Clifford links are the only minimizers of the zone modulus among non-split links

MONIOT, Grégoire Thomas

Abstract
The zone modulus is a conformally invariant functional over the space of two-component links embedded in R3 or S3. It is a positive real number and its lower bound is 1. Its main property is that the zone modulus of a non-split link is greater than \((1 + p^2)^2\). In this paper, we will show that the only non-split links with modulus equal to \((1 + p^2)^2\) are the Clifford links, that is, the conformal images of the standard geometric Hopf link.

Reference
CLIFFORD LINKS ARE THE ONLY MINIMIZERS OF THE ZONE MODULUS AMONG NON-SPLIT LINKS

GRÉGOIRE-THOMAS MONIOT

Abstract. The zone modulus is a conformally invariant functional over the space of two-component links embedded in \mathbb{R}^3 or S^3. It is a positive real number and its lower bound is 1. Its main property is that the zone modulus of a non-split link is greater than $(1 + \sqrt{2})^2$. In this paper, we will show that the only non-split links with modulus equal to $(1 + \sqrt{2})^2$ are the Clifford links, that is, the conformal images of the standard geometric Hopf link.

0. Introduction

Langevin and O’Hara introduced in [1] a conformally invariant functional for knots, called the measure of acyclicity. It is the volume (with respect to a conformally invariant measure on the space of all round spheres) of the set of spheres that cut the knot in at least four points. There exists a constant C such that a curve with measure of acyclicity below C is the unknot. To prove this, they introduced a knot modulus called the zone modulus.

This work comes after O’Hara’s definition in [3] of the concept of a knot energy. Roughly, a functional on the space of knots is an energy when it blows up near a self-intersection. An energy is also expected to possess thresholds such that a curve with energy lower than a particular threshold must belong to a particular knot type. A knot representative in a knot class that realizes the minimum energy provides the best shaped knot of its class.

One of the most famous knot energy functionals, introduced by O’Hara in [3], is

$$E(\gamma) = \iint \left\{ \frac{1}{|\gamma(v) - \gamma(u)|^2} - \frac{1}{D(\gamma(u), \gamma(v))^2} \right\} \|\gamma'(u)||\gamma'(v)| \, du \, dv,$$

where γ is an embedded curve and $D(\gamma(u), \gamma(v))$ denotes the length of the shortest path from $\gamma(u)$ to $\gamma(v)$ on γ. In [4] Freedman, He and Wang proved

Received October 5, 2004; received in final form August 20, 2006.

©2007 University of Illinois
the conformal invariance of E and called E the Möbius energy. In the same paper they showed that the energy of a closed curve is always greater than or equal to 4 and that equality holds only for circles. They proved also that each prime knot class has an energy-minimizing representative, and that, given $m > 0$, there are finitely many knot types such that $E \leq m$. In [5], Kim and Kusner constructed explicit examples of knotted curves which are critical for E.

In [2], Langevin and the author proved that the minimum of the zone modulus over all non-split two-component links is $(\sqrt{2} + 1)^2$. This minimum is attained by a special configuration of two circles called a Clifford link, defined as follows:

Definition 1. We say that a link is a Clifford link when it consists of two circles such that each sphere containing one of the circles is perpendicular to each of the spheres containing the other circle. Equivalently, a Clifford link is a conformal image of the standard geometric Hopf link.

In [4], Freedman, He and Wang defined the mutual Möbius energy of two curves as

$$E(\gamma_1, \gamma_2) = \iint \frac{|\gamma_1'(u)||\gamma_2'(v)|}{|\gamma_1(u) - \gamma_2(v)|^2} \, du \, dv.$$

Kim and Kusner showed in [5] that the standard geometric Hopf link is critical for E. In [7], He gave a geometric interpretation of the Euler-Lagrange equation for any E-critical pair of curves. He showed that there exists a pair of curves that minimizes E over all linked pairs of loops and that every such pair is ambiently isotopic to the Hopf link. As far as the author knows, it is still a conjecture that Clifford links are the only configurations that minimize the Möbius energy among two-component non-split links.

The purpose of the present paper is to solve the analogous conjecture for the zone modulus. We will show:

Theorem 1. The two-component links that realize the minimum zone modulus among all non-split two-component links are the Clifford links.

It should be noted that the standard geometric Hopf link or its conformal class, the Clifford links, seems to be a recurrent minimizer or maximizer of various functionals. For example, Kusner proved in [6] that the thickness of a non-split two-component link in S^3 cannot exceed that of the standard geometric Hopf link, which equals $\pi/4$. In [2], we proved that the standard geometric Hopf is the only non-split two-component link with thickness $\pi/4$.

1. Preliminary definitions and known facts

We will recall in this section the definition of the zone modulus of a two-component link and some results of [2].
1.1. The modulus of a zone between two spheres. We first define the modulus of a zone between two disjoint spheres, which we call for simplicity the modulus of two spheres.

Definition 2. Given two disjoint spheres S_1 and S_2 in \mathbb{R}^3, let us choose a conformal transformation that makes the two spheres concentric with radii $R_2 > R_1$. Then the modulus $\mu(S_1, S_2)$ of the two spheres is the ratio $R_2/R_1 > 1$.

We can express the modulus in terms of the cross-ratio. Recall that the cross-ratio of four collinear points is defined as

$$
Cr(x_1, x_2, x_3, x_4) = (x_1 - x_3)(x_2 - x_4)/(x_2 - x_3)(x_1 - x_4).
$$

The cross-ratio is invariant by any homography of the line. We can extend its definition to four concircular points as follows: The cross-ratio of four points on a circle is the cross-ratio of the four image points by a stereographic projection of the circle onto a line.

Two disjoint spheres S_1 and S_2 generate a pencil of spheres with limit points. It is the set of spheres perpendicular to all the circles perpendicular to both S_1 and S_2. The limit points are the two points of intersection of these circles. Consider a circle perpendicular both to S_1 and S_2 as in Figure 1. It contains the limit points l_1 and l_2 of the pencil generated by S_1 and S_2 and intersects each S_i in two points. Let us take two of these points, p_1 and p_2, such that l_1, p_1, p_2, l_2 are in this order on the circle.

Let I be a Möbius transformation that sends l_2 to infinity. The spheres $I(S_1)$ and $I(S_2)$ are now concentric and we have

$$
Cr(I(p_1), I(p_2), I(l_2), I(l_1)) = R_2/R_1,
$$

where R_1 and R_2 are the radii of $I(S_1)$ and $I(S_2)$. By definition, we have $\mu(S_1, S_2) = R_2/R_1$. Thus

$$
\mu(S_1, S_2) = Cr(p_1, p_2, l_2, l_1).
$$

![Figure 1. Modulus in term of cross-ratio.](image)
Remark 1. Let P be a plane and S a sphere disjoint from P as in Figure 2. The abscissa λ of the limit point of the pencil generated by S and P is \sqrt{ab}. Then,

$$\mu(P, S) = \text{Cr}(0, a, \lambda, -\lambda) = \frac{\sqrt{ab} + a}{\sqrt{ab} - a}.$$

![Figure 2. Modulus of a sphere and a plane.](image)

Remark 2. As a consequence, if P is a plane and S_1 and S_2 are two spheres with the same radius and if S_1 is closer to the plane than S_2, then we have $\mu(P, S_1) < \mu(P, S_2)$.

Remark 3. As another consequence, if a sphere S of constant radius approaches a plane P, without intersecting it, then the modulus of P and S tends to 1. Indeed, if $b - a$ is constant and a tends to 0, then $\mu(P, S)$ tends to 1.

Remark 4. Let S_1, S_2 and S_3 be three disjoint spheres. Suppose the open 3-ball bounded by S_2 contains S_3, but is disjoint from S_1. Then $\mu(S_1, S_2) < \mu(S_1, S_3)$.

This can be proved by performing a conformal transformation that turns S_1 into a plane and computing the two cross-ratios.

1.2. The zone modulus of a link. Let K_1 and K_2 be two embedded curves in S^3.

Definition 3. A pair (S_1, S_2) of spheres is said to be non-trivial for K_1 and K_2 if they are disjoint and if, for each sphere, there is at least one point of K_1 and one point of K_2 on it.

Definition 4. The zone modulus of K_1 and K_2 is the supremum of the moduli of all non-trivial pairs of spheres for K_1 and K_2.

The main result of [2] is the following:
Theorem 2. Two linked curves have a zone modulus greater than or equal to \((1 + \sqrt{2})^2\).

