UNIGE document Scientific Article
previous document  unige:10159  next document
add to browser collection
Title

Axotomized neonatal motoneurons overexpressing the bcl2 proto-oncogene retain functional electrophysiological properties

Authors
Published in Proceedings of the National Academy of Sciences. 1996, vol. 93, no. 9, p. 3978-3983
Abstract Bcl2 overexpression prevents axotomy-induced neuronal death of neonatal facial motoneurons, as defined by morphological criteria. However, the functional properties of these surviving lesioned transgenic neurons are unknown. Using transgenic mice overexpressing the protein Bcl2, we have investigated the bioelectrical properties of transgenic facial motoneurons from 7 to 20 days after neonatal unilateral axotomy using brain-stem slices and whole cell patch-clamp recording. Nonaxotomized facial motoneurons from wild-type and transgenic mice had similar properties; they had an input resistance of 38 +/- 6 M omega and fired repetitively after injection of positive current pulses. When cells were voltage-clamped at or near their resting membrane potential, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartic acid (NMDA), or vasopressin generated sustained inward currents. In transgenic axotomized mice, facial motoneurons could be found located ipsilaterally to the lesion; they had an input resistance of 150 +/- 30 M omega, indicating that they were smaller in size, fired repetitively, and were also responsive to AMPA, NMDA, and vasopressin. Morphological measurements achieved 1 week after the lesion have shown that application of brain-derived neurotrophic factor prevented the reduction in size of axotomized transgenic motoneurons. These data indicate that Bcl2 not only prevents morphological apoptotic death of axotomized neonatal transgenic motoneurons but also permits motoneurons to conserve functional electrophysiological properties.
Keywords AnimalsAnimals, NewbornAxons/physiologyDenervationFacial Nerve/ physiologyMembrane Potentials/drug effects/physiologyMiceMice, TransgenicMicroscopy, ElectronMotor Neurons/drug effects/ physiology/ultrastructureN-Methylaspartate/pharmacologyPatch-Clamp TechniquesProto-Oncogene Proteins/ biosynthesisProto-Oncogene Proteins c-bcl-2Proto-OncogenesTime FactorsVasopressins/pharmacologyAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Stable URL http://archive-ouverte.unige.ch/unige:10159
Full text
Article - document accessible for UNIGE members only Limited access to UNIGE
Other version: http://www.pnas.org/content/93/9/3978.full.pdf
Identifiers
PMID: 8633001
Structures
139 hits and 0 download since 2010-08-06
Update
Export document
Format :
Citation style :