en
Scientific article
Open access
English

Anisotropic ESCRT-III architecture governs helical membrane tube formation

Published inNature Communications, vol. 11, no. 1516
Publication date2020
Abstract

ESCRT-III proteins assemble into ubiquitous membrane-remodeling polymers during many cellular processes. Here we describe the structure of helical membrane tubes that are scaffolded by bundled ESCRT-III filaments. Cryo-ET reveals how the shape of the helical membrane tube arises from the assembly of two distinct bundles of helical filaments that have the same helical path but bind the membrane with different interfaces. Higher-resolution cryo-EM of filaments bound to helical bicelles confirms that ESCRT-III filaments can interact with the membrane through a previously undescribed interface. Mathematical modeling demonstrates that the interface described above is key to the mechanical stability of helical membrane tubes and helps infer the rigidity of the described protein filaments. Altogether, our results suggest that the interactions between ESCRT-III filaments and the membrane could proceed through multiple interfaces, to provide assembly on membranes with various shapes, or adapt the orientation of the filaments towards the membrane during membrane remodeling.

Citation (ISO format)
MOSER VON FILSECK, Joachim et al. Anisotropic ESCRT-III architecture governs helical membrane tube formation. In: Nature Communications, 2020, vol. 11, n° 1516. doi: 10.1038/s41467-020-15327-4
Main files (1)
Article (Published version)
accessLevelPublic
Identifiers
ISSN of the journal2041-1723
295views
143downloads

Technical informations

Creation09/07/2020 10:01:00 AM
First validation09/07/2020 10:01:00 AM
Update time03/15/2023 10:33:43 PM
Status update03/15/2023 10:33:43 PM
Last indexation01/17/2024 10:48:45 AM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack