The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt{2}}$

DUMINIL-COPIN, Hugo, SMIRNOV, Stanislav

Abstract

We provide the first mathematical proof that the connective constant of the hexagonal lattice is equal to $\sqrt{2+\sqrt{2}}$. This value has been derived non rigorously by B. Nienhuis in 1982, using Coulomb gas approach from theoretical physics. Our proof uses a parafermionic observable for the self avoiding walk, which satisfies a half of the discrete Cauchy-Riemann relations. Establishing the other half of the relations (which conjecturally holds in the scaling limit) would also imply convergence of the self-avoiding walk to SLE(8/3).

Reference

DUMINIL-COPIN, Hugo, SMIRNOV, Stanislav. The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt{2}}$. [Submitted to:] Annals of Mathematics

arxiv: 1007.0575v1
The connective constant of the honeycomb lattice equals $\sqrt{2 + \sqrt{2}}$

Hugo Duminil-Copin and Stanislav Smirnov

Abstract

We provide the first mathematical proof that the connective constant of the hexagonal lattice is equal to $\sqrt{2 + \sqrt{2}}$. This value has been derived non rigorously by B. Nienhuis in 1982, using Coulomb gas approach from theoretical physics. Our proof uses a parafermionic observable for the self avoiding walk, which satisfies a half of the discrete Cauchy-Riemann relations. Establishing the other half of the relations (which conjecturally holds in the scaling limit) would also imply convergence of the self-avoiding walk to SLE(8/3).

Introduction

P. Flory [2] proposed to consider self-avoiding (i.e. visiting every vertex at most once) walks on a lattice as a model for polymer chains. Self-avoiding walks turned out to be a very interesting object, leading to rich mathematical theories and challenging questions, see [3].

Denote by c_n the number of n-step self-avoiding walks on the hexagonal lattice H started from some fixed vertex, e.g. the origin. Elementary bounds on c_n (for instance $\sqrt{2}^n \leq c_n \leq 3 \cdot 2^{n-1}$) guarantee that c_n grows exponentially fast. Since a $(n+m)$-step self-avoiding walk can be uniquely cut into a n-step self-avoiding walk and a parallel translation of a m-step self-avoiding walk, we infer that

$$c_{n+m} \leq c_nc_m,$$

from which it follows that there exists $\mu \in (0, +\infty)$ such that

$$\mu := \lim_{n \to \infty} \frac{1}{n} c_n^\frac{1}{n}.$$

The positive real number μ is called the connective constant of the hexagonal lattice.

Using Coulomb gas formalism, B. Nienhuis [6] proposed physical arguments for μ to have the value $\sqrt{2 + \sqrt{2}}$. We rigorously prove this statement. While our methods are different from those harnessed by Nienhuis, they are similarly motivated by considerations of vertex operators in the $O(n)$ model.

Theorem 1 For the hexagonal lattice,

$$\mu = \sqrt{2 + \sqrt{2}}.$$
It will be convenient to consider walks between mid-edges H, i.e. centers of edges of H (the set of mid-edges will be called H). We will write $\gamma : a \to E$ if a walk γ starts at a and ends at some mid-edge of $E \subset H$. In the case $E = \{b\}$, we simply write $\gamma : a \to b$.

The length $\ell(\gamma)$ of the walk is the number of vertices belonging to γ.

It will be convenient to work with the (decreasing in x) sum

$$Z(x) = \sum_{\gamma : a \to H} x^{-\ell(\gamma)} \in (0, +\infty].$$

This sum does not depend on the choice of a. Establishing $\mu = \sqrt{2 + \sqrt{2}}$ is equivalent to showing that $Z(x) = +\infty$ for $x < \sqrt{2 + \sqrt{2}}$ and $Z(x) < +\infty$ for $x > \sqrt{2 + \sqrt{2}}$. To this effect, we first restrict walks to bounded domains and weight them counting their winding. The vertex operator obtained leads to a parafermionic observable. Such observables can be used in other contexts, see [1, 7]. To simplify formulæ, below we set $x_c := \sqrt{2 + \sqrt{2}}$ and $j = e^{2\pi/3}$.

Parafermionic observable A (hexagonal lattice) domain $\Omega \subset H$ is a union of all mid-edges emanating from a given collection of vertices $V(\Omega)$ (see Fig. 1): a mid-edge z belongs to Ω if at least one end-point of its associated edge is in Ω, it belongs to $\partial \Omega$ if only one of them is in Ω. We further assume Ω to be simply connected, i.e. having a connected complement.

![Figure 1](image)

Definition 1 The winding $W_\gamma(a, b)$ of a self-avoiding walk γ between mid-edges a and b (not necessarily the start and the end) is the total rotation of the direction in radians when γ is traversed from a to b, see Fig. [7].

The parafermionic observable is defined as follows: for $a \in \partial \Omega, z \in \Omega$, set

$$F(z) = F(a, z, x, \sigma) = \sum_{\gamma \subset \Omega : a \to z} e^{-i\sigma W_\gamma(a, z)} x^{-\ell(\gamma)}.$$
Lemma 1 If \(x = x_c \) and \(\sigma = \frac{5}{8} \), then \(F \) satisfies the following relation for every vertex \(v \in V(\Omega) \):

\[
(p - v)F(p) + (q - v)F(q) + (r - v)F(r) = 0,
\]

where \(p, q, r \) are the mid-edges of the three edges adjacent to \(v \).

Note that with \(\sigma = 5/8 \), the term \(e^{i\sigma W_{r(a,z)}} \) gives a weight \(\lambda \) or \(\bar{\lambda} \) per left or right turn of \(\gamma \), where

\[
\lambda = \exp(-i \cdot \frac{5}{8} \cdot \pi) = \exp(-i \frac{5\pi}{24}).
\]

Proof In this proof, we further assume that \(p, q \) and \(r \) are oriented counter-clockwise around \(v \). Note that \((p - v)F(p) + (q - v)F(q) + (r - v)F(r) \) is a sum of contributions \(c(\gamma) \) over all possible walks \(\gamma \) finishing at \(p, q \) or \(r \). For instance, if the walk ends at the mid-edge \(p \), the contribution will be given by

\[
c(\gamma) = (p - v)e^{i\sigma W_{r(a,p)}}x_c^{-\ell(\gamma)}.
\]

One can partition the set of walks \(\gamma \) finishing at \(p, q \) or \(r \) into pairs and triplets of walks in the following way, see Fig 2:

- If a walk \(\gamma_1 \) visits all three mid-edges \(p, q, r \), it means that the edges belonging to \(\gamma_1 \) form a self-avoiding path plus (up to a half-edge) a self-avoiding loop from \(v \) to \(v \). One can associate to \(\gamma_1 \) the walk passing through the same edges, but exploring the loop from \(v \) to \(v \) in the other direction. Hence, walks visiting the three mid-edges can be grouped in pairs.

- If a walk \(\gamma_1 \) visits only one mid-edge, it can be associated to two walks \(\gamma_2 \) and \(\gamma_3 \) that visit exactly two mid-edges by prolonging the walk one step further (there are two possible choices). The reverse is true: a walk visiting exactly two mid-edges is naturally associated to a walk visiting only one mid-edge by erasing the last step. Hence, walks visiting one or two mid-edges can be grouped in triplets.

If one can prove that the sum of contributions for each pair and each triplet vanishes, then the total sum is zero.

Let \(\gamma_1 \) and \(\gamma_2 \) be two walks that are grouped as in the first case. Without loss of generality, we assume that \(\gamma_1 \) ends at \(q \) and \(\gamma_2 \) ends at \(r \). Note that \(\gamma_1 \) and \(\gamma_2 \) coincide up to the mid-edge \(p \) since \((\gamma_1, \gamma_2) \) are matched together. We deduce

\[
\ell(\gamma_1) = \ell(\gamma_2) \quad \text{and} \quad \left\{ \begin{array}{l}
W_{\gamma_1(a,q)} = W_{\gamma_1(a,p)} + W_{\gamma_1(p,q)} = W_{\gamma_1(a,p)} + \frac{\pi}{2} \\
W_{\gamma_2(a,r)} = W_{\gamma_2(a,p)} + W_{\gamma_2(p,r)} = W_{\gamma_1(a,p)} + \frac{\pi}{2}.
\end{array} \right.
\]

In order to evaluate the winding of \(\gamma_1 \) between \(p \) and \(q \), we used the fact that \(a \) is on the boundary and \(\Omega \) is simply connected. Therefore,

\[
c(\gamma_1) + c(\gamma_2) = (q - v)e^{i\sigma W_{\gamma_1(a,q)}}x_c^{-\ell(\gamma_1)} + (r - v)e^{i\sigma W_{\gamma_2(a,r)}}x_c^{-\ell(\gamma_2)}
\]

\[
= (p - v)e^{i\sigma W_{\gamma_1(a,p)}}x_c^{-\ell(\gamma_1)} \left(j\lambda^4 + \bar{j}\lambda^4 \right) = 0
\]
where the last equality is due to the chosen value $\lambda = \exp(-i5\pi/24)$.

Let $\gamma_1, \gamma_2, \gamma_3$ be three walks matched as in the second case. Without loss of generality, we assume that γ_1 ends at p and that γ_2 and γ_3 extend γ_1 to q and r respectively. As before, we easily find that

\[
\ell(\gamma_2) = \ell(\gamma_3) = \ell(\gamma_1) + 1 \quad \text{and} \quad \{ W_{\gamma_2}(a,r) = W_{\gamma_2}(a,p) + W_{\gamma_1}(a,p) - \frac{\pi}{2} \\
W_{\gamma_3}(a,r) = W_{\gamma_3}(a,p) + W_{\gamma_3}(p,r) - W_{\gamma_1}(a,p) + \frac{\pi}{2} \}.
\]

Following the same steps as above, we obtain

\[
c(\gamma_1) + c(\gamma_2) + c(\gamma_3) = (p - v) e^{-i\sigma} W_{\gamma_1}(a,p) x^{-\ell(\gamma_1)} \left(1 + x^{-1} j \lambda + x^{-1} j \bar{\lambda} \right) = 0.
\]

Here is the only place where we use the crucial fact that $x_c = \sqrt{2 + \sqrt{2}} = 2 \cos \frac{\pi}{8}$.

The claim follows readily by summing over all pairs and triplets.

\[
\begin{align*}
\gamma_1 & \quad \gamma_2 \\
\gamma_1 & \quad \gamma_3
\end{align*}
\]

Figure 2: Left: a pair of walks visiting the three mid-edges and matched together. Right: a triplet of walks, one visiting one mid-edge, the two others visiting two mid-edges, which are matched together.

Remark 1 Coefficients above are three cube roots of unity multiplied by $p - v$, so that the left-hand side can be seen as a discrete integral along an elementary contour on the dual lattice. The fact that the integral of the parafermionic observable along discrete contours vanishes is a glimpse of conformal invariance of the model. Indeed, this observable should converge, when properly rescaled, to a holomorphic martingale, as explained in [7]. Establishing this convergence would pave the way for proving that the self-avoiding walk converges to Schramm’s SLE(8/3) in the scaling limit.

Counting argument in a strip domain. We consider a vertical strip domain S_T composed of T strips of hexagons, and its finite version $S_{T,L}$ cut at height L at an angle of $\pi/3$, see Fig. 3. Namely, position a hexagonal lattice \mathbb{H} of meshsize 1 in \mathbb{C} so that there exists a horizontal edge e with mid-edge a being 0. Then

\[
V(S_T) = \{ z \in V(\mathbb{H}) : 0 \leq \text{Re}(z) \leq \frac{3T + 1}{2} \},
\]

\[
V(S_{T,L}) = \{ z \in V(S_T) : |\sqrt{3} \text{Im}(z) - \text{Re}(z)| \leq 3L \}.
\]
Denote by α the left boundary of S_T, by β the right one. Symbols ε and $\bar{\varepsilon}$ denote the top and bottom boundaries of $S_{T,L}$. Introduce the following positive quantities:

\[
A_{T,L}^x := \sum_{\gamma \subset S_{T,L} : a \rightarrow \alpha \setminus \{a\}} x^{-\ell(\gamma)},
\]
\[
B_{T,L}^x := \sum_{\gamma \subset S_{T,L} : a \rightarrow \beta} x^{-\ell(\gamma)},
\]
\[
E_{T,L}^x := \sum_{\gamma \subset S_{T,L} : a \rightarrow \varepsilon \cup \bar{\varepsilon}} x^{-\ell(\gamma)}.
\]

Figure 3: Domain $S_{T,L}$ and boundary parts α, β, ε and $\bar{\varepsilon}$.

Lemma 2 When $x = x_c$, we have

\[
1 = c_\alpha A_{T,L}^{x_c} + B_{T,L}^{x_c} + c_\varepsilon E_{T,L}^{x_c},
\]

where $c_\alpha = \cos\left(\frac{3\pi}{8}\right)$ and $c_\varepsilon = \cos\left(\frac{\pi}{4}\right)$.

Proof Sum the relation (1) over all vertices in $V(S_{T,L})$. Values at interior half-edges disappear and we arrive at

\[
0 = -\sum_{z \in \alpha} F(z) + \sum_{z \in \beta} F(z) + \sum_{z \in \varepsilon} F(z) + \sum_{z \in \bar{\varepsilon}} F(z).
\]

Using the symmetry of the domain, we deduce $F(z) = \bar{F}(z)$. Observe that the winding of any self-avoiding walk from a to the bottom part of α is $-\pi$ while the winding to the top part is π. We conclude

\[
\sum_{z \in \alpha} F(z) = F(a) + \sum_{z \in \alpha \setminus \{a\}} F(z) = 1 + \frac{e^{-i\sigma\pi} + e^{i\sigma\pi}}{2} A_{T,L}^x = 1 - \cos\left(\frac{3\pi}{8}\right) A_{T,L}^x = 1 - c_\alpha A_{T,L}^x.
\]

5
Above, we have used the fact that the only walk from \(a\) to \(a\) is of length 0. Similarly, the winding from \(a\) to any half-edge in \(\beta\) (resp. \(\varepsilon\) and \(\bar{\varepsilon}\)) is 0 (resp. \(\frac{2\pi}{T}\) and \(-\frac{2\pi}{T}\)), therefore

\[
\sum_{z \in \beta} F(z) = B^x_{T,L} \quad \text{and} \quad j \sum_{z \notin \beta} F(z) + \bar{j} \sum_{z \notin \bar{\beta}} F(z) = \cos \left(\frac{\pi}{4} \right) E^x_{T,L} = c_\varepsilon E^x_{T,L}.
\]

The lemma follows readily by plugging these three formulæ in \((3)\). \(\square\)

Observe that sequences \((A^x_{T,L})_{L>0}\) and \((B^x_{T,L})_{L>0}\) are increasing in \(L\) and are bounded for \(x \geq x_c\) thanks to \((2)\) and the monotonicity in \(x\). Thus they have limits

\[
A_T^x = \lim_{L \to \infty} A^x_{T,L} = \sum_{\gamma \subset S_T: \ a \to \alpha \in \{a\}} x^{-\ell(\gamma)},
\]

\[
B_T^x = \lim_{L \to \infty} B^x_{T,L} = \sum_{\gamma \subset S_T: \ a \to \beta} x^{-\ell(\gamma)}.
\]

When \(x = x_c\), via \((2)\) again, we conclude that \((E^x_{T,L})_{L>0}\) decreases and converges to a limit \(E^x_T = \lim_{L \to \infty} E^x_{T,L}\). Then, \((2)\) implies

\[
1 = c_\alpha A^x_T + B^x_T + c_\varepsilon E^x_T.
\]

Proof of Theorem Let us first prove that \(Z(x_c) = +\infty\), which implies \(\mu \leq \sqrt{2 + \sqrt{2}}\).

Suppose that for some \(T\), \(E^x_T > 0\). As noted before, \(E^x_{T,L}\) decreases in \(L\) and

\[
Z(x_c) \geq \sum_{L>0} E^x_{T,L} \geq \sum_{L>0} E^x_{T} = +\infty,
\]

which completes the proof. Assume on the contrary that \(E^x_T = 0\), then \((4)\) simplifies to

\[
1 = c_\alpha A^x_T + B^x_T.
\]

Observe that walks entering into the count of \(A^x_{T+1,L}\) and not in \(A^x_T\) have to visit some vertex adjacent to \(\beta\) for \(S_{T+1}\). Cutting such a walk at the first such point (and adding half-edges to the two halves), we obtain two walks of width \(T + 1\) in \(S_{T+1}\). We conclude that

\[
A^x_{T+1} - A^x_T \leq \frac{1}{x_c} (B^x_{T+1})^2.
\]

Combining \((5)\) for \(T\) and \(T + 1\) with \((6)\), we can write

\[
0 = 1 - 1 = (c_\alpha A^x_{T+1} + B^x_{T+1}) - (c_\alpha A^x_T + B^x_T)
\]

\[
= c_\alpha (A^x_{T+1} - A^x_T) + B^x_{T+1} - B^x_T
\]

\[
\leq \frac{c_\alpha}{x_c} (B^x_{T+1})^2 + B^x_{T+1} - B^x_T,
\]

so

\[
\frac{c_\alpha}{x_c} (B^x_{T+1})^2 + B^x_{T+1} \geq B^x_T.
\]
By induction, it is easy to check that

$$B_T^{ce} \geq \frac{\min(B_1^{xe}, x_c/c_\alpha)}{T}$$

for every $T \geq 1$, implying

$$Z(x_c) \geq \sum_{T>0} B_T^{ce} = +\infty.$$

This completes the proof of the inequality $\mu \leq x_c = \sqrt{2 + \sqrt{2}}$.

Let us turn to the other needed inequality $\mu \geq x_c$. An excursion of width T is a self-avoiding walk in S_T from one side to the opposite side, defined up to vertical translation. The partition function of excursions of width T is B_T^{xe}. Using (4), we can bound B_T^{ce} by 1. Noting that an excursion of width T has length at least T, we obtain for $x > x_c$

$$B_T^{xe} \leq \left(\frac{x_c}{x}\right)^T, \quad B_T^{xe} \leq \left(\frac{x_c}{x}\right)^T.$$

Thus, the series $\sum_{T>0} B_T^{xe}$ converges and so does the product $\prod_{T>0} (1 + B_T^{xe})$. Let us assume the following fact: any self-avoiding walk can be canonically decomposed into a sequence of excursions of widths $T_i < \cdots < T_1$ and $T_0 > \cdots > T_j$. Furthermore, if one fixes the starting mid-edge and the first vertex visited, the decomposition uniquely determines the walk. This decomposition was first introduced by Hammersley and Welsh in [4] (for a modern treatment, see Section 3.1 of [3]). Applying the decomposition to walks starting at a (the first visited vertex is 0 or -1), we conclude

$$Z(x) \leq 2 \sum_{T_i < \cdots < T_1} \left(\prod_{k=-i}^j B_{T_k}^{xe} \right) = \prod_{T>0} (1 + B_T^{xe})^2 < \infty.$$

The factor 2 is due to the fact that there are two possibilities for the first vertex once we fix the starting mid-edge. Therefore, $Z(x) < +\infty$ whenever $x > x_c$ and $\mu \geq x_c = \sqrt{2 + \sqrt{2}}$. To complete the proof of the theorem it only remains to prove that such a decomposition into excursions does exist. Once again, this fact is well-known [3, 4], we include the proof nevertheless.

First assume that $\tilde{\gamma}$ is a half-plane self-avoiding walk, meaning that the start of $\tilde{\gamma}$ has extremal real part: we prove by induction on the width T_0 that the walk admits a canonical decomposition into excursions of widths $T_0 > \cdots > T_j$. Without loss of generality, we assume that the start has minimal real part. Out of the vertices having the maximal real part, choose the one visited last, say after n steps. The n first vertices of the walk form an excursion $\tilde{\gamma}_1$ of width T_0, which is the first excursion of our decomposition when prolonged to the mid-edge on the right of the last vertex. We forget about the $(n+1)$-th vertex, since there is no ambiguity in its position. The consequent steps form a half-plane walk $\tilde{\gamma}_2$ of width $T_1 < T_0$. Using the induction hypothesis, we know that $\tilde{\gamma}_2$ admits a decomposition into excursions of widths $T_1 > \cdots > T_j$. The decomposition of $\tilde{\gamma}$ is created by adding $\tilde{\gamma}_1$ before the decomposition of $\tilde{\gamma}_2$.

7
Figure 4: **Left**: Decomposition of a half-plane walk into four excursions with widths $8 > 3 > 1 > 0$. The first excursion corresponds to the maximal excursion containing the origin. Note that the decomposition contains one excursion of width 0. **Right**: The reverse procedure. If the starting mid-edge and the first vertex are fixed, the decomposition is unambiguous.

If the walk is a reverse half-plane self-avoiding walk, meaning that the end has extremal real part, we set the decomposition to be the decomposition of the reverse walk in the reverse order. If γ is a self-avoiding walk in the plane, one can cut the trajectory into two pieces γ_1 and γ_2: the vertices of γ up to the first vertex of maximal real part, and the remaining vertices. The decomposition of γ is given by the decomposition of γ_1 (with widths $T_{-1} < \cdots < T_{-T_j}$) plus the decomposition of γ_2 (with widths $T_0 > \cdots > T_j$).

Once the starting mid-edge and the first vertex are given, it is easy to check that the decomposition uniquely determines the walk by exhibiting the reverse procedure, see Fig. 4 for the case of half-plane walks.

Remark 2 The proof provides bounds for the number of excursions from a to the right side of the strip of width T, namely,

$$\frac{c}{T} \leq B_T^{x_c} \leq 1.$$

In sections 3.4.2 and 3.4.3 of [5], precise behaviors are conjectured for the number of self-avoiding walks between two points on the boundary of a domain. It easily implies the following estimate:

$$\sum_{\gamma \in S_T: 0 \rightarrow T+i\eta T} x^{-\ell(\gamma)} \approx T^{-5/4} H(0, 1 + i\eta)^{5/4}$$

where H is the boundary derivative of the Poisson kernel. Integrating with respect to η, we obtain that $B_T^{x_c}$ should decay as $T^{-1/4}$ when T goes to infinity. Similar (conjectured) asymptotics are available for walks in S_T from 0 to ηT.

Acknowledgements. The authors would like to thank G. Slade for useful comments on the manuscript, and G. Lawler for suggesting Remark 2. The authors were supported
by the ANR grant BLAN06-3-134462, the EU Marie-Curie RTN CODY, the ERC AG CONFRA, as well as by the Swiss NSF.

References

Département de Mathématiques
Université de Genève
Genève, Switzerland

E-mail: hugo.duminil@unige.ch ; stanislav.smirnov@unige.ch