Sociolinguistic biases and the automatic identification of discourse markers in dialogue

POPESCU-BELIS, Andréi, ZUFFEREY, Sandrine
Sociolinguistic biases and the automatic identification of discourse markers in dialogue

Andrei Popescu-Belis & Sandrine Zufferey
University of Geneva

Contrast
1. He was *like* a son to me.
2. Nobody can sing that song *like* he did.
 with
3. It took, *like*, twenty minutes.
4. He was *like*, yeah, I can make dogs raise their ears.

Questions
☐ How do these types differ?
☐ Can humans distinguish them reliably?
☐ Can a computer program distinguish them as well?
☐ Does knowledge of the speaker’s background help?
Outline of the talk

- Discourse markers (DM) as pragmatic functions of lexical items
 - focus on like and well

- Corpus: multiparty meeting recordings
 - data includes sociolinguistic characteristics of the speakers

- Experiments in DM recognition by humans

- Speaker-related statistical preferences for DM use

- Automatic detection of DM use

- Relevance of speaker-related features for DM detection

Discourse markers: a definition

- General purpose definition (Andersen, 2001)
 - “A class of short, recurrent linguistic items that generally have little lexical import but serve significant pragmatic functions in conversation”

- Examples
 - actually, and, but, I mean, kind of, like, now, really, so, therefore, well, you know

- Notoriously ambiguous items
 - serve other functions such as verb, adjective, etc.
The discourse marker *like*

- **Function of *like* as a DM**
 - make explicit to the hearer that what follows the marker is a loose interpretation of the speaker’s belief (Andersen, 2001).

- **Examples of DM uses**
 - It took, *like*, twenty minutes.
 - They had little carvings of, *like*, dead people on the walls or something.
 - *He was like*, yeah, I can make dogs raise their ears.

- **Examples of non DM uses**
 - *He was like* a son to me.
 - *Nobody can sing that song like* he did.
 - *I like* chocolate very much.

The discourse marker *well*

- **Function of *well* as a DM**
 - “signals that the context created by an utterance may not be the most relevant one for the interpretation of the next utterance” (Jucker, 1993: 450).

- **Examples of DM uses**
 - A: *Is the rising pitch a feature, or is it gonna be in the same file?*
 - B: *Well*, the rising pitch will never be hand-annotated.
 - So they’ll say, *well*, these are the things I want to do.
 - *Oh, yes, but…well*, uh, yes, but what I mean is that…

- **Examples of non DM uses**
 - *It’s as well not to offend her.*
 - *I do not feel very well.*
 - *He sings as well as he plays.*
Data

- ICSI Meeting Recorder corpus (Janin et al., 2003)
- About 80 hours of staff meeting recordings
- 5-8 speakers
- Scientific and technical discussions, in English, among research groups in speech and language processing from ICSI, Berkeley
- Transcribed: 800,000 words
- Segmented into utterances: ca. 100,000
 - indications of interruptions and unfinished utterances
 - dialog act annotation available too (Shriberg et al., 2004)

Participants to the ICSI-MR meetings

- 52 different speakers
- Sociolinguistic information (collected using paper forms)
 - gender
 - age
 - education level: undergraduate, graduate, PhD, professor
 - proficiency in English: native or non-native
 - US region of origin → interpreted as US East, US West and US other
- Speakers cohort is well-balanced with respect to these features
- Independence of speaker-related features (χ^2 test)
 - gender and education level
 - gender and age
 - gender and origin
 - but not, of course, age and education level
Biases in the speakers’ contributions

- Most of the data is produced by only a few speakers
 - 7 most frequent ones > 40,000 words each (64% of the data)
 - 10 least frequent ones < 1,000 words each (0.6% of the data)
- Unbalanced contributions to the corpus (in words)
 - female / male 22% / 78%
 - native / non-native 74% / 26%
 - US East / US West / US other / other 27% / 12% / 32% / 29%
 - undergrad. / graduate / PhD / professor 2% / 30% / 40% / 28%
- Sociolinguistic features not fully independent when weighted by the number of words produced by each speaker (χ² test)
 - correlated: age and origin, gender and origin
 - independent: gender and age

Human annotation of DM vs. non-DM

- Objective
 - identify each occurrence of *like* and *well* as either a DM or not
- How reliable is this annotation?
- Possible sources of disagreement
 - individual mistakes
 - different perceptions of what a DM is
 - intrinsic ambiguity of certain occurrences of *like* and *well*
- Measure of inter-annotator reliability
 - *kappa* (κ) score (Krippendorff, 1980; Carletta et al. 1997)
 - factors out the probability of agreement by chance
 - κ scale
 - κ < 0.67 → insufficient agreement
 - 0.67 ≤ κ < 0.8 → acceptable
 - 0.8 ≤ κ → very good
Observed inter-annotator agreement

- Experiments with excerpts of the data
 - up to six annotators, native and non-native EN speakers
 - transcripts and recordings (→ prosody) are required
- Inter-annotator agreement: \(\kappa = 0.74 \) → good
 - details in (Zufferey & Popescu-Belis, 2004)
- DM annotation of the entire ICSI MR corpus
 - two annotators
 - ~0.5% of the tokens are ambiguous: not used in the study
 - annotations available online at: http://www.issco.unige.ch/projects/im2/mdm/data/discourse-markers

Observed frequencies of DMs

- Frequencies of *like* and *well* as DMs
 - 4,519 tokens of *like* → 2,052 are DMs (45%)
 - 4,136 tokens of *well* → 3,639 are DMs (88%)
- Comparative frequencies of other DMs
 - most frequent ones
 - *but* 7,815, *well* 3,639, *like* 2,052, *actually* 1,763
 - 0.98% 0.46% 0.26% 0.22%
 - most infrequent ones (note: used by several speakers)
 - *however* 59, *furthermore* 16, *moreover* 0
Speaker-related preferences (1)

<table>
<thead>
<tr>
<th></th>
<th>DM like</th>
<th>DM well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>40%</td>
<td>88%</td>
</tr>
<tr>
<td>female</td>
<td>55%</td>
<td>89%</td>
</tr>
<tr>
<td>English:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>native</td>
<td>44%</td>
<td>87%</td>
</tr>
<tr>
<td>non native</td>
<td>49%</td>
<td>90%</td>
</tr>
<tr>
<td>Origin:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US East</td>
<td>31%</td>
<td>84%</td>
</tr>
<tr>
<td>other US</td>
<td>46%</td>
<td>89%</td>
</tr>
<tr>
<td>other c.</td>
<td>49%</td>
<td>90%</td>
</tr>
<tr>
<td>US West</td>
<td>55%</td>
<td>91%</td>
</tr>
<tr>
<td>Education:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>professor</td>
<td>22%</td>
<td>84%</td>
</tr>
<tr>
<td>PhD</td>
<td>48%</td>
<td>90%</td>
</tr>
<tr>
<td>graduate</td>
<td>50%</td>
<td>88%</td>
</tr>
<tr>
<td>undergraduate</td>
<td>67%</td>
<td>94%</td>
</tr>
</tbody>
</table>

Not significant

Speaker-related preferences (2)

- Individual preferences for DM *like* show much greater variability than those for DM *well*
 - “heavy DM *like* users”

- Significant preferences
 - *speakers from the US West* favor DM *like*
 - *less educated speakers* favor DM *like*

- But…
 - in the ICSI-MR corpus, speakers from US East are older and more educated than those from US West
 - not clear which of the factors is determinant
Automatic disambiguation of DMs

- Method to determine automatically if an occurrence of *like* or *well* is a DM or not
 - using features extracted from recording and transcript

- How well does such a method score?

- Does knowledge of speaker-related preferences increase the accuracy of the method?

Low-level features for the recognition of DMs *like* and *well*

1. Collocations
 - the word immediately preceding or following a DM-candidate
 - examples for *like*
 - *like* that, *like* to, things *like*, *seems* *like*, *would* *like* → probably not a DM
 - *of* *like* → probably a DM
 - *is* *like*, *was* *like*, *like* a, *like* the, *like* you, it’s *like* → uncertain
 - examples for *well*
 - *as* *well*, *very* *well* → probably not a DM
 - *well* I, *well* the, *well* it’s, *oh* *well*, *say* *well* → probably a DM
 - *well* it → uncertain

2. Position and prosody
 - position in the utterance
 - initial, final, or middle
 - “prosody”
 - duration of the DM-candidate, duration of the pause before it and after it
DM recognition method

- Decision trees contain a set of tests
 - test = whether the features have particular values (nodes)
 - decision = whether the token (*like* or *well*) is a DM or not (leaf)

- Automatic learning of decision trees
 - based on training data
 - our set of hand-annotated examples (positive & negative)
 - algorithm
 - C4.5 / Weka, 10-fold cross-validation
 (Quinlan, 1993; Witten and Frank, 2000)

- C4.5 finds the best classifier for this data under certain constraints
- Score = *kappa* or the number of correctly classified occurrences

Nearly optimal binary decision tree

- Classification accuracy
 - $\kappa = 0.75$, 89% CCI
 - comparable to inter-annotator agreement

- Features used
 - collocations: esp. “excluding” ones
 - prosody: if pause before token > 580ms, then DM
 - position: final or not

- No sociolinguistic features!
 - but some “heavy DM-like users” are automatically identified in the optimal tree (which is more complex and scores slightly better)
Sociolinguistic features and decision trees

- Knowledge of speaker for C4.5 training:
 - does not help the recognition of DM well
 - slightly improves recognition of DM like
 - the linguistic features (collocation and prosody) are almost sufficient to reach the maximal score

- Proposed method for estimating the relevance of speaker-related features for DM recognition:
 - alternatively ignore the other features
 - look at the best classifier found and its score

Results/rules found automatically

- No significant correlation for ‘gender’ or ‘native’ – or for well

- use of education only ($\kappa = 0.39$)
 - undergraduate or graduate \rightarrow all like are DMs
 - otherwise \rightarrow all like are non-DMs

- use of region of origin only ($\kappa = 0.40$)
 - from the US West \rightarrow all like are DMs
 - otherwise \rightarrow all like are non-DMs

- use of age only ($\kappa = 0.44$ or 75% CCIs)
 - under 30 \rightarrow all like are DMs
 - otherwise \rightarrow all like are non-DMs
 - common view of DM like as a feature of adolescent speech (Andersen 2001)

Analysis

- a majority of speakers in ICSI-MR are graduates under 30 from the US West
- it is not clear which of the three is the statistically relevant feature
- but: correlation (κ) is better for age, then for region, then for education
Conclusion

- Two methods to study speaker-related effects on DM use
 - frequencies
 - role of features in automatic disambiguation

- Importance for sociolinguistic studies
 - distributional patterns of DMs in a meeting context

- Importance for computational linguistics/pragmatics
 - state-of-the-art method for automatic recognition
 - speaker-related features could be relevant for “regular users” of a system

- Future work: generalize the features to several markers
 - collocations, prosody
 - hand-crafted: precise, useful when not enough training data
 - could be extracted automatically if enough data is available
 - speaker-dependent features: must be “learned”

References

Acknowledgments

- Swiss National Science Foundation
- (IM)2 National Center of Competence in Research on Interactive Multimodal Information Management