Core-substituted naphthalenediimides

SAKAI, Naomi, et al.

Abstract
This feature article reviews research of core-substituted napthalenediimides (cNDIs) in a comprehensive yet easy readable manner. Their synthesis, electrochemistry and spectroscopy are covered first with emphasis on the ability of cNDIs with electron donating substituents to absorb and fluoresce in all colors without global structural changes and cNDIs with electron withdrawing substituents to reach unprecedented extents of π-acidity. The chapter on supramolecular chemistry covers face-to-face π-stacks and peripheral hydrogen bonds, that on molecular recognition moves from pH and fluoride sensors to the binding to telomeric DNA in vivo and intercalation into π-stacks and sticky tweezers. cNDIs can recognize and transport anions by functional anion-π interactions. The chapter on electron transport describes cNDIs as air-stable n-semiconductors with high charge mobility and use as OFETs. Photoinduced electron transport by rainbow cNDIs has been used for cript> the creation of artificial photosystems in solution, in bilayer membranes and on solid substrates. Examples include multicolor light harvesting architectures, [...]

Reference

DOI: 10.1039/c0cc00078g
Core-substituted naphthalenediimides

Naomi Sakai,*a Jiri Mareda,a Eric Vauthey, b and Stefan Matile*aa

This feature article reviews research of core-substituted naphthalenediimides (cNDIs) in a comprehensive yet easy readable manner. Their synthesis, electrochemistry and spectroscopy are covered first with emphasis on the ability of cNDIs with electron donating substituents to absorb and fluoresce in all colors without global structural changes and cNDIs with electron withdrawing substituents to reach unprecedented extents of \(\pi \)-acidity. The chapter on supramolecular chemistry covers face-to-face \(\pi \)-stacks and peripheral hydrogen bonds, that on molecular recognition moves from \(\text{pH} \) and fluoride sensors to the binding to telomeric DNA in vivo and intercalation into \(\pi \)-stacks and sticky tweezers. cNDIs can recognize and transport anions by functional anion-\(\pi \) interactions. The chapter on electron transport describes cNDIs as air-stable \(\pi \)-semiconductors with high charge mobility and use as OFETs. Photoinduced electron transport by rainbow cNDIs has been used for the creation of artificial photosystems in solution, in bilayer membranes and on solid substrates. Examples include multicolor light harvesting architectures, organic solar cells, photosystems that can open up into ion channels, and supramolecular \(n/p \)-heterojunctions with antiparallel redox gradients. The review is highly interdisciplinary but should appeal most to organic, biosupramolecular and physical chemists.

Introduction

In this review, recent progress with core-substituted naphthalenediimides (cNDIs, 1) is summarized in a quite comprehensive manner. cNDIs are 1,4,5,8-naphthalenediimides (NDIs, 2) with one or more substituents in position 2, 3, 6 and 7 (Figure 1). With electron donors in the core, cNDIs become colorful push-pull systems, whereas electron acceptors produce exceptionally \(\pi \)-acidic aromatic systems.

Although known since a very long time,\(^1\) research on cNDIs has really taken off only with recent improvements on synthetic access\(^2-7\) and the discovery of rainbow fluorescence,\(^7\) electron transport\(^8\) and anion binding.\(^7\) The closest relatives of cNDIs are much better explored (Figure 1). The parent NDI 2, for example, has been used extensively as electron acceptor, \(n \)-semiconductor and intercalator in aromatic donor-acceptor complexes, molecular tweezers, catenanes, foldamers, gels, nanotubes, ion channels, pores, and optoelectronic devices. This research has been reviewed recently.\(^8\)

Also cPDIS 3, the big brother of cNDIs, are much better explored, presumably because their synthesis is better established.\(^9\) Compared to the twisted cPDIS, cNDIs are planar. This planarity is important for ordered \(\pi \)-stack architectures with high conductivity. Moreover, cNDIs are more compact and colorizable over the whole visible range, whereas unsubstituted PDIS 4 already absorb around 530 nm.\(^5\)

Fragments of NDIs can be seen in naphthalene monoimides 5 and phthaldiiimide 6.\(^10\) High \(\pi \)-acidity makes cNDIs with withdrawing substituents similar to the archetypal hexafluorobenzene.\(^7\)\(^11\) The complementary donating substituents relate cNDIs to \(\pi \)-basic classics such as the dialkoxynaphthyls 8 (DANs) that are often used as NDI.

*Department of Organic Chemistry and *Department of Physical Chemistry, University of Geneva, Geneva, Switzerland. Fax: +41 22 379 5123; Tel: +41 22 379 6523; E-mail: stefan.matile@unige.ch; naomi.sakai@unige.ch, www.unige.ch/sciences/chiorg/matile/

Fig. 1 Core-substituted naphthalenediimides 1, related structures 2-10 and a rainbow collection 11-18 with indication of HOMO (bold) and LUMO (dashed) energies in eV against vacuum and maximal absorption (top) and emission wavelength (bottom) in nm.
partners in charge-transfer stacks.8,12 The combination of donating substituents in the core with withdrawing imides gives versatile push-pull chromophores with similarities to laurdane 9, a famous two-photon probe for membrane microdomains,13 or the classical dansyl 10 (DNS) known inter alia from peptide sequencing.14 The ability of cNDIs to change color and redox properties is arguably their most attractive characteristic.2,15 The rainbow collection 11-18 perfectly illustrates how HOMO-LUMO-gap decrease while HOMO and LUMO energies increase with increasingly donating substituents in the core.15 Simply the replacement of single atoms is sufficient to cover the primary colors, moving from yellow, green-fluorescent cNDI 13 with two oxygens over the red, orange-fluorescent cNDI 15 with one oxygen and one nitrogen to the blue, red-fluorescent cNDI 17 with two nitrogen substituents in the core. The compact cNDI 17 is probably the smallest, most “atom-efficient” chlorophyll mimic known today.16

In the following, we first summarize synthesis, electrochemistry, spectroscopy and supramolecular chemistry of cNDIs. This part is followed by a summary of applications of cNDIs to molecular recognition, anion transport and electron transport to close with photoinduced electron transport in artificial photosystems. Before moving on, we point out that according to IUPAC, cNDIs are most frequently used trivial names. The ability of cNDIs to aromatic amines with poor basicity. In this case, free nitrogens in the core. The compact cNDI is probably the most attractive characteristic.

Synthesis

The traditional approach to cNDIs starts with the oxidation of pyrene 19 (Scheme 1).1,2 The four-step protocol includes strong acids such as fuming HNO\textsubscript{3}, strong bases and chlorine gas. The resulting diimide 20 with two chlorides in the core is then converted to diimide 21 by reacting with amines in AcOH to prevent core substitution. From diimide 21, cNDIs are accessible by nucleophilic aromatic substitution.

\begin{equation}
\begin{align*}
1. \text{Cl}_2(\text{g}), \text{I}_2(60\%) \quad & \rightarrow \quad \text{Cl}_2(\text{g}) \quad \text{I}_2(60\%) \quad \text{NHas} \quad \text{AcOH} \quad \rightarrow \quad \text{R}^1 \text{NHas} \\
2. \text{KOH (99\%)} \quad & \rightarrow \quad \text{KOH (99\%)} \quad \text{Cl}\text{OAc} \quad \rightarrow \quad \text{R}^1 \text{NHas} \\
3. \text{fuming HNO}_3 (40\%) \quad & \rightarrow \quad \text{fuming HNO}_3 (40\%) \quad \text{Cl}\text{OAc} \quad \rightarrow \quad \text{R}^1 \text{NHas} \\
4. \text{HNO}_3, \text{H}_2\text{SO}_4 (70\%) \quad & \rightarrow \quad \text{HNO}_3, \text{H}_2\text{SO}_4 (70\%) \quad \text{Cl}\text{OAc} \quad \rightarrow \quad \text{R}^1 \text{NHas}
\end{align*}
\end{equation}

Scheme 1 A traditional approach to cNDIs.

The classical entry to cNDIs has been discouraging because of the harsh conditions of the initial pyrene oxidation, particularly for academic labs. To avoid reagents such as chlorine gas in large amounts, alternative routes to cNDIs has been developed recently (Scheme 2).3,7 In this attractive approach, the commercially available diimide 22 is brominated with dibromocyanuric acid 23. The resulting product mixture is directly carried on to the diimide formation with amines under acidic conditions. Isolation and purification of the resulting 2,6-dibromo cNDI 25 is unproblematic.

From this key intermediate, a broad variety of cNDIs is accessible by nucleophilic aromatic substitution. This includes diacylo cNDIs 11,7,9 or red cNDIs 14 and blue cNDIs 17 with one or two alkylamines in the core, respectively.2,5 The facile introduction of the first amine illustrates perfectly the electron deficiency of the naphthalene in cNDIs, while the more demanding introduction of the second amine the reduction of this deficit by one amine donor in 14.

Scheme 2 An alternative approach to cNDIs.

Suzuki-Miyaura coupling with boronate esters 26 gives cNDIs 27 with phenyls in the core.17 Steric hindrance prevents π-conjugation with the NDI core and twists the phenyls out of plane. This lack of conjugation can be overcome by inserting a triple-bonds via Stille coupling with tin reagents such as 28 to give cNDIs 29, which in turn can be activated for transition-metal catalyzed coupling with aromatics.18 The same chemistry has been used to attach difunctionalized, electron-rich bithiophenes 30 for the preparation of polymers 31.19

This facile approach to cNDIs via dibromo cNDI 25 is robust and general. It has lead to an increasing number of publications on cNDIs from an increasing number of different groups over the past few years. Tetrasubstituted cNDIs are accessible via tetrabromo diimides 32 prepared with an excess of brominating agent 23, followed by diimide formation and nucleophilic aromatic substitution.20-22

The development of problem solving strategies has proven possible in several cases (Scheme 3). For instance, the suppression of competing core substitution during the formation of diimide 25 has been problematic for a few aromatic amines with poor basicity. In this case, free diimides 33 were prepared first with ammonium acetate in refluxing acetic acid in good ~80% yield. After introduction
of the desired core substituents, the peripheral substituents were then attached in the last step by copper-catalyzed coupling of the free diimides 34 with aryl boronic acids 35.7,23

The introduction of the two alkoxy donors in the core of LUMO level minus the HOMO/LUMO gap available from Fc/Fc cNDIs, this reduction is reversible. Subtraction of the -4.8 eV voltammetry, absorption and fluorescence spectroscopy. cNDIs can be estimated by cyclic voltammetry (CV), the energy levels of the frontier molecular orbitals of cNDIs available today, i.e., 11–18 and 25–82, can be found in Table 1. Important examples will be discussed together with spectroscopic properties.

Electrochemistry

The energy levels of the frontier molecular orbitals of cNDIs can be estimated by cyclic voltammetry (CV), complemented, if necessary, by differential pulse voltammetry, absorption and fluorescence spectroscopy.15 The onset of the first reduction of NDIs 2 occurs at -0.81 V against the ferrocene/ferriene couple (Figure 2a). As the second reduction at -1.1 V and most redox processes of cNDIs, this reduction is reversible. Subtraction of the -4.8 eV for Fc/Fc+ against vacuum places the LUMO of unsubstituted NDIs 2 at -4.01 eV against vacuum (Figure 1). The oxidation of NDIs 2 was not detectable (Figure 2a). The HOMO energy (-7.07 eV, Figure 1) has thus to be determined from the LUMO level minus the HOMO/LUMO gap available from absorption spectra (see below).

The introduction of the two alkoxy donors in the core of yellow cNDIs 13 raises the LUMO to -3.82 eV, and the first oxidation accounting for the HOMO level of -6.16 eV can be determined directly by CV (Figures 2b and 1). Replacement of one alkoxy donor with a stronger alkylamine in the cNDIs 1524 further raises both HOMO and LUMO to levels that are close to one of the halogenated cNDIs 14, Figure 2c). Replacement of both alkoxy donors with alkylamines in cNDIs 17 raises the HOMO energies to -5.35 eV and LUMO levels to -3.56 eV (Figure 1). The CV confirms that the blue cNDIs 17 can be easily and reversibly oxidized up to the dication, whereas similarly facile and reversible reduction to the dianion remains possible as well (Figure 2d). These unique redox properties make cNDIs 17 similar to chlorophyll and very attractive for optoelectronic applications (see below). A comprehensive list of HOMO and LUMO energies of the cNDIs available today, i.e., 11–18 and 25–82, can be found in Table 1. Important examples will be discussed together with spectroscopic properties.

Spectroscopy

The ability to change both color and redox properties without global structural changes is the most attractive characteristics of cNDIs.2,15 The representative absorption and fluorescence spectra in Figure 3 show that the π,π* transition with its characteristic vibrational fine structure around 380 nm is not sensitive to core-substitution.15 The color of cNDIs originates from a new charge-transfer band that moves to the red over the full rainbow with increasing push-pull character of the cNDI. This decreasing “bandgap” with increasing HOMO and LUMO energies is rare and very attractive for applications (Figure 1).15,25

With electron donating core substituents, bandgaps decrease from ethers over sulfides26,27 and selenides26 toward amines.2,15,26,30 Tertiary amines without hydrogen-bond donor to the imide carboxyls do not fluoresce (47, Table 1, entry 20).18 2,3-Diamines do not cause the same red-shift as 2,6- amines (48, Table 1, entry 21).28,29 However, extended conjugation in 2,3-diamine 50 pushes the absorption maximum to 615 nm.30 2,3,5-Triamine 51 absorbs at 579 nm with very strong red-emission at 605 nm, and cyclic and acyclic tetraamines 54 and 18 reach 629 nm and 642 nm with preserved yet weakened fluorescence, respectively (Table 1, entries 23–27).20 The bandgap of 18 is slightly smaller and the HOMO/LUMO levels are slightly higher than in chlorophyll.20
Table 1. Structure and optoelectronic properties of cNDIs.

<table>
<thead>
<tr>
<th>entry</th>
<th>compound</th>
<th>abs (ex/em) (nm)</th>
<th>E_{ox} (V)</th>
<th>E_{red} (V)</th>
<th>LUMO (eV)</th>
<th>HOMO (eV)</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>25</td>
<td>408 (16.5)</td>
<td>-0.42</td>
<td>-0.29</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>32</td>
<td>247 (10.9)</td>
<td>-0.75</td>
<td>-1.52</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>37</td>
<td>386</td>
<td>0.22</td>
<td>-2.20</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>11</td>
<td>380</td>
<td>0.08</td>
<td>-7.50</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>38</td>
<td>462</td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>39</td>
<td>519</td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>40</td>
<td>612</td>
<td>-1.38</td>
<td>-5.44</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>41</td>
<td>528</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>42</td>
<td>533</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>43</td>
<td>567</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>44</td>
<td>610</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>13</td>
<td>469</td>
<td>-0.98</td>
<td>-0.16</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>15</td>
<td>552</td>
<td>0.95</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>12</td>
<td>419</td>
<td>-1.27</td>
<td>-6.25</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>16</td>
<td>563</td>
<td>-1.10</td>
<td>-5.86</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>45</td>
<td>513</td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>46</td>
<td>534</td>
<td>-1.02</td>
<td>-3.78</td>
<td>2.3</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>14</td>
<td>536</td>
<td>-0.95</td>
<td>-3.85</td>
<td>36</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>17</td>
<td>620</td>
<td>-1.41</td>
<td>-3.40</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>47</td>
<td>602</td>
<td>-1.04</td>
<td>-3.37</td>
<td>18</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>48</td>
<td>488</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>49</td>
<td>454</td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>50</td>
<td>615</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>51</td>
<td>579</td>
<td>0.04</td>
<td>-0.51</td>
<td>21</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>52</td>
<td>511</td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>53</td>
<td>497</td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>18</td>
<td>642</td>
<td>-1.69</td>
<td>-2.95</td>
<td>20</td>
</tr>
</tbody>
</table>

*Absorption maximum at low energy, with extinction coefficient in mM/cm. †Emission maximum, if applicable, with fluorescence quantum yield in %. ‡First oxidation and reduction potential in V against Fc/Fc'. §LUMO and HOMO energies in eV against vacuum; from E_{HOMO,LUMO} = -4.8 eV (Fc) - E_{edge} and Φ_{HOMO,LUMO} = 1240 / λ_{abs, max} (nm). ‡In V against SCE; E_{Ag/AgCl} = E_{Ag} - 0.40 V. ‡In V against Ag/AgCl; ref. E_{Ag} - 0.42 V.
Core-substitution with C-C bonds in 55-74 gives generally weaker spectroscopic shifts. Spectacular exceptions include conjugated systems such as the extended diamine 55, absorbing at 692 nm with HOMO/LUMO levels remaining to the range of normal diamines 17 (Table 1, entry 28). Moreover, mono-, di- and tertiophene donors in the NDI core of 72-74 push the absorption to 664 nm (Table 1, entries 45-47, NDI-oligothiophene and related polymers 75-82 will be covered in a separate chapter).

The discovery of fluorescent cNDIs has, together with progress in organic synthesis, triggered the recent renaissance of cNDI research (Figure 3a, dotted line, Table 1, entry 8-27). Unlike earlier reported non-fluorescent aryl-heteroatom-substituted cNDIs (Table 1, entries 5-7), alkyl-heteroatom-substituted cNDIs could be highly fluorescent with their quantum yields reaching 76% for red cNDI 15 (Table 1, entry 13). Usefulness for single-molecule fluorescence has been confirmed for blue cNDIs 17 with “on” periods being detectable beyond 100 seconds. Contrary to the heteroatom-bridged aryl substituents, many of the directly C-C coupled aryl substituents cause strong fluorescence.

The circular dichroism (CD) spectra of monomeric cNDIs are naturally rather weak. In chiral dimers and stacks, stronger, bisignate exciton-coupled CD (ECCD) can be observed. For example, the ECCD spectra of a helical stack of blue cNDIs 17 shows negative doublets which disappear upon denaturation or untwisting of the helix into barrel-stave architectures with parallel NDI transition moments. Poorly understood and worth investigating on a fundamental level, these ECCD signals can be used to study self-assembly and self-organization, and to determine the absolute sense of twist in helical architectures (M-helicity in the case of Figure 3b).

The transient absorption (TA) spectra of monomeric cNDIs such as 17 observed a few picoseconds after a short femtosecond laser pulse show usual effects such as ground-state bleaching, stimulated emission and excited state absorption (Figure 3c, dotted). The TA spectra of dimers and π-stacks of blue cNDIs 17 can look very different, with new absorptions appearing around 500 nm and 700 nm. These bands can be attributed to absorptions of the cNDI radical anion (Figure 3c, solid). This means that after excitation, the electron in the LUMO can hop to a neighboring NDI, producing a reduced NDI and leaving an oxidized NDI behind. As with chlorophyll, the symmetry-breaking photoinduced charge separation with blue cNDIs 17 is attractive for optoelectronic applications because it occurs with minimal losses in photonic energy. The absorptions of radical anions of yellow, red and blue cNDIs have been observed in combination with nearby hole acceptors or electron donors (see below).

Supramolecular Chemistry

The supramolecular chemistry of cNDIs is determined by the nature of their molecular structure. Their ability to form face-to-face π-stacks is determined by their π-acidity. Most aromatics are π-basic, with electron clouds above and below an electron deficient aromatic plane producing a negative quadrupole moment Q_{zz} (Figure 4a). For example, benzene has $Q_{zz} = -8.5$ B (Buckingham’s), pyrrole $Q_{zz} = +13.8$ B. The quadrupole inversion to π-acidic aromatics is presumably best known from hexafluorobenzene with $Q_{zz} = +9.5$ B. The π-acidity of unsubstituted NDIs 2 is with the computed $Q_{zz} = +18.6$ B almost twice as large and in the range of the explosive TNT.

The addition of two cyano acceptors in the core of cNDI 83 produces with $Q_{zz} = +39.2$ B exceptional π-acidity (Figure 4b). The electrostatic potential surfaces confirm that the aromatic surface is strongly electron-deficient (deep blue color code). The synthesis of the tetracyano NDI 84 with the highest predicted $Q_{zz} = +55.5$ B has so far not been possible. Electron donating core substituents naturally reduce the π-acidity to $Q_{zz} = +8.0$ B for the yellow cNDI 85 and $Q_{zz} = +2.3$ B for the blue cNDI 86. However, π-acidity is preserved even with two strong amine donors in the core.
The quadrupole moment of the green tetraamino cNDIs 18 has not been calculated so far (Figure 1).

(a)

\(Q_{z} = 0 \)
\(Q_{x} = 0 \)

(b)
\(Q_{z} = +2.3 \) B
\(Q_{x} = +39.2 \) B
\(Q_{y} = +55.5 \) B

Fig. 4 a) Schematic side view of π-acidic (left) and π-basic (right) aromatic rings between their electron-poor (blue) and electron-rich (red) π-clouds. b) Electrostatic potential surfaces (blue positive, red negative) and computed axial quadrupole moments \(Q_{z} \) of cNDIs 83-86, adapted from refs. 11 and 15 with permission. 84, 85: Adapted from reference 11. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. 86, 87: Reproduced with permission from reference 15. Copyright 2009 American Chemical Society.

In general, the high π-acidity of cNDIs is ideal for face-to-face π-stacking, binding and transport of anions, and binding and transport of electrons (see below). Molecular models of face-to-face dimers of the yellow cNDI 85 gave with \(E_{int} = -27.2 \) kcal/mol interaction energies that are well beyond G-C pairs in DNA duplexes (-19.0 kcal/mol), not to speak of simple hexafluorobenzene sandwiches (-1.7 kcal/mol, Figure 5).15 The only experimental values available are dissociation constants up to \(K_D = 4.1 \) mM for unsubstituted NDI dimers with solubilizing peripheral substituents in water.12 Very small compared to unsubstituted PDIs under similar conditions, these values confirm that cooperative NDI stacking is needed to build stable π-stacks, a situation that is ideal for the construction of supramolecular functional architectures (see below).13

Fig. 5 Molecular model of a face-to-face dimeric complex of 85 viewed from the side (left) and from the top (right). Adapted with permission from reference 15. Copyright 2009 American Chemical Society.

In optimized geometries of dimeric model systems, the twist of the aromatic planes was 44°. The short interplane distance of \(d = 3.36 \) Å was in agreement with very strong interactions. The π,π-interactions between more π-acidic cNDIs are expected to be even stronger.

The second key interaction that dominates self-assembly and self-organization between cNDIs are peripheral hydrogen bonds between primary imide modules as classical acceptor-donor-acceptor (ADA) modules (Figure 6). However, self-assembly is limited to AD-DA pairing into linear supramolecular polymeric tapes such as 87.44 The unused acceptor in each pair accounts for the possibility to yield trans- and cis-arrangements from the trimer level onward. STM images of monolayers formed by self-assembled cNDI tapes 87 show cis/trans aligned strings of NDI separated by interdigitating alkyl chains (Figure 7).

Fig. 6 Self-assembly of cNDIs into supramolecular tapes and programmed assembly into supramolecular rosettes.

Melamine units as classical DAD-partners of ADA-motifs have been used to arrange green cNDI into supramolecular rosettes 88.45 These rosettes have been directly imaged on surfaces. The OPV electron donors attached to the melamine units suggest that rosettes 88 should function as supramolecular donor-acceptor photosystems (see below).

Fig. 7 Large-scale (a, 60 x 60 nm²) and small-scale (b, 13 x 13 nm²) and STM images of self-assembles cNDI monolayers 87 at the liquid/solid interface. The lines between the NDI tapes are interdigitating alkyl chains R. Adapted with permission from reference 44 by permission of The Royal Society of Chemistry.
Molecular Recognition

Some pioneering examples exist on the usefulness of cNDIs to bind and sense different molecules and ions (Figure 8). The cyclic 2,3-diamido cNDI 49 has been suggested for use as colorimetric pH sensor. Absorbing at 454 nm in neutral form, a new maximum at 550 nm was found under basic conditions (Table 1, entry 22). This bathochromic effect can be attributed to the conjugated resonance form 89, which can further aromatize in the pyrazine tautomer 90. This stabilization by aromatization might further account for the high acidity of one amide in 49.

The 2,3-expanded cNDI 50 serves as colorimetric fluoride sensors for similar reasons. In the presence of TBAF, the absorption of cNDI 50 at ~615 nm shifts to ~715 nm (Table 1, entry 23). This bathochromic effect has been explained by deprotonation of the tosylamide by the basic fluoride to give the anionic complex 91. The cNDI cyclophanes 92-95 are interesting for sensing applications because they are chiral.

The presence of two different NDI in the macrocycle, one unsubstituted NDI and one cNDI of different color, produces an interesting example of planar chirality. The racemic mixtures could be resolved by chiral HPLC, the CD spectra of the enantiomers are mirror images as expected. The crystal structures reveal intermolecular face-to-face π-π-interactions as well as a preference for heterodimeric intermolecular face-to-face π-stacks between one NDI and one cNDI.

A series of blue cNDIs including 96 and 97 were designed to bind to top and on the bottom of trimeric stacks of G-quartets 98-100. Crystal structures of complexes of 96 with telomeric DNA reveal the molecular basis of this interesting example for molecular recognition, including face-to-face π-π-interactions on all available G-quartet surfaces but no intercalation into the potassium-templated G-quartet stacks (Figure 9a). The red emission of cNDIs 97 could be used to directly follow their uptake into the nucleus of MCF7 cells by fluorescence confocal microscopy to bind to telomeric DNA (Figure 9b). The coinciding recognition of quadruplex sites in the promotor gene of the proto-oncogene Kit, a tyrosine kinase receptor, has been highlighted in a dual quadruplex targeting concept for the treatment of human gastrointestinal stromal tumors (GIST).

Anion Transport

Contrary to the ubiquitous use of cation-π interaction for recognition and catalysis in chemistry and biology, the recognition of anions by anion-π interactions on π-acidic aromatic surfaces has remained mainly a topic in theoretical chemistry. The high π-acidity of cNDIs suggests that...
anion-π interactions, if they exist, should be strong. The series of minimalist NDI models 103-106 was prepared to explore the occurrence of anion-π interactions as well as their relevance for function (Figure 10). In NDIs 103-106, the π-acidity increases with cyano substituents in the core, whereas the crowding of the active site on the pyridinedione heterocycle decreases with removal of the ortho-methyls in the peripheral mesitylenes, and no additional functional groups are present for anions to bind to and generate misleading results.

Direct evidence for anion binding to NDIs 103-106 was obtained by laser-induced tandem ESI-MS-MS fragmentations of heterodimers with a bound chloride anion. The obtained affinity sequence 106>105>104>103 matched expectations from π-acidity and active-site decrowing, binding energies from computational simulations, absorption from charge-transfer complexes, and the ability to act as anion transporter in lipid bilayer membranes. With nanomolar effective concentrations, the transport activity of the ideal cNDI 106 is significant, as is the found selectivity toward size and nature of the transported anion. The anti-Hofmeister selectivity found for all NDI transporters supports strong binding to active suprastructures. Nitrate selectivity among oxyanions implies contributions form π,π-interactions to anion binding in NDI dimers. These results demonstrate the functional relevance of anion-π interactions. Considering that anionic reactive intermediates such as enolates should be similarly recognized on asymmetric π-acidic surfaces, the impact of anion-π interactions on organocatalysis is expected to be significant.

