Overlapping Schwarz Waveform Relaxation for Parabolic Problems

GANDER, Martin Jakob

Overlapping Schwarz Waveform Relaxation for Parabolic Problems

Martin J. Gander*

December 7, 1997

1 Introduction

We analyze a new domain decomposition algorithm to solve parabolic partial differential equations. Two classical approaches can be found in the literature:

1. Discretizing time and applying domain decomposition to the obtained sequence of elliptic problems, like in [Kuz90], [Meu91], [Cai91] and references therein.

2. Discretizing space and applying waveform relaxation to the large system of ordinary differential equations, like in [LO87], [JP95] and [JV96] and references therein.

In contrary to the classical approaches, we formulate a parallel solution algorithm without any discretization. We decompose the domain into overlapping subdomains in space and we consider the parabolic problem on each subdomain over a given time interval. We solve iteratively parabolic problems on subdomains, exchanging boundary information at the interfaces of subdomains. This algorithm is like a classical overlapping additive Schwarz, but on subdomains, a time dependent problem is solved, like in waveform relaxation. Thus the name overlapping Schwarz waveform relaxation.

*Scientific Computing and Computational Mathematics, Stanford University, mgander@sccm.stanford.edu
This algorithm has been considered before in [GS97], where linear convergence on unbounded time intervals was proved for the one dimensional heat equation, and in [GK97] where superlinear convergence for bounded time intervals was shown for a constant coefficient convection diffusion equation.

We study here three model problems which show that the results in [GS97] and [GK97] hold for more general parabolic equations. All the convergence results are in L^1 with the norm $\|u\|_1 := \sup_{x,t} |u(x,t)|$. We denote by u the exact solution of the problem under consideration and by u^k the k-th iterate of the algorithm.

2 Reaction Diffusion Equation

We study the overlapping Schwarz waveform relaxation algorithm for the one dimensional reaction diffusion equation with variable diffusion coefficient

$$
\frac{\partial u}{\partial t} = c^2(x,t) \frac{\partial^2 u}{\partial x^2} + f(u) \quad 0 < x < L, \ 0 < t < T
$$

with appropriate initial and boundary conditions. We consider only the two subdomain problem given in Figure 1 with nonempty overlap, $0 < \alpha < \beta < 1$. The generalization to N subdomains can be found in [Gan97a].

2.1 Theoretical Results

Define for $0 < x < L$ and $0 < t < T$

$$
\tilde{c}^2 := \sup_{x,t} c^2(x,t), \quad \hat{a} := \sup_{x,t,\xi \in \mathbb{R}} \frac{f'(\xi)}{c^2(x,t)}
$$

which are assumed to be finite.
Theorem 2.1 (Linear Convergence for \(t \in [0, \infty) \)) If \(\hat{\alpha} < \left(\frac{\pi}{T} \right)^{2} \) then the overlapping Schwarz waveform relaxation algorithm converges linearly on unbounded time intervals,

\[
\|u - u^{2k+1}\|_{\infty} \leq \gamma^{k} \|u - u^{0}\|_{\infty}
\]

with convergence factor

\[
\gamma = \frac{\sin(\sqrt{\hat{\alpha}}(1 - \beta)L) \cdot \sin(\sqrt{\hat{a}}aL)}{\sin(\sqrt{\hat{a}}(1 - \alpha)L) \cdot \sin(\sqrt{\hat{\alpha}}\beta L)} < 1.
\]

Proof The proof can be found in [Gan97b].

Note that the convergence factor \(\gamma \) tends to 1 and convergence is lost as the overlap goes to zero or \(\hat{\alpha} \) goes to \((\pi/L)^2\). On the other hand \(\gamma \) becomes small for \(\hat{\alpha} \) large and negative.

Theorem 2.2 (Superlinear Convergence for \(t \in [0, T] \)) The overlapping Schwarz waveform relaxation algorithm converges superlinearly on bounded time intervals,

\[
\|u - u^{2k+1}\|_{\infty} \leq \max(1, e^{2\hat{\alpha}T}) \text{erfc}(\frac{k(\beta - \alpha)L}{\sqrt{\hat{c}^2 T}}) \|u - u^{0}\|_{\infty}.
\]

Proof The proof can be found in [Gan97b].

Note that convergence is lost again when the overlap goes to zero \((\alpha = \beta)\). But in contrary to the linear result, the superlinear convergence rate does not depend on \(\hat{\alpha} \), only the constant in front does. Instead there is a dependence on the diffusion coefficient \(\hat{c}^2 \) and the length of the time interval: the smaller the product \(\hat{c}^2 T \), the faster the convergence.

2.2 Numerical Results

We consider the model problem

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + 5(u - u^3), \quad 0 < x < 1, \quad 0 < t < T
\]

with initial condition \(u(x, 0) = x^2 \) and boundary conditions \(u(0, t) = 0 \) and \(u(1, t) = e^{-t} \). We choose 20\% overlap \((\alpha = 0.4 \text{ and } \beta = 0.6)\). On the left of Figure 2 we show the linear convergence of the algorithm for a long time interval \(T = 4 \) and on the right of Figure 2 we show superlinear convergence of the algorithm for a short time interval \(T = 0.1 \).
Figure 2: Linear convergence on long time intervals on the left and superlinear convergence on short time intervals on the right. Dashed the numerical results and solid the derived upper bounds for the convergence rate.

3 Convection Diffusion Equation

We consider a convection diffusion equation with variable coefficients in one dimension

\[
\frac{\partial u}{\partial t} = c^2(x,t) \frac{\partial^2 u}{\partial x^2} + b(x,t) \frac{\partial u}{\partial x} + f(x,t) \quad 0 < x < L, \quad 0 < t < T
\]

with appropriate initial and boundary conditions.

3.1 Theoretical Results

Define for \(0 < x < L\) and \(0 < t < T\)

\[
c^2 := \sup_{x,t} c^2(x,t), \quad \hat{b} := \sup_{x,t} \frac{b(x,t)}{c^2(x,t)}, \quad \check{b} := \inf_{x,t} \frac{b(x,t)}{c^2(x,t)}
\]

which are assumed to be finite.

Theorem 3.1 (Linear Convergence for \(t \in [0, \infty)\)) The overlapping Schwarz waveform relaxation algorithm converges linearly on unbounded time intervals,

\[
\|u - u^{2k+1}\|_\infty \leq \gamma^k \|u - u^0\|_\infty
\]
with convergence factor

\[\gamma = \frac{1 - e^{-b(\beta L - L)}}{1 - e^{-b(\alpha L - L)}} \cdot \frac{1 - e^{-bL}}{1 - e^{-bL}}. \]

Proof The proof can be found in [Gan97a].

As in the reaction diffusion case convergence is lost as the overlap goes to zero. But a large ratio of convection to diffusion helps the algorithm by decreasing \(\gamma \).

Theorem 3.2 (Superlinear Convergence for \(t \in [0,T] \)) The overlapping Schwarz waveform relaxation algorithm converges superlinearly on bounded time intervals,

\[\| u - u^{2k+1} \|_{\infty} \leq e^{(\beta - \alpha)k/2} \cdot \text{erfc}(\frac{k(\beta - \alpha)L}{\sqrt{2\gamma}T}) \| u - u^{0} \|_{\infty} \]

Proof The proof can be found in [Gan97a].

Note that the principal convergence rate is the same as in the reaction diffusion case, but there is a lower order dependence on the convection term which slows the convergence down. The dependence is lower order, because \(\text{erfc}(x) \leq e^{-x^2} \). If the coefficients are constant, the dependence on the convection term disappears completely.

3.2 Numerical Results

We consider the model problem

\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + b \frac{\partial u}{\partial x} + 5e^{-(t-2)^2-(x-\frac{1}{4})^2} \quad 0 < x < 1, \quad 0 < t < T \]

with the same initial and boundary conditions as before. We choose again an overlap of 20% and different convection terms, \(b \in \{0, 2.5, 5\} \). Figure 3 shows on the left the long time behavior of the algorithm for \(T = 3 \) and the three different values of \(b \) and on the right the short time behavior of the algorithm for \(T = 0.05 \) and \(b = 5 \).
Figure 3: Linear convergence on the left and superlinear convergence on the right, dashed the numerical experiment and solid the theoretical bound on the convergence rate.

4 Heat Equation in \(n \)-Dimensions

Consider the heat equation in \(n \) dimensions

\[
\frac{\partial u}{\partial t} = \Delta u + f(x, t) \quad x \in \Omega, 0 < t < T
\]

with appropriate initial and boundary conditions. We assume that \(\Omega \) is a smoothly bounded domain in \(\mathbb{R}^n \) and that we have an overlapping decomposition of the domain into a finite number of subdomains [GZ97].

4.1 Theoretical Results

Theorem 4.1 (Linear Convergence for \(t \in [0, \infty) \)) The overlapping Schwarz waveform relaxation algorithm converges linearly on unbounded time intervals

\[
\max_j \|u - u_j^{k+m+1}\|_\infty \leq \gamma \max_j \|u - u_j^k\|_\infty
\]

where \(\gamma < 1 \), dependent on the geometry but independent of \(k \). Note that \(m \) depends on the number of subdomains.

Proof The proof can be found in [GZ97].
Theorem 4.2 (Superlinear Convergence for $t \in [0, T]$) The overlapping Schwarz waveform relaxation algorithm converges superlinearly on bounded time intervals

$$\max_j \|u - u_j^k\|_\infty \leq (2n)^k \text{erfc} \left(\frac{k\delta}{2\sqrt{nT}} \right) \max_j \|u - u_j^0\|_\infty$$

where δ is a parameter related to the size of the overlap.

Proof The proof can be found in [GZ97].

Note that the superlinear convergence rate does not depend on the number of subdomains.

4.2 Numerical Results

We used the homogeneous heat equation in two dimensions with homogeneous initial and boundary conditions on a unit square with the decomposition given in Figure 4 for our numerical experiments. Figure 5 shows for two different sizes of the overlap, $(\alpha, \beta) \in \{(0.3, 0.7), (0.4, 0.6)\}$, on the left the linear convergence behavior of the algorithm for a long time interval, $T = 1$ and on the right the superlinear convergence behavior for a short time interval, $T = 0.01$.
5 Conclusion

On unbounded time intervals the proposed algorithm converges linearly, provided there is a strong enough dissipation mechanism. Thus the new algorithm inherits the classical convergence behavior of the overlapping Schwarz algorithm for elliptic problems, and also the classical convergence behavior of waveform relaxation on long time windows.

On bounded time intervals the convergence is superlinear, which is a new result for domain decomposition algorithms. The waveform relaxation theory predicts superlinear convergence, but the presence of diffusion leads to a faster superlinear convergence rate than the one predicted by waveform relaxation theory [GK97].

Note that the superlinear convergence rates do not depend on the number of subdomains and thus there is no coarse mesh needed to avoid deterioration of the algorithm [Gan97a].

References

