Excited-state dynamics of the fluorescent probe Lucifer Yellow in liquid solutions and in heterogeneous media

FÜRSTENBERG, Alexandre, VAUTHEY, Eric

Abstract
The photophysics of the dye Lucifer Yellow ethylenediamine (LYen) has been investigated in various polar solvents. The main deactivation pathways of its first singlet excited state are the fluorescence and the intersystem crossing. In water, non-radiative decay by intermolecular proton transfer becomes a significant deactivation channel. The early fluorescence dynamics, which was investigated in liquids and in reverse micelles, was found to depend substantially on the environment. An important static quenching of LYen by tryptophan and indole occurring in the subpicosecond timescale was observed. The use of the fluorescence dynamics of LYen as a local probe is illustrated by preliminary results obtained with a biotinylated Lucifer Yellow derivative complexed with avidin.

Reference

DOI : 10.1039/b418188c

Available at:
http://archive-ouverte.unige.ch/unige:3626

Disclaimer: layout of this document may differ from the published version.
Excited-state dynamics of the fluorescent probe Lucifer Yellow in liquid solutions and in heterogeneous media

Alexandre Fürstenberg and Eric Vauthey*

Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Genève 4, Switzerland. E-mail: eric.vauthey@chiphc.unige.ch; Fax: +41 22 3796518;
Tel: +41 22 3796804

Received 2nd December 2004, Accepted 13th January 2005
First published as an Advance Article on the web 3rd February 2005

The photophysics of the dye Lucifer Yellow ethylenediamine (LYen) has been investigated in various polar solvents. The main deactivation pathways of its first singlet excited state are the fluorescence and the intersystem crossing. In water, non-radiative decay by intermolecular proton transfer becomes a significant deactivation channel. The early fluorescence dynamics, which was investigated in liquids and in reverse micelles, was found to depend substantially on the environment. An important static quenching of LYen by tryptophan and indole occurring in the subpicosecond timescale was observed. The use of the fluorescence dynamics of LYen as a local probe is illustrated by preliminary results obtained with a biotinylated Lucifer Yellow derivative complexed with avidin.

Introduction

Since their introduction about 25 years ago, Lucifer Yellow derivatives have found large application in biological tracing. Apart from their widespread use as tools for studying neuronal morphology and function, they have also served as cytoplasmic or endosomal markers, reactive labels for tissue staining, tracers in confocal or electron microscopy, protein labelling agents, and tracers of cell-cell fusion, membrane permeability, or cell uptake. These dyes are based on a sulfonated 4-amino-1,8-naphthalimide moiety with a variable substituent on the imide nitrogen. Good water solubility, quantum yields of the order of 0.25, wide spectral separation of absorption and emission maxima (430 and 530 nm, respectively) make Lucifer Yellow salts readily visible in living cells at concentrations and levels of illumination at which they are non-toxic. Aqueous solutions of these dyes appear further to be chemically stable for at least several months at room temperature.

Although the excited-state properties of several naphthalimide derivatives have been investigated in detail, relatively little is known about those of Lucifer Yellow. Its fluorescence steady-state spectrum and lifetime have been shown to be environment-sensitive, but these studies were not systematic. Moreover, ultrafast processes following the optical excitation of a dye, such as vibrational cooling, dynamic Stokes shift, and fluorescence depolarization, have been shown to be environment-dependent, but the ultrafast fluorescence dynamics of Lucifer Yellow is totally unknown. Furthermore, proteins are often tagged with Lucifer Yellow, but the spectral properties and the fluorescence quantum yield may be modulated by nearby protein residues as suggested by recent observations.

We report here on our investigation of the photophysical properties of Lucifer Yellow ethylenediamine (LYen) in various solvents using both steady-state and time-resolved techniques. The aim of this study was first to understand the basic excited-state properties of this dye and second to explore its ultrafast fluorescence dynamics in order to establish its potential use as an environment-sensitive probe, especially in aqueous media. An investigation of the fluorescence quenching of LYen by various electron donors is presented as well. To illustrate a possible application of this dye as local probe, a preliminary study with the commercial construct Lucifer Yellow biocytin (LYbtn, Scheme 1), in which the dye is coupled to d-biotin via a 13-atom spacer, in the local environment of avidin is described.

Experimental

Samples

LYen and LYbtn were purchased from Molecular Probes, methanol, tryptophan (Trp) and indole (Ind) from Fluka, DMSO, DMF, rhodamine 6G (R6G), aerosol OT (AOT), and n-heptane from Acros Organics. All compounds were of the highest commercially available grade and used without further purification. Avidin was a gift of Professor Thomas R. Ward (University of Neuchâtel, Switzerland). 500 μM stock solutions of LYen in water, DMF, and DMSO were prepared and stored in the dark. LYbtn (1 mM in DMSO) and avidin (100 μM in...
bidistilled water) stock solutions were stored at −20 °C. All samples were freshly prepared from these solutions. Typical dye concentrations for steady-state and time-correlated single photon counting (TCSPC) measurements were 1–10 μM and ca. 100–200 μM in up-conversion experiments.

Reverse micelle-containing samples were prepared by mixing in the sample cell adequate volumes of a stock solution of 0.1 M AOT in n-heptane (1 M for up-conversion measurements) with a 490 μM stock solution of LZen in water. Solutions were shaken by hand and micelles formed instantaneously. Micelles were assumed to be spherical and their inner radius \(r \) (Å) was calculated with the relationship

\[
r = 1.5 R
\]

(1)

where \(R \) is the water to surfactant molar ratio. In quenching experiments, 40 nM Trp in water and 30 nM Trp in DMSO stock solutions were prepared and diluted to the working concentrations (LZen concentration: 1.5 μM) for steady-state and TCSPC measurements. In up-conversion experiments, desired amounts of Trp were directly dissolved in 200 μM LZen solutions.

All samples were purged with nitrogen or argon before the measurements. No significant degradation of the samples was observed after the measurements.

Steady-state measurements

Absorption spectra were recorded on a Cary 50 spectrophotometer and fluorescence spectra on a Cary Eclipse fluorimeter using 1 cm quartz cells.

The fluorescence quantum yield of LZen in water, DMF, and DMSO was determined against R6G, whose quantum yield was taken as 0.89.39

Time-resolved fluorescence measurements

Excited-state lifetime measurements in the nanosecond time scale were done with the time-correlated single photon counting (TCSPC) technique. Excitation was performed at 395 nm with a pulsed laser diode (Picoquant model LDH-P-C-400B). The pulses had a duration of about 65 ps and the average power was about 0.5 mW at 20 MHz. Fluorescence was collected at 90°, and passed through an analyzer set at the magic angle with respect to the excitation polarization. In most cases, measurements were performed over 3 time scales, to accurately cover the span of the fluorescence decay. Before analyzing the data globally, the raw kinetics were first corrected for residual fluorescence due to excitation by the previous light pulse by simple subtraction (the residual fluorescence intensity can be estimated as constant on the investigated time scales), and then rescaled. The rescaling factor, \(F(\lambda) \), was obtained from the following ratio

\[
F(\lambda) = \frac{S(\lambda)}{\int D(\lambda, \tau) dt}
\]

(3)

where \(D(\lambda, \tau) \) is the time profile of the fluorescence intensity and \(S(\lambda) \) is the steady state fluorescence intensity.

The accuracy on the lifetimes and on the amplitudes obtained by this method is estimated to ca. 10–15%, except on lifetimes shorter than about 500 fs (uncertainty of about 200 fs).

Transient absorption experiments

Microsecond transient absorption measurements were performed using a conventional laser flash photolysis set-up. Excitation was achieved at 355 nm with the frequency-tripled output of a Q-switched active-passive mode-locked and cavity dumped Nd:YAG laser (pulse duration: 25 ps; repetition rate: 10 Hz; pulse energy: 5 mJ). The sample was held in a 1 cm quartz cuvette and had a typical absorbance of 0.25 at 355 nm. The output of a continuous Hg–Xe lamp (Hamamatsu model E7536) was used for probing. The data acquisition was made with a 500 MHz digital oscilloscope (Tektronix TDS 620A).

For ultrafast transient absorption experiments, excitation was achieved at 400 nm with the frequency-doubled output of a standard 1 kHz amplified Ti:sapphire system (Spitfire, Spectra-Physics). The duration of the pulses at 400 nm was around 120 fs. For probing, a home-built non-colinear optical parametrical amplifier, generating pulses tunable between 480 and 700 nm, was used.41 For the experiments reported here, the probe wavelength was set at 580 nm and the pulse duration was 50 fs. The FWHM of the instrument response function was around 200 fs. Detection was achieved at the magic angle. The sample solutions were placed in a 1 mm quartz cell, had an absorbance of 0.4 (LZen 500 μM and Trp 40 mM) and were stirred by N₂ bubbling.

Results and discussion

Steady-state and nanosecond photophysics

The choice of solvents in which LZen can be investigated is rather reduced. Indeed, this dye was found to be only readily soluble in water, DMF, and DMSO, but not in alcohols. The poor solubility in alcohols might be due to the use of a potassium salt of the ethylenediamine derivative of Lucifer Yellow whereas other groups worked with a lithium salt of the carbodizaine.
Steady-state absorption and fluorescence spectra (Fig. 1) exhibit a single and broad band characteristic of a charge transfer transition and a large Stokes shift, which increases with solvent polarity from about 3600 cm⁻¹ in DMF to about 4300 cm⁻¹ in water. Interestingly, the absorption band is shifted to the blue and the fluorescence spectrum to the red with increasing solvent polarity, and especially when going from aprotic to protic solvents. H-bonding in both ground and excited states but at different positions is known to lead to a blue and a red shift of the absorption and emission bands, respectively, when going from an aprotic to a protic solvent. This anomalous solvatochromism might as well be related to the eccentricity of the position of the ground state dipole moment. The ground state dipole moment is determined by groups relatively far from the centre of the molecule and this leads to an increase of the effective Onsager reaction field in the dipole position and thus of the ground state solvation energy. On the other hand, the fluorescent state of 4-aminonaphthalimide derivatives is known to have a relatively strong charge transfer character, and the corresponding electric dipole moment can be reasonably well approximated to a point dipole located in the centre of the cavity. This situation is predicted to lead to a blue shift of the absorption band and to a red shift of the fluorescence spectrum. Independently on the origin of this effect, it can be safely concluded that the excited-state dipole moment of LYen is considerably larger than that of its ground state.

The quantum yield was determined against R6G and was found to be 0.27 in water, which is in agreement with literature values,²³⁻²⁷ 0.53 in deuterium oxide, and around 0.7 in DMF and DMSO (Table 1). Excited-state (S¹) lifetimes were determined using the TCSPC technique. The fluorescence decays could be very well reproduced with a single exponential function (Fig. 2) with a lifetime of 5.7 ns in H₂O, 10.6 ns in DMSO, 11.3 ns in DMF, and 11.5 ns in D₂O. As already suggested by Lee and Fortes,²⁵ this variation of the excited-state lifetime is far from the centre of the molecule and this leads to an increase of the effective Onsager reaction field in the dipole position and thus of the ground state solvation energy. On the other hand, the fluorescent state of 4-aminonaphthalimide derivatives is known to have a relatively strong charge transfer character, and the corresponding electric dipole moment can be reasonably well approximated to a point dipole located in the centre of the cavity. This situation is predicted to lead to a blue shift of the absorption band and to a red shift of the fluorescence spectrum. Independently on the origin of this effect, it can be safely concluded that the excited-state dipole moment of LYen is considerably larger than that of its ground state.

![Normalized steady-state absorption and fluorescence spectra of LYen in water, deuterium oxide, DMF, and DMSO. Excitation occurred at 400 nm.](Image)

![Transmittance difference spectra of the triplet excited state of LYen in different solvents.](Image)

Table 1 Photophysical properties of LYen in different solvents

<table>
<thead>
<tr>
<th>Solvent</th>
<th>λ_{max}/nm</th>
<th>E_{max}/nm²</th>
<th>ε_{max}/cm⁻¹ M⁻¹</th>
<th>φ_e</th>
<th>τ_fl/nS</th>
<th>τ_rad/nS</th>
<th>τ_ESPT/nS</th>
<th>τ_{calc}</th>
<th>τ_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>428</td>
<td>530</td>
<td>7900</td>
<td>0.27</td>
<td>5.7</td>
<td>21.1</td>
<td>24.5</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>D₂O</td>
<td>428</td>
<td>528</td>
<td>ND</td>
<td>0.53</td>
<td>11.5</td>
<td>21.7</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>439</td>
<td>518</td>
<td>4700</td>
<td>0.68</td>
<td>10.6</td>
<td>15.6</td>
<td>33.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMF</td>
<td>435</td>
<td>510</td>
<td>5700</td>
<td>0.70</td>
<td>11.3</td>
<td>16.1</td>
<td>37.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Absorption and emission maxima. Accuracy: ±2 nm. * Molar extinction coefficient at 400 nm. Accuracy: ±10%. * Quantum yield determined against R6G, whose quantum yield was taken as 0.89. * Fluorescent-state lifetime. Accuracy: ±0.1 ns. * Calculated radiative lifetime, τ_{rad} = τ_fl/φ_e. * Calculated intersystem crossing time constant. * Calculated excited-state proton transfer time constant. * Value estimated to be the same as in D₂O. * Obtained with a value for τ_{exp} of 24.5 ns. * ND: not determined.

The significantly lower excited-state lifetime and fluorescence quantum yield of LYen in H₂O, as compared to the other solvents, is not due to a more efficient population of the triplet state in H₂O as microsecond transient absorption experiments showed (Fig. 3); on the contrary, the relative triplet yield, determined in solutions sharing the same absorbance at 355 nm, was lower in H₂O, which implies that an additional deactivation channel is operative in this solvent. The direct comparison of the TCSPC data obtained in H₂O and D₂O rather suggests this channel being an excited-state proton transfer (ESPT) with the solvent. The charge-transfer, which is believed to take place upon LYen photoexcitation between the amino group of the naphthalene ring and the carbonyl oxygens, is predicted to increase the basicity of the latter atoms; they may subtract a proton from a protic solvent molecule and this finally quenches the excited LYen. The strong increase of fluorescence lifetime when going from H₂O to D₂O strongly supports the occurrence of this process. ESPT is a well-known quenching process of many aromatic ketones and has been reported with other aminonaphthalimide derivatives. The ESPT hypothesis is further supported by a TCSPC experiment with a methanol solution in which a drop of LYen in DMSO had been added, which...
yielded an excited-state lifetime for LYen in methanol of 8.8 ns, a significantly shorter value than in the tested aprotic solvents (Fig. 2). A simple calculation, assuming the only deactivation channels for LYen* being fluorescence, intersystem crossing to the triplet excited state (ISC), and ESPT, and the ESPT rate being negligible in all solvents except H2O, gives a characteristic time for the proton transfer of 10–12 ns, which is a reasonable time scale for an intermolecular proton transfer. Assuming internal conversion to be negligible, the excited-state dynamics of LYen in the nanosecond time scale can thus be summarized as follows (Table 1): LYen* deactivates via fluorescence (τflu ≈ 15–20 ns) and intersystem crossing (τisc ≈ 25–35 ns) in aprotic media, and mainly by intermolecular proton transfer (τespt ≈ 10–12 ns) in protic solvents.

Ultrafast dynamics

The ultrafast fluorescence dynamics of LYen in H2O, DMF, and DMSO was investigated by fluorescence up-conversion and monitored at 6 to 10 different wavelengths spanning most of the fluorescence spectrum (450 to 640 nm). The early dynamics is characterized by decays in the blue part of the spectrum and rises in the red part (Fig. 4). For water and DMF, the data were deconvolved and fitted globally using three exponential functions, two of them reflecting the dynamics on an ultrashort time scale, and the third one fixed to the value of the nanosecond decay obtained through the TCSPC experiments. For both solvents, the fit yielded a lifetime of the order of 100 fs, i.e. smaller than the instrument response function (IRF), and another of the order of a few picoseconds (Table 2). The spectral dependence of the amplitude of the nanosecond component (a1) reflects rather closely the fluorescence steady-state spectrum (data shown only for water, Fig. 5). The amplitude of the ultrashort component is positive in the blue part of the fluorescence spectrum, highly negative in the central part and close to zero on the red side (Fig. 5). This corresponds to a red shift and to a simultaneous narrowing of the fluorescence spectrum. This and the very short time constant suggest the involvement of both vibrational relaxation and inertial solvation. The 1–2 ps component exhibits positive amplitudes in the blue side and negative amplitudes in the red and can be associated to a dynamic Stokes shift related to the slower part of solvation in water, i.e. the diffusive solvent motion. Similar time constants have been observed with other probe molecules in both water and DMSO, and aOT ratios (defined as R). For R values up to 15, the time-resolved fluorescence anisotropy measurements were performed by TCSPC, but for larger values the up-conversion set-up had to be used, since the anisotropy decay was found to be strongly speeded up with increasing the micelle size (Table 3). In bulk water (Fig. 6) and at an R of 20, the decays could be well reproduced with a single exponential function with a time constant of 100 and 140 ps, respectively. In micelles with smaller R, the fluorescence anisotropy decay is clearly biphasic with a

![Fig. 4](image-url) Fluorescence dynamics of LYen in water (A), DMF (B), and DMSO (C) at different wavelengths upon excitation at 400 nm. Raw data (open circles) were deconvolved with a response function of 240 fs FWHM and globally analysed with three exponential functions (solid lines). The relative intensities were normalized with respect to the steady-state fluorescence intensity at each wavelength.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>τ1/fs</th>
<th>τ2/ps</th>
<th>τ3/ns</th>
<th>τ4/ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>140</td>
<td>1.2</td>
<td>5.7</td>
<td>—</td>
</tr>
<tr>
<td>DMF</td>
<td>110</td>
<td>2.2</td>
<td>11.3</td>
<td>—</td>
</tr>
<tr>
<td>DMSO</td>
<td>140</td>
<td>1.0</td>
<td>10.6</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Fig. 5 Amplitudes a₁ (corresponding to the τ₁ time constants) obtained from the global fit on the ultrafast fluorescence dynamics of LYen in water monitored at different wavelengths.

In DMSO, the early fluorescence dynamics cannot be satisfactorily reproduced with less than three exponential functions. The time constants of the two shortest components are similar to those found in the other two solvents, namely 140 fs and 1.0 ps.

The time constant of the additional component is substantially larger and amounts to 8.3 ps. These three time constants are very similar to those reported for the fluorescence Stokes shift of coumarin 153 in DMSO.

To further probe the sensitivity of LYen to its environment, the reorientational dynamics of the dye was measured in n-heptane-AOT-water reverse micelles with different water-to-AOT ratios (defined as R). For R values up to 15, the time-resolved fluorescence anisotropy measurements were performed by TCSPC, but for larger values the up-conversion set-up had to be used, since the anisotropy decay was found to be strongly speeded up with increasing the micelle size (Table 3). In bulk water (Fig. 6) and at an R of 20, the decays could be well reproduced with a single exponential function with a time constant of 100 and 140 ps, respectively. In micelles with smaller R, the fluorescence anisotropy decay is clearly biphasic with a...
quantum yield and the lifetime of Auramine O.

The 2.6 ns component is due to dye molecules with strongly restricted motion, probably because they reside in the palisade layer of the micelle. On the other hand, the fast and R-dependent decay component is most probably due to L\textsubscript{Y}en molecules dissolved in the water pool at the interior of the micelles, where reorientational motion is much easier. Micellar molecules dissolved in the water pool becomes heterogeneous with respect to the microviscosity.55 The slowing down of the fluorescence depolarisation with decreasing R indicates an increase of the local viscosity. A similar conclusion has been reported with other microviscosity probes, such as the fluorescence quantum yield and the lifetime of Auramine O.54 Heterogeneous microenvironments are also expected at biological surfaces and these results suggest that L\textsubscript{Y}en should be able to sense the vicinity of a cell membrane or of a protein. The diversity of water molecules at protein or nucleic acid surfaces has recently been demonstrated by Zewail and co-workers.56

Table 3

Amplitudes a_i and characteristic reorientational times $\tau_{i,1}$ measured for L\textsubscript{Y}en in n-heptane-AOT–water reverse micelles with different water-surfactant ratios R. Accuracy: ±10%. As an indication, the approximate number of water molecules per micelle, N, is given. Spherical micelles were assumed.

<table>
<thead>
<tr>
<th>R</th>
<th>N</th>
<th>a_1</th>
<th>$\tau_{1,1}$/ps</th>
<th>a_2</th>
<th>$\tau_{2,1}$/ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>2–3</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
<td>2.6</td>
</tr>
<tr>
<td>5.0</td>
<td>≈60</td>
<td>0.33</td>
<td>800</td>
<td>0.57</td>
<td>2.6</td>
</tr>
<tr>
<td>10.0</td>
<td>≈470</td>
<td>0.87</td>
<td>480</td>
<td>0.13</td>
<td>2.6</td>
</tr>
<tr>
<td>15.0</td>
<td>≈1600</td>
<td>0.82</td>
<td>350</td>
<td>0.18</td>
<td>2.6</td>
</tr>
<tr>
<td>20.0</td>
<td>≈4000</td>
<td>1.00</td>
<td>140</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bulk</td>
<td>∞</td>
<td>1.00</td>
<td>100</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Fig. 6

Time-resolved fluorescence anisotropy of L\textsubscript{Y}en in bulk water. The decay (open circles) was reproduced with a single exponential function (solid line).

Fig. 7

Static (circles) and dynamic (squares) quenching of L\textsubscript{Y}en by Trp (filled symbols) and Ind (open symbols) in water.

From the slope of the Stern–Volmer plots obtained from the lifetimes, rate constants of dynamic quenching of 3.2×10^9 and 4.8×10^9 M$^{-1}$ s$^{-1}$ were found with Trp and Ind, respectively. As the rate constant of diffusion in water is of the order of 6×10^9 M$^{-1}$ s$^{-1}$,57,58 it can be concluded that the dynamic quenching process is quite efficient.

The time scale at which the static quenching process occurs was evaluated with Trp using ultrafast time-resolved fluorescence measurements at 550 nm, a wavelength at which the fluorescence decay is expected to be due to population dynamics only. Indeed, without quencher, the time profile of the fluorescence intensity at 550 nm is flat on a picosecond time scale (Fig. 8A). At all investigated Trp concentrations different from zero, an ultrafast component with a time constant of about 720 ± 100 fs was found from a global fit, its amplitude rising with increasing Trp concentration (Table 4). This ultrafast component is present at other detection wavelengths as well (Fig. 8B).

Several studies have revealed that inserted organic dyes readily oxidize DNA, especially guanosine residues, which have the lowest oxidation potential among the bases.61,62 Since Trp and Ind have even lower oxidation potentials than guanosine ($E_{\text{ox(Trp)}} = 0.84$ V vs. SCE,59 $E_{\text{ox(Ind)}} \approx E_{\text{sCE}}$, Trp)59 it is likely that the quenching of L\textsubscript{Y}en by Trp and Ind also arises from photoinduced electron transfer (ET) from the amino acid to the dye, a coplanar stacking ground state complex conformation which favours electronic coupling being readily conceivable.54 Such conformation has already been observed between riboflavin and Trp in the crystal structure of the riboflavin–riboflavin-binding protein complex.54 It also reduces the water accessible area. The lack of this water-hiding driving force could explain why no such static fluorescence quenching of L\textsubscript{Y}en by Ind (Trp was not soluble) was detected in DMSO (data...
Fig. 8 Fluorescence kinetics of LYen in the presence of Trp upon excitation at 400 nm. Open circles are data points while solid lines result from a global fit over each set of kinetic traces. (A) Fluorescence dynamics at 550 nm of LYen in presence of various Trp concentrations (0–50 mM). (B) Fluorescence dynamics of LYen in the presence of 50 mM Trp at different wavelengths.

Table 4 Parameters obtained from the global analysis done on the fluorescence dynamics of Fig. 8A. The fluorescence lifetimes of the S_1 state τ_{S_1} were obtained from TCSPC measurements and fixed during the fit. The lifetime of the ET process, τ_{ET}, was a global parameter. The a_i are the amplitudes of the two components (accuracy: ±10%).

<table>
<thead>
<tr>
<th>c(Trp)/mM</th>
<th>a_{S_1}</th>
<th>τ_{S_1}/ns</th>
<th>a_{ET}</th>
<th>τ_{ET}/ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>5.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>0.91</td>
<td>4.8</td>
<td>0.09</td>
<td>0.72 ± 0.10</td>
</tr>
<tr>
<td>30</td>
<td>0.64</td>
<td>3.7</td>
<td>0.36</td>
<td>0.72 ± 0.10</td>
</tr>
<tr>
<td>50</td>
<td>0.51</td>
<td>3.0</td>
<td>0.49</td>
<td>0.72 ± 0.10</td>
</tr>
</tbody>
</table>