![Fig. 10 Structure of NDIs and cNDIs 103-106 used to demonstrate the functional relevance of anion-π interactions with regard to anion binding and transport across lipid bilayer membranes.](image)

Electron Transport

The ability of unsubstituted NDI to transport electrons has been recognized well before anion transport. Pioneering work from the Miller group has confirmed the existence of delocalized radical anions in NDI π-stacks. Later on, unsubstituted NDI have been identified as one of the few existing air-stable n-semiconductors. Strongly dependent on sample preparation, charge mobilities up to 0.10 cm²/Vs have been observed.

The decreasing LUMO with electron-withdrawing substituents in the core suggests that cNDIs should afford even better n-semiconductors. To test this hypothesis, top contact organic field-emitting transistors (OFET) were prepared by using the vapor deposited cNDIs 37 and 11 with one and two cyano acceptors in the core, respectively (Figure 11; Table 1, entries 3 and 4, R = C₈H₁₇). Compared to monocyano cNDI 37, much higher charge mobility was found with dicyno cNDI 11 in ambient atmosphere (0.11 cm²/Vs) as well as in vacuum (0.15 vs 4.7 x 10⁻³ cm²/Vs). The XRD data obtained with cNDIs 11 and 37 were very similar and indicated, consistent with the undistorted NDI cores, highly ordered structures. Thus the difference in in-plane ordering is the likely cause of different charge mobilities. Comparison of the charge mobilities obtained with cNDIs and cPDIs under vacuum or in air showed the clear threshold reduction potential (~0.1 V vs SCE), above which the air stability could be attained. With cNDI 11, air-stable and high mobility OFETs could also be fabricated on overhead transparency films.

To generate n-channel semiconducting polymers with good processability and electron mobilities in ambient conditions for use as organic thin-film transistors (OTFT), polymers of cNDIs with oligothiophene (OT) and related donors in the core have been prepared in several variations (Figure 11; Table 1, entries 48-55). The bandgap of cNDI polymers 76 with bridging bithiophene donors in the core was with 1.45 eV (λ_max = 693 nm, Table 1, entry 49) significantly smaller than that of the corresponding cPDI-OT polymers (1.65 eV; λ_max = 594 nm). This finding confirms better (more extended) conjugation between NDIs and oligothiophenes, thanks to the planar aromatic core of NDIs. The LUMO energy of the cNDI-OT polymer 76 (-3.91 eV; +3.96 eV for cPDI analog) is at the borderline for TFT ambient operation. Bottom-gate top-contact OTFT prepared with these polymers showed n-channel semiconducting properties. Unlike those of cPDI-OT polymers, electron mobilities of the cNDI-OT polymer 76 did not significantly drop (~0.06 to ~0.01 cm²/Vs) in the ambient conditions even after 14 weeks. By changing to bottom-contact top-gate TFT with polymeric dielectrics, the charge mobilities with cNDI-OT polymer 76 further improved to 0.45~0.85 cm²/Vs. Consistent with the amorphous nature of cNDI-OT polymer 76, OTFT performance was not affected by variation of molecular weight, polydispersity or even the deposition techniques (spin-coating or gravure-, flexographic- or inkjet printing).

Compared to cNDI-OT polymer 76, cNDI-OT polymer 75 with only one bridging thiophene in the core was characterized by an increased bandgap (1.66 eV, λ_max = 568 nm) and slightly lower lying HOMO and LUMO energies (Table 1, entry 48). The optoelectronic properties of cNDI-OT polymer 76 were nearly insensitive to changes of the diimide substituents. Addition of head-to-head dodecyl tails to the bithiophene donor increased bandgap and lowered the HOMO level of polymer 77, whereas the LUMO was not affected (Table 1, entry 50). This significant hypsochromic effect (77, λ_max = 539 nm; 76, λ_max = 693 nm) originates from non-planarity of head-to-head alkylated thiophenes. However, increased HOMOs of bithiophene donor with head-to-head alkoxy substituents was reflected in polymer 78 with a dramatic bathochromic effect (λ_max = 985 nm), a correspondingly narrowed bandgap (1.08 eV) and a very high HOMO (-4.84 eV) with unchanged LUMO (-3.76 eV, Table 1,
entry 51). Interestingly, unsubstituted NDIs 2 were shown to form blue charge-transfer complexes with alkoxy-substituted bithiophenes. Taken together, these trends suggest that the bandgap of cNDI-OT polymers is controlled by the π-basicity of the electron-rich oligothiophene donor. Wide-angle X-ray diffraction patterns of cNDI-OT polymers 78 and 76 are consistent with π-stacking (~4 Å), while 77 gave amorphous material.

The series of cNDIs 72-74 features four oligothiophenes in the core and short fluorocarbon chains in the periphery (Figure 11; Table 1, entries 45-47). With increasing number of thiophenes in the core, absorption maxima moves to the red up to $\lambda_{\text{max}} = 664$ nm for 74. The narrowing of HOMO/LUMO gaps originated mainly from a gradually increasing HOMO level up to -5.36 eV for 74. HOMO energies obtained from ultraviolet photoemission spectroscopy are shown to match CV data. In bottom-gate OFETs of cNDIs 72-74, both n-type field effect mobility and on/off ratio decreased with increasing thiophene units, whereas p-type mobility increased. As a result, the device made from 74 exhibited ambipolar behavior (on-off-on with increasing voltage).

![Fig. 11 Important cNDI motifs in studies on electron transport.](image1)

The replacement of the central thiophene in cNDI-OT polymers 81 with a fluorene in the fluorescent cNDI-OT polymers 82 has relatively little effect on the narrow bandgap ($\lambda_{\text{max}} = 613$ nm), indicating that strong electronic interactions along the polymer chain are preserved (Table 1, entries 54-55).

A further increase of the HOMO of cNDI-OT polymers 78 with one alkoxy substituent per thiophene calls for dialkoxyalated thiophenes. With PEDOT being a standard hole transporting material in most organic solar cells, the 3,4-ethylenedioxy (EDO) substituent is the classical choice for this purpose. The cNDI-EDOT polymers 79 and 80 were prepared by Stille-type polymerization with yields around 60%. The obtained polymers show the expected narrow bandgap. The HOMO and LUMO energy levels support good electronic coupling between the electron donating and accepting units. Polymer solar cells were fabricated with a structure of ITO/poly(3-decylthiophene)/poly(cNDI-EDOT)s (80)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/Ag. Under white-light illumination (AM 1.5 solar simulator, 100 mW / cm2), the double heterojunction device has an open circuit voltage (V_{oc}) of 0.30 V, a short-circuit current density (I_{sc}) of 2.1 mA/cm2 and a fill factor (FF) of 0.24. This calculates to an efficiency of ~0.15%. The efficiency of the best organic solar cells is around 5%.

The successful fabrication of organic solar cells with cNDI-EDOT polymers 80 is the first example where the ability of π-stacked cNDIs to transport electrons is combined with light. A summary of photo-induced electron transport with molecular (rather than macromolecular) cNDIs and their supramolecular architectures follows in the next chapter.

Photoinduced Electron Transport

The ability to come in all colors on the one hand and transport electrons on the other suggests that cNDIs would be ideal for the construction of artificial photosystems. Several studies in this direction have been published. The Ru(bpy)$_3$-cNDI-Ru(bpy)$_3$ dyad 107 has been synthesized to study the effect of electronic coupling between electron donor and acceptor (Figure 12). The fluorescence lifetime of 107 is with 30 ps much shorter than for control Ru(bpy)$_3$-cNDI dyad 108 (63 ns). This suggested that electron transfer from the excited Ru(bpy)$_3$ donor to the NDI acceptor is more than a 1000 times faster when Ru(bpy)$_3$ is attached to the core rather than to the periphery. This confirms the importance of electronic coupling for ultrafast photoinduced electron transfer. By the transient absorption of 107, the rate constant of NDI radical anion formation (53 ps) could be determined despite the ultrafast recombination (14 ps), while for 108, photoinduced charge separation was not detected.

![Fig. 12 Important cNDI motifs in studies on photoinduced electron transport.](image2)
Rainbow cNDIs have been coupled with zinc chlorins to harvest light at the periphery of zinc chlorin rod antennas and transfer the photonic energy to the chlorophyll centers.78,79 The introduction of blue cNDIs 17 was of particular interest to bridge an otherwise unavoidable gap in the visible spectrum. The multichromophoric systems 109, 110 and 111 have been synthesized by coupling chlorins and cNDIs via an esterification followed by metalation of the chlorin center with zinc acetate. Their self-assembly into rod-like structures is driven by noncovalent interactions between the zinc chlorins, whereas the cNDIs at the periphery of the rod antennae do not aggregate. Excitation of these peripheral cNDIs leads to quantitative Förster resonance energy transfer (FRET) to the zinc chlorin acceptors on the picosecond time scale. Compared to native zinc chlorin rods, the light-harvesting efficiency increases by 26% for dyad 110 and 63% for triad 111.

The artificial photosystem 100 is a tetrameric M-helix that is long enough to span a lipid bilayer membrane (Figure 13).16 It is composed of \(\pi \)-stacks of blue cNDIs build along \(p \)-oligophenyl (POP) rods. In monomeric POP-cNDI systems, the blue chromophores can undergo symmetry-breaking ultrafast and quantitative photoinduced charge separation with a lifetime of 61 ps (Figure 3c). In the self-assembled artificial photosystem 100, this lifetime increases to 400 ns.39

Photosynthetic activity of photosystem 100 was measured in vesicle loaded with a water-soluble quinone acceptors and a fluorescent pH probe.16 Excitation of cNDIs followed by photo induced charge separation initiates electron transfer to the internal quinone acceptor, whereas the hole left behind is filled by external EDTA donors. The consumption of protons during quinone reduction is then detected as a change in pH, and the velocity of the build-up of transmembrane pH gradients with light reports on photosynthetic activity. The Hill plot obtained for photosystem 100 confirmed the tetrameric nature of the active structure.

Photosystem 100 can open up into ion channel 112 in response to the intercalation of ligand 99 into the twisted cNDI stack. This intercalation increases the repeat distance of the \(\pi \)-stack to match the repeat in the POP scaffold. The result is a highly cooperative untwisting of the closed helical architecture into a barrel-stave supramolecular with an internal hydrophilic channel. In single-molecule conductance experiments, this channel is surprisingly homogenous as small, ohmic and anion selective as designed.16

Zipper assembly was introduced to build artificial photosystems with multicolor cNDIs on solid substrates (Figure 14).78 These architectures have been studied in details and in many variations.15,24,38,80-85 Without going into details, zipper assemblies have smoother surfaces, better critical thickness and generate more photocurrents than comparable architectures, and they respond to functional controls.

Fig. 13 Artificial photosystems in lipid bilayer membranes that can open up into ion channels in response to chemical stimulation.

Fig. 14 OMARG-SHJ photosystems on gold with energy levels of the involved components. Here, yellow and red cNDIs are used to harvest light, to inject holes into the nearby acceptors, and to transport electrons in a directional manner.

In zipper assembly, initiators such as 113 are deposited on the surface. This initiator is composed of a short POP scaffold that is decorated with four anionic NDI acceptors. A strained disulfide is placed at one end of the scaffold to react with gold surfaces. The obtained Au-113 monolayers are then dipped into solutions of propagators such as 114. The POP
interactions (Figure 10).

In the most advanced photosystem zipped up until now, the obtained yellow SHJ architecture Au-113-(114-115)$_h$ is covered with red oligo-phenylethynyl (OPE) zippers (Figure 14). The red cNDIs placed on top of the yellow cNDIs create a redox gradient in the e-channel that directs the electrons toward the gold surface. The OPE rods on top of the POP rods create another redox gradient in the h-channel that directs the holes in the other direction toward the surface. As in biological photosystems, these antiparallel redox gradients should direct holes and electrons in opposite directions as soon as they are generated with light and separated at the SHJ interface to never meet each other again and recombine. SHJs architectures with oriented multicolored antiparallel redox gradients have been referred to as OMARG-SHJ. Au-113-(114-115)$_h$-(116-117)$_h$ is the first example of a minimalist OMARG-SHJ, the reported results satisfy highest expectations.

Perspectives

In summary, research on core-substituted NDIs has experienced recent rapid growth due to mainly breakthroughs with regard to their synthesis and fluorescence. These adventures in new territories are exciting yet still fragmentary and eclectic, covering domains reaching from organic synthesis, supramolecular chemistry and photophysics to applications in materials sciences, biology and medicine. Much input from fundamental studies will be needed to complete the picture. Most important, however, is that the emerging perspectives are very broad and very attractive. The potential to build a broad variety of new (opto)electronic devices is obvious from the results available today (Figures 1 and 10-14, Table 1). Just to mention a few of the more exotic perspectives, it would be fantastic to have a collection of fluorescent cNDI rainbow probes in hand for cellular uptake, targeted labeling and multicomponent sensing in vivo (Figure 9b), or to use asymmetric π-acidic cNDI surfaces for organocatalysis with amion-π interactions (Figure 10).

Breaking News

After submission of this review, two papers appeared describing new cNDIs (118 and 119, Figure 15). Particularly noteworthy are the “asymmetric” 2,7-substitution pattern of 118 and the high electron mobility (0.51 cm2V$^{-1}$s$^{-1}$) observed with the solution processed and ambient stable organic thin film transistor fabricated with 119. Their photo-electrochemical properties are as follows: 118: λ_{max} 390 nm, ϵ 14.0 mm^2cm$^{-1}$, λ_{onset} 415 nm, QY 0.05%, E_{red} -0.61 V (vs SCE), LUMO -3.8 eV, 119: λ_{max} 578 nm, E_{red} -0.10 V (vs SCE), LUMO -4.3 eV, HOMO -6.8 eV.

Fig. 15 Structure of the most recent cNDIs 118 and 119.

Acknowledgments

This work was supported by the Swiss National Supercomputing Center (CSCS), University of Geneva and the Swiss NSF. We warmly thank all past and present coworkers and collaborators for their contributions to research on this colorful family of molecules in our groups.

References

This recent renaissance of core-substituted naphthalenediimides is reviewed comprehensively, covering synthetic, supramolecular, optoelectronic and functional aspects of these colorful compounds.
Biodata

Naomi Sakai obtained her BS from Keio University (1987) and her PhD from Tokushima Bunri University (1994). Since a postdoc at Columbia University with Professor Koji Nakanishi (1994-1996), she focuses on supramolecular functional architectures for applications such as solar cells and biosensors, first in Washington DC (Georgetown University, 1996-1999), then in Geneva (1999-present).

Jiri Mareda obtained both Diploma (1975) and Ph.D. (1980) from the University of Geneva, where he worked under the supervision of Professors C. W. Jefford and U. Burger. During a postdoctoral stay with Professor Ken Houk (1980-1983) he specialized in computational chemistry, which he applied in organic, bioorganic and supramolecular chemistry after returning to Geneva University.

Eric Vauthey graduated in chemistry and obtained his PhD in physical chemistry at the University of Fribourg in Switzerland. After two postdoctoral stays, one at the Royal Institution and the Imperial College in London, and the other at the ETH in Zurich, he returned to Fribourg in 1992 and started an independent research on the development and the applications of optical spectroscopy for investigating of ultrafast photoinduced processes in liquids and at interfaces. He is presently pursuing this research at the University of Geneva since his appointment as professor of physical chemistry in 2001.

Stefan Matile obtained MS (1989) and PhD (1994) from the University of Zurich under the supervision of Wolf Woggon. He was a postdoc with Koji Nakanishi at Columbia University in New York (1994-1996) and Assistant Professor at Georgetown University, Washington DC before moving to Geneva (1999). His research interests are at the interface of synthetic organic, biological and supramolecular materials chemistry (photosystems, biosensors, ion channels).