UNIGE document Scientific Article
previous document  unige:10419  next document
add to browser collection
Title

Correlation between oxytocin neuronal sensitivity and oxytocin receptor binding: an electrophysiological and autoradiographical study comparing rat and guinea pig hippocampus

Authors
Dreifuss, Jean-Jacques
Published in Proceedings of the National Academy of Sciences. 1989, vol. 86, no. 2, p. 750-754
Abstract In transverse hippocampal slices from rat and guinea pig brains, we obtained unitary extracellular recordings from nonpyramidal neurones located in or near the stratum pyramidale in the CA1 field and in the transition region between the CA1 and the subiculum. In rats, these neurones responded to oxytocin at 50-1000 nM by a reversible increase in firing rate. The oxytocin-induced excitation was suppressed by a synthetic structural analogue that acts as a potent, selective antioxytocic on peripheral receptors. Nonpyramidal neurones were also excited by carbachol at 0.5-10 microM. The effect of this compound was postsynaptic and was blocked by the muscarinic antagonist atropine. In guinea pigs, by contrast, nonpyramidal neurones were unaffected by oxytocin, although they were excited by carbachol. Light microscopic autoradiography, carried out using a radioiodinated selective antioxytocic as a ligand, revealed labeling in the subiculum and in the CA1 area of the hippocampus of rats, whereas no oxytocin-binding sites were detected in the hippocampus of guinea pigs. Our results indicate (i) that a hippocampal action of oxytocin is species-dependent and (ii) that a positive correlation exists between neuronal responsiveness to oxytocin and the presence in the hippocampus of high-affinity binding sites for this peptide.
Keywords Action PotentialsAnimalsAutoradiographyCarbachol/pharmacologyElectrophysiologyGuinea PigsHippocampus/drug effects/metabolism/ physiologyLigandsMaleNeurons/ drug effects/metabolism/physiologyOxytocin/metabolism/ pharmacologyRatsReceptors, Angiotensin/ metabolismReceptors, OxytocinSpecies Specificity
Stable URL http://archive-ouverte.unige.ch/unige:10419
Full text
Article - document accessible for UNIGE members only Limited access to UNIGE
Other version: http://www.pnas.org/content/86/2/750.full.pdf
Identifiers
PMID: 2536177
Structures
135 hits and 0 download since 2010-08-06
Update
Export document
Format :
Citation style :