not shown). The reduction potential of LYen is not known, but the presence of the 4-amino group can be expected to reduce considerably the oxidation power of this dye compared to other naphthalimide derivatives, whose reduction potential is of the order of -1 V vs. SCE.66,67 Therefore, the driving force for the photoinduced ET between LYen and Trp should be less negative than -0.5 eV. An ET quenching with such a low driving force is expected to be slower than diffusion, as observed here. On the other hand, a very specific geometry of the ground state complex could account for an ultrafast intracomplex ET. The occurrence of this process is further confirmed by time-resolved absorption measurements at 580 nm, where the tryptophan radical cation Trp$^{+}\cdot$ has been reported to absorb (Fig. 9).68 Apart from the positive and negative spikes around time zero, which are due to the non-resonant response of the solvent, the time profile can be well reproduced using a biexponential function with a rise time of 800 fs and a decay time of 2.6 ps. This rise time is consistent with the quenching time of LYen determined by fluorescence up-conversion. On the other hand, the very fast decay of the 580 nm transient absorption could be due to the geminate charge recombination or to a further reaction of Trp$^{+}\cdot$ such as a proton transfer.

Lucifer Yellow biocytin with avidin

To monitor the influence of a protein environment on the photophysics of Lucifer Yellow, the excited-state lifetime of LYbtn, a commercial construct in which the dye is coupled to biotin via a 13-atom spacer, was measured in the presence of avidin using TCSPC. Avidin is known for its very large affinity for biotin and can bind up to four such molecules.69 The nanosecond fluorescence dynamics of LYbtn in a bulk solution is characterized by a single exponential decay of 7.0 ns (Fig. 10). In the presence of the protein, a further component of 1.0 ns accounting for 15–20% of the decay, depending on the number of occupied sites, was found (Table 5). The amplitude of the faster component rises with increasing LYbtn concentration. This component is already present at low LYbtn concentration, when only one binding site of avidin is occupied, suggesting that it arises from a direct interaction between the chromophore and the protein rather than from self-quenching of two neighbouring chromophores. A stoichiometric excess of LYbtn let the amplitude of the 1 ns component decrease again because of the presence of unbound fluorophore population, which contributes to the 7 ns component only. The origin of the 1 ns component upon binding to the protein is unknown and is under investigation. Nevertheless, these measurements suggest that, in spite of the long spacer in the LYbtn construct, Lucifer Yellow is able to sense the presence of the protein.

Fig. 9 Transient absorption kinetics at 580 nm of LYen in the presence of 40 mM Trp. The transient absorption is ascribed to Trp$^{+}\cdot$. Data points (open circles) were reproduced with a biexponential function (solid line).

Fig. 10 Nanosecond fluorescence kinetics of an avidin sample titrated with 1 to 5 equivalents of LYbtn. The fluorescence decay of pure LYbtn in water is shown for comparison. The solid lines are the best fits.

Conclusions

This investigation has given a rather clear picture of the excited-state dynamics of LYen. After excitation at 400 nm and relaxation within a few ps, depending of the solvent, to the thermally equilibrated S_1 state, the molecule relaxes via
fluorescence ($\tau_{\text{rad}} \approx 15-25$ ns), intersystem crossing ($\tau_{\text{ISC}} \approx 25-35$ ns), and, in protic solvents, in a large extent through reversible intermolecular proton transfer with the solvent ($\tau_{\text{ESPT}} \approx 10-12$ ns). Steady-state and fluorescence lifetime measurements demonstrated that LfEn is an environment-sensitive probe able to discriminate between water, DMF, and DMSO and that heterogeneous microenvironments influence its early fluorescence dynamics. Early fluorescence appears therefore well-suited as a probe of the local environment of proteins. Moreover, fluorescence quenching through nearby amino acid residues, especially tryptophan has also been shown to be operative. This effect might be at the origin of the decrease of the fluorescence lifetime of Lucifer Yellow biocytin in the presence of avidin. The influence of the protein on the ultrafast fluorescence dynamics is being investigated.

Acknowledgements

We would like to thank Professor Thomas Ward (University of Neuchâtel) for providing us with avidin and for discussion. This work was supported by the Fonds National Suisse de la Recherche Scientifique through project no. 200020-100014.

References
