UNIGE document Scientific Article
previous document  unige:10325  next document
add to browser collection
Title

Ischemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapses

Authors
Kovalenko, Tatiana
Osadchenko, Irina
Nikonenko, Alexander
Lushnikova, Irina
Voronin, Kirill
Nikonenko, Irina
Skibo, Galina
Published in Hippocampus. 2006, vol. 16, no. 10, p. 814-825
Abstract Relatively mild ischemic episode can initiate a chain of events resulting in delayed cell death and significant lesions in the affected brain regions. We studied early synaptic modifications after brief ischemia modeled in rats by transient vessels' occlusion in vivo or oxygen-glucose deprivation in vitro and resulting in delayed death of hippocampal CA1 pyramidal cells. Electron microscopic analysis of excitatory spine synapses in CA1 stratum radiatum revealed a rapid increase of the postsynaptic density (PSD) thickness and length, as well as formation of concave synapses with perforated PSD during the first 24 h after ischemic episode, followed at the long term by degeneration of 80% of synaptic contacts. In presynaptic terminals, ischemia induced a depletion of synaptic vesicles and changes in their spatial arrangement: they became more distant from active zones and had larger intervesicle spacing compared to controls. These rapid structural synaptic changes could be implicated in the mechanisms of cell death or adaptive plasticity. Comparison of the in vivo and in vitro model systems used in the study demonstrated a general similarity of these early morphological changes, confirming the validity of the in vitro model for studying synaptic structural plasticity.
Keywords AnimalsAnimals, NewbornCell Death/physiologyDisease Models, AnimalExcitatory Postsynaptic Potentials/physiologyHippocampus/blood supply/ pathology/physiopathologyHypoxia-Ischemia, Brain/ pathology/physiopathologyMicroscopy, Electron, TransmissionNerve Degeneration/etiology/ pathology/physiopathologyNerve Regeneration/physiologyNeural Pathways/blood supply/pathology/physiopathologyNeuronal Plasticity/physiologyOrgan Culture TechniquesPresynaptic Terminals/pathologyPyramidal Cells/pathologyRatsSynapses/ pathologySynaptic Membranes/pathologySynaptic Transmission/physiologySynaptic Vesicles/pathology
Stable URL http://archive-ouverte.unige.ch/unige:10325
Full text
Identifiers
PMID: 16892187
Structures
96 hits and 0 download since 2010-08-06
Update
Export document
Format :
Citation style :