogeneous Equation with Constant Coefficients</td>
<td>148</td>
</tr>
<tr>
<td>Cauchy’s Equation</td>
<td>152</td>
</tr>
<tr>
<td>Exercises</td>
<td>152</td>
</tr>
<tr>
<td>II.9 Numerical Solution of Differential Equations</td>
<td>154</td>
</tr>
<tr>
<td>Numerical Solution of Differential Equations</td>
<td>154</td>
</tr>
<tr>
<td>Euler’s Method</td>
<td>156</td>
</tr>
<tr>
<td>Taylor Series Method</td>
<td>158</td>
</tr>
<tr>
<td>Second Order Equations</td>
<td>159</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>II.10 The Euler-Maclaurin Summation Formula</td>
<td>160</td>
</tr>
<tr>
<td>The Euler-Maclaurin Summation Formula</td>
<td>160</td>
</tr>
<tr>
<td>Euler’s Derivation of the Formula</td>
<td>163</td>
</tr>
<tr>
<td>De Usu Legitimo Formulae Summatoriae Maclaurinianae</td>
<td>165</td>
</tr>
<tr>
<td>Stirling’s Formula</td>
<td>167</td>
</tr>
<tr>
<td>The Harmonic Series and Euler’s Constant</td>
<td>169</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
</tbody>
</table>

Chapter III Foundations of Classical Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.1 Infinite Sequences and Real Numbers</td>
<td>172</td>
</tr>
<tr>
<td>Infinite Sequences and Real Numbers</td>
<td>172</td>
</tr>
<tr>
<td>Convergence of a Sequence</td>
<td>177</td>
</tr>
<tr>
<td>Construction of Real Numbers</td>
<td>182</td>
</tr>
<tr>
<td>Monotone Sequences and Least Upper Bound</td>
<td>184</td>
</tr>
<tr>
<td>Accumulation Points</td>
<td>185</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>III.2 Infinite Series</td>
<td>188</td>
</tr>
<tr>
<td>Infinite Series</td>
<td>189</td>
</tr>
<tr>
<td>Criteria for Convergence</td>
<td>192</td>
</tr>
<tr>
<td>Absolute Convergence</td>
<td>195</td>
</tr>
<tr>
<td>Double Series</td>
<td>197</td>
</tr>
<tr>
<td>The Cauchy Product of Two Series</td>
<td>199</td>
</tr>
<tr>
<td>Exchange of Infinite Series and Limits</td>
<td>200</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>III.3 Real Functions and Continuity</td>
<td>202</td>
</tr>
<tr>
<td>Real Functions and Continuity</td>
<td>204</td>
</tr>
<tr>
<td>Continuous Functions</td>
<td>206</td>
</tr>
<tr>
<td>The Intermediate Value Theorem</td>
<td>206</td>
</tr>
<tr>
<td>The Maximum Theorem</td>
<td>208</td>
</tr>
<tr>
<td>Monotone and Inverse Functions</td>
<td>209</td>
</tr>
<tr>
<td>Limit of a Function</td>
<td>210</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
</tbody>
</table>
Taylor Series for n Variables ... 320
Maximum and Minimum Problems ... 323
Conditional Minimum (Lagrange Multiplier) 325
Exercises ... 328

IV.5 Multiple Integrals ... 330
Double Integrals over a Rectangle ... 330
Null Sets and Discontinuous Functions .. 334
Arbitrary Bounded Domains ... 336
The Transformation Formula for Double Integrals 338
Integrals with Unbounded Domain .. 345
Exercises ... 347

Appendix: Original Quotations ... 351

References ... 358

Symbol Index ... 369

Index ... 371