Obesity and the four facets of impulsivity

MOBBS, Olivia, et al.

Abstract

Obesity is a complex condition involving biological, psychological, sociocultural and environmental components. Impulsivity seems to be a particularly important factor. Whiteside and Lynam recently proposed dividing impulsivity into four separate dimensions: Urgency, lack of Premeditation, lack of Perseverance and Sensation Seeking (associated with a tendency to exaggerate the impact of rewards). The objective of this article is to examine how obesity and eating disorder symptoms may be related to the four facets of impulsivity.

Reference


DOI : 10.1016/j.pec.2010.03.003
PMID : 20399590
1. Introduction

In western society, food temptations are everywhere; however, not everyone has difficulty regulating their food intake or resisting food temptations. What, then, makes overweight and obese persons different from the rest of the population? It is recognized that various biological (e.g., reduced thermogenesis), psychological (e.g., eating disorders, depression) and sociocultural (e.g., low socio-economic status) factors contribute to the development and maintenance of excess weight [1]. Among these factors, impulsivity plays a particularly important role in obesity and eating behaviors. Recent studies using self-report questionnaires and psychological tasks have shown that impulsivity contributes to the development and maintenance of obesity [2–4].

1.1. The four facets of impulsivity

Impulsivity is an important construct that covers a wide range of behavioral, motivational and emotional phenomena. In this context, according to Whiteside and Lynam’s work [5], impulsivity must be considered as a multifaceted construct, made up of four separate components, which are the basis for the creation of a scale called the UPPS Impulsive Behavior Scale:

(1) Urgency, defined as “the tendency to experience strong impulses, frequently under conditions of negative affect”;
(2) lack of Perseverance, defined as “the difficulty to remain focused on a task that may be boring or difficult”;
(3) lack of Premeditation, defined as “the difficulty to think and reflect on the consequences of an act before engaging in the act”;
(4) Sensation Seeking, defined as “a tendency to enjoy and pursue activities that are exciting, and openness for new experiences.”

Bechara and Van der Linden [6, see also 7] recently proposed to relate the various facets of impulsivity to specific cognitive and motivational processes (Fig. 1). They suggested that the facets...
“Urgency,” “lack of Perseverance” and “lack of Premeditation” may be related to cognitive/self-control mechanisms, while “Sensation Seeking” may be related to motivational factors [7]. More specifically, “Urgency” may be related to the inability to deliberately suppress dominant, automatic or prepotent responses, especially in conditions of intense emotions. “Lack of Perseverance” could be related to difficulty resisting intrusive thoughts or intrusive images, while “lack of Premeditation” could be related to the inability to take into account the positive or negative consequences of a decision on the basis of the emotional responses associated with it. Finally, “Sensation Seeking” may be related to a tendency to exaggerate the impact of rewards and may operate automatically [8,9]. Each facet is supported by a specific cerebral network [7].

1.2. Obesity and the four facets of impulsivity

Several studies have assessed obese persons by means of self-report questionnaires and/or cognitive tasks that examine one or more of the four components of impulsivity. The Urgency component has been measured by self-report questionnaires [10] and psychological tasks [11]. Urgency may contribute to an obese person’s problem controlling eating in situations of strong emotion. Guerrieri et al. [12] found that difficulty suppressing an automatic response (as measured by stop signal reaction time) predicted heightened food intake. To the best of our knowledge, lack of Perseverance has only been measured in obese persons by means of self-report questionnaires [1]. There is a link between obesity and the self-discipline facet of the well-known NEO Personality Inventory (NEO-PI-R), which is related to lack of Perseverance [10]. Obese persons who overeat have a strong tendency to suppress thoughts [13], which may make the suppressed thoughts (e.g., thoughts of food) become hyperaccessible, which in turn causes distress and increased food consumption [14]. This may explain why obese people overeat, despite their intentions to control their food intake. In the same vein, it has been shown that avoidance of body/shape concerns actually increases such preoccupations [15]. Thought control difficulties may discourage patients and interfere with their treatment.

The lack of Premeditation aspect of impulsivity has been measured by self-report questionnaires [10] and psychological tasks [16]. Previous studies have shown that obese persons choose immediate rewards even when future long-term negative consequences are associated with them. This reflects an inability to assess future impact, which may potentially contribute to disadvantageous decision-making (e.g., not considering the possible long-term negative consequences of overeating).

The Sensation Seeking dimension has been measured by self-report questionnaires [17–19] and a psychological task [20]. Overweight persons with binge eating disorders have enhanced sensitivity to rewards [19]. The tendency to seek rewards (e.g., food) is associated with food intake, overeating and subsequent weight gain, as well as difficulty maintaining or losing weight [21]. This tendency affects food intake, especially when varied food (food that varies in color, form, taste and texture) is offered [20]. It may be related to a heightened selective attention to food stimuli and may make it difficult to regulate eating, particularly in obese individuals who have impaired sensitivity to the hunger and satiety signals that normally regulate eating [22].

2. Objective

The objective of this study is to examine for the first time how eating disorder symptoms