Scientific article
OA Policy
English

Predicting the Linguistic Accessibility of Chinese Health Translations: Machine Learning Algorithm Development

Published inJMIR medical informatics, vol. 9, no. 10, e30588
Publication date2021-10-07
First online date2021-10-07
Abstract

Background: Linguistic accessibility has an important impact on the reception and utilization of translated health resources among multicultural and multilingual populations. Linguistic understandability of health translation has been understudied.

Objective: Our study aimed to develop novel machine learning models for the study of the linguistic accessibility of health translations comparing Chinese translations of the World Health Organization health materials with original Chinese health resources developed by the Chinese health authorities.

Methods: Using natural language processing tools for the assessment of the readability of Chinese materials, we explored and compared the readability of Chinese health translations from the World Health Organization with original Chinese materials from the China Center for Disease Control and Prevention.

Results: A pairwise adjusted t test showed that the following 3 new machine learning models achieved statistically significant improvement over the baseline logistic regression in terms of area under the curve: C5.0 decision tree (95% CI –0.249 to –0.152; P<0.001), random forest (95% CI 0.139-0.239; P<0.001) and extreme gradient boosting tree (95% CI 0.099-0.193; P<0.001). There was, however, no significant difference between C5.0 decision tree and random forest (P=0.513). The extreme gradient boosting tree was the best model, achieving statistically significant improvement over the C5.0 model (P=0.003) and the random forest model (P=0.006) at an adjusted Bonferroni P value at 0.008.

Conclusions: The development of machine learning algorithms significantly improved the accuracy and reliability of current approaches to the evaluation of the linguistic accessibility of Chinese health information, especially Chinese health translations in relation to original health resources. Although the new algorithms developed were based on Chinese health resources, they can be adapted for other languages to advance current research in accessible health translation, communication, and promotion.

Keywords
  • Chinese health resources
  • health translation
  • machine learning
Citation (ISO format)
JI, Meng, BOUILLON, Pierrette. Predicting the Linguistic Accessibility of Chinese Health Translations: Machine Learning Algorithm Development. In: JMIR medical informatics, 2021, vol. 9, n° 10, p. e30588. doi: 10.2196/30588
Main files (1)
Article (Published version)
Identifiers
Journal ISSN2291-9694
322views
107downloads

Technical informations

Creation15/10/2021 10:52:00
First validation15/10/2021 10:52:00
Update time16/03/2023 02:32:05
Status update16/03/2023 02:32:04
Last indexation01/11/2024 00:24:44
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack