Scientific Article
previous document  unige:11312  next document
add to browser collection

Gelsolin-actin interaction and actin polymerization in human neutrophils

Howard, T.
Yin, H.
Stossel, T.
Published in The Journal of Cell Biology. 1990, vol. 110, no. 6, p. 1983-1991
Abstract The fraction of polymerized actin in human blood neutrophils increases after exposure to formyl-methionyl-leucyl-phenylalanine (fmlp), is maximal 10 s after peptide addition, and decreases after 300 s. Most of the gelsolin (85 +/- 11%) in resting ficoll-hypaque (FH)-purified neutrophils is in an EGTA resistant, 1:1 gelsolin-actin complex, and, within 5 s after 10(-7) M fmlp activation, the amount of gelsolin complexed with actin decreases to 42 +/- 12%. Reversal of gelsolin binding to actin occurs concurrently with an increase in F-actin content, and the appearance of barbed-end nucleating activity. The rate of dissociation of EGTA resistant, 1:1 gelsolin-actin complexes is more rapid in cells exposed to 10(-7) M fmlp than in cells exposed to 10(-9) M fmlp, and the extent of dissociation 10 s after activation depends upon the fmlp concentration. Furthermore, 300 s after fmlp activation when F-actin content is decreasing, gelsolin reassociates with actin as evidenced by an increase in the amount of EGTA resistant, 1:1 gelsolin-actin complex. Since fmlp induces barbed end actin polymerization in neutrophils and since in vitro the gelsolin-actin complex caps the barbed ends of actin filaments and blocks their growth, the data suggests that in FH neutrophils fmlp-induced actin polymerization could be initiated by the reversal of gelsolin binding to actin and the uncapping of actin filaments or nuclei. The data shows that formation and dissociation of gelsolin-actin complexes, together with the effects of other actin regulatory proteins, are important steps in the regulation of actin polymerization in neutrophils. Finally, finding increased amounts of gelsolin-actin complex in basal FH cells and dissociation of the complex in fmlp-activated cells suggests a mechanism by which fmlp can cause actin polymerization without an acute increase in cytosolic Ca++.
Keywords Actins/ metabolism/physiologyCalcium-Binding Proteins/analysis/ metabolismCell ExtractsDose-Response Relationship, DrugEgtazic Acid/pharmacologyGelsolinHumansMicrofilament Proteins/analysis/ metabolismN-Formylmethionine Leucyl-Phenylalanine/pharmacologyNeutrophils/drug effects/ metabolism/physiologyPolymers/metabolismTemperatureTime Factors
Stable URL
Full text
Article - document accessible for UNIGE members only Limited access to UNIGE
Other version:
PMID: 2161855
141 hits and 0 download since 2010-08-27
Export document
Format :
Citation style :