1.3. Trisecants. The following lemma is a concise rewriting of results of [2].

![Figure 3. A trisecant.](image)

Lemma 1. Let \(K_1\) and \(K_2\) be two linked curves such that \(K_1\) goes through infinity and let \(x\) be a point of \(K_2\). There exists a straight line \(L\) through \(x\) that cuts \(K_1\) in \(y \neq \infty\) and \(K_2\) again in \(z\) (see Figure 3). We call such a line a trisecant through \(x\). If the zone modulus of \(K_1\) and \(K_2\) equals \((1 + \sqrt{2})^2\), then \(y\) is the midpoint between \(x\) and \(z\) and there is no other point of intersection between \(L\) and \(K_1\) or \(K_2\).

Trisecants may be seen as a conformal version of quadrisecants for two linked curves. This subject goes back to 1933 (see Pannwitz’s work in [8]). A more modern treatment appears in Kuperberg’s paper [9] and Denne’s thesis.

2. Proof of Theorem 1

Let \(K_1\) and \(K_2\) be two linked curves. Two cases may occur:

1. For every point \(x\) on each curve, the other curve is contained in a sphere perpendicular at \(x\) to the first curve.
2. On one of the curves, say \(K_1\), there exists a point \(x_1\) such that no sphere perpendicular at \(x_1\) to \(K_1\) contains \(K_2\).

If the first case occurs, there exist two points \(x_1\) and \(x_2\) on \(K_1\) and two distinct spheres \(S_1\) and \(S_2\) containing \(K_2\) and perpendicular at \(x_1\) and \(x_2\) to \(K_1\). Thus \(K_2\) is the round circle intersection of \(S_1\) and \(S_2\). For the same reasons, \(K_1\) is also a round circle. Since \(K_1\) is perpendicular to \(S_1\) and \(S_2\), it is perpendicular to each sphere going through \(S_1 \cap S_2 = K_2\). Thus each sphere containing \(K_1\) is perpendicular to each sphere containing \(K_2\), so according to Definition 1, \(K_1\) and \(K_2\) form a Clifford link and the theorem is proved in the first case.

To conclude the proof, it is enough to prove that the second case never occurs when \(\text{modulus}(K_1, K_2) = (1 + \sqrt{2})^2\). We will suppose the contrary and show in the remainder of this section that this is impossible.
From now on, we suppose that \(\text{modulus}(K_1, K_2) = (1 + \sqrt{2})^2 \) and that there exists a point \(x_1 \) on \(K_1 \) such that no sphere perpendicular at \(x_1 \) to \(K_1 \) contains \(K_2 \). By a suitable Möbius transformation, we send \(x_1 \) to infinity and the tangent at \(x_1 \) to a vertical line. The spheres perpendicular to \(K_1 \) at \(x_1 \) are now all the horizontal planes. Then there exist two distinct horizontal planes \(P_{\text{top}} \) and \(P_{\text{bottom}} \) tangent to \(K_2 \) such that \(K_2 \) lies between these planes.

Let \(K_1 \) denote \(K_1 \setminus \infty \). Let \(x_2 \in K_2 \). By Lemma 1, there exists a trisecant \(L \) through \(x_2 \) which cuts \(K_1 \) in a point \(x_3 \) and \(K_2 \) again in a point \(x_4 \). The point \(x_3 \) is the midpoint between \(x_2 \) and \(x_4 \). The following lemma shows that \(K_2 \) is trapped between spheres in particular position with \(L \).

Lemma 2. Let \(c \) be the midpoint between \(x_2 \) and \(x_3 \). Let \(\Sigma \) and \(S \) be the spheres centered at \(c \) with \(\Sigma \) going through \(x_4 \) and \(S \) going through \(x_2 \) and \(x_3 \) (see Figure 4). The curve \(K_2 \) lies between \(\Sigma \) and \(S \).

Proof. Suppose that there exists a point \(x \) on \(K_2 \) outside the zone bounded by \(S \) and \(\Sigma \). Then \(x \) is either outside \(\Sigma \) or inside \(S \); see Figure 5. We will show that there exists a non-trivial pair of spheres of modulus strictly greater than \((1 + \sqrt{2})^2\), contradicting our assumption that \(\text{modulus}(K_1, K_2) = (1 + \sqrt{2})^2 \).

When \(x \) is outside \(\Sigma \), consider the line \(L' \) through \(c \) and \(x \) and the plane \(P' \) through \(x \) that is perpendicular to \(L' \). Since \(P' \) contains \(x_1 \in K_1 \) and \(x \in K_2 \), the pair \((S, P')\) is non-trivial. Let \(a \) and \(b \) be the two points of intersection of \(S \) with \(L' \). By Remark 1, \(\mu(S, P') \) is a function of the abscissa of \(a \) and \(b \) on \(L' \) if \(x \) marks the origin. With \(x \) outside \(\Sigma \), we have \(|b - a| < |x - a|\). Therefore, \(\mu(S, P') > (1 + \sqrt{2})^2 \).

When \(x \) is inside \(S \), consider the sphere \(S' \) through \(x \) that is tangent to \(S \) at \(x_3 \) and the plane \(P \) through \(x_4 \) that is perpendicular to \(L \). Since \(S' \) contains \(x_3 \in K_1 \) and \(x \in K_2 \), the pair \((S', P)\) is non-trivial. By Remark 4, \(\mu(S', P) > \mu(S, P) = (1 + \sqrt{2})^2 \). \(\square \)

Corollary 1. The curves \(K_1 \) and \(K_2 \) are perpendicular to \(L \).
Figure 5. A point x of K_2 outside Σ or inside S exhibits a non-trivial pair of spheres whose modulus is too large.

Proof. Let c_1 be the midpoint between x_2 and x_3 and let c_2 be the midpoint between x_3 and x_4. Let Σ_1 and S_1 be the spheres centered at c_1 such that Σ_1 goes through x_4 and S_1 goes through x_2 and x_3. Let Σ_2 and S_2 be the spheres centered at c_2 such that Σ_2 goes through x_2 and S_2 goes through x_3 and x_4 (see Figure 6).

By Lemma 2, K_2 must lie between Σ_1 and S_1 and between Σ_2 and S_2. Therefore K_2 must be tangent to S_1 and Σ_2 at x_2 and tangent to S_2 and Σ_1 at x_4. Therefore K_2 is perpendicular to L.

We can now choose a Möbius transformation that keeps L fixed and that exchanges x_1 with x_2. The same argument with K_1 and K_2 interchanged shows that K_1 is also perpendicular to L. □

Corollary 2. The trisecant L through x_2 is unique.

Proof. Suppose, to the contrary, that there exists another trisecant \tilde{L} through x_2 which cuts \tilde{K}_1 in \tilde{x}_3 and K_2 again in \tilde{x}_4. For convenience, let us work in the plane that contains L and L' (see Figure 7). Let c be the midpoint between x_2 and x_3 and let C be the circle through x_4 centered at c. By Lemma 2, \tilde{x}_4 lies in the interior of C. Therefore we have $|x_2 - \tilde{x}_4| < |x_2 - x_4|$. Analogously, if we consider \tilde{c} the midpoint between x_2 and x_3 and let \tilde{C} be
As a corollary, by moving the point x_2 on K_2, we can define a map $F: K_2 \to K_1$ that sends x_2 to x_3 and a map $G: K_2 \to K_2$ that sends x_2 to x_4. More precisely:

Definition 5. Let x be any point of K_2. There exists a unique trisecant L through x that cuts \tilde{K}_1 and K_2 again. We define $F(x)$ to be the point where \tilde{K}_1 intersects L and $G(x)$ to be the point other than x where K_2 intersects L.

Lemma 3. The maps F and G are continuous.

Proof. Let $x \in K_2$ and let x_n be a sequence of points of K_2, which converges to x. The curve K_2 is compact, so the sequence $y_n = G(x_n)$ has at least one point of accumulation a in K_2. Let y_n be a subsequence converging to a and let L_n denote the trisecant through x_n. These lines cut \tilde{K}_1 in a sequence of points $z_n = F(x_n)$. Since $z_n = (x_n + y_n)/2$, the sequence z_n converges to a point $z = (x + a)/2$ of \tilde{K}_1. Hence there exists a line L that cuts \tilde{K}_1 in z and K_2 in x and a and that is therefore the unique trisecant through x. Thus, there exists only one accumulation point of the sequence y_n, which converges to $y = G(x)$. Therefore G is continuous. Since x_n and y_n are both convergent, z_n converges to the point $z = F(x)$, and therefore F is continuous. □

Lemma 4. The map G is a homeomorphism of K_2 with no fixed points such that $G \circ G(x) = x$.

Proof. Let x and y be two points of K_2 such that $G(x) = G(y) = z$. This means that there exists a trisecant L through $x, F(x)$ and z, and another trisecant L' through $y, F(y)$ and z. Since there exists only one trisecant through z, we must have $L = L'$. By Lemma 1, K_2 intersects L in exactly
two distinct points. Since \(x \neq z \), we must have \(x = y \). The map \(G \) is therefore one-to-one.

Let \(x \) be a point of \(K_2 \) and \(y = G(x) \). The line through \(x \) and \(y \) is the unique trisecant through \(y \). Hence \(G(y) = x \). \(\square \)

Lemma 5. The curve \(K_2 \) is symmetric about a vertical line. The image \(F(K_2) \) is a segment of this line.

Proof. Recall that \(P_{top} \) and \(P_{bottom} \) are distinct horizontal planes that are tangent to \(K_2 \), such that \(K_2 \) lies between \(P_{top} \) and \(P_{bottom} \). Let \(t_2 \) be a point of \(K_2 \cap P_{top} \) and \(t_4 = G(t_2) \). Let \(b_2 \) be a point of \(K_2 \cap P_{bottom} \) and \(b_4 = G(b_2) \). Choose an orientation on \(K_2 \) such that \(t_2, b_2 \) and \(t_4 \) are in this order on \(K_2 \). The image by \(F \) of the arc joining \(t_2 \) to \(t_4 \) is a continuous path \(\delta \) of \(K_1 \) that contains \(F(b_2) = b_3 \). Thus \(\delta \) joins \(F(t_2) = t_3 \) to \(F(t_4) = t_3 \) through \(b_3 \). But since \(K_1 \) is a simple curve through infinity, \(\delta \) is described twice. Thus for every point \(z \in K_1 \) between \(t_3 \) and \(b_3 \) there exist at least two distinct points \(x \) and \(y \) on the arc of \(K_2 \) joining \(t_2 \) to \(t_4 \) such that \(F(x) = F(y) = z \).

Since \(G \) is orientation preserving, \(G(x) \) is on the arc of \(K_2 \) joining \(G(t_2) = t_4 \) to \(G(t_4) = t_2 \). Thus \(G(x) \neq y \). The trisecants \(L \) through \(x \) and \(z \) and \(L' \) through \(y \) and \(z \) are distinct. By Corollary 1, \(L \) and \(L' \) are perpendicular to \(K_1 \). Since the tangent to \(K_1 \) at \(x_1 \) has been chosen to be a vertical line, \(L \) and \(L' \) are horizontal. The plane containing \(L \) and \(L' \) is therefore horizontal and perpendicular to \(K_1 \) at \(z \). Thus, the tangent to \(K_1 \) at \(z \) is vertical. The arc of \(K_1 \) between \(t_3 \) and \(b_3 \) is therefore a segment of a vertical line. For any \(x \in K_2 \), the points \(x \) and \(G(x) \) are symmetric about this line since \(F(x) \) is the midpoint of \(x \) and \(G(x) \). \(\square \)

Lemma 6. The length between a point of \(K_2 \) and its image under \(F \) is constant.

Proof. Let \(\gamma(t) \) be a parametrization of \(K_2 \). We have:

\[
\frac{d}{dt}|F(\gamma(t)) - \gamma(t)|^2 = 2((F \circ \gamma)'(t) - \gamma'(t), F(\gamma(t)) - \gamma(t))
\]

By Corollary 1, \(F(\gamma(t)) - \gamma(t) \) is perpendicular to \(K_1 \) and \(K_2 \). Since \((F \circ \gamma)'(t) \) is the tangent to \(K_1 \) and \(\gamma'(t) \) the tangent to \(K_2 \), we have

\[
\frac{d}{dt}|F(\gamma(t)) - \gamma(t)|^2 = 0.
\] \(\square \)

Let us summarize the situation: \(K_2 \) lies between two horizontal planes on a cylinder whose axis is a vertical line which coincides with \(K_1 \) in the region between the two planes (see Figure 8).

This configuration is in contradiction with Lemma 2. Indeed, the component \(K_2 \) is not contained in the interior of the sphere going through \(t_4 \) centered at the midpoint of \(t_2 \) and \(t_3 \).
Acknowledgments. It is a pleasure to thank my advisor, Rémi Langevin, and also Jun O’Hara and John Crisp for helpful comments and corrections.

References

Grégoire-Thomas Moniot, Section de mathématiques, Université de Genève, C.P. 64, CH-1211 Genève 4, Switzerland

E-mail address: gt_moniot@yahoo.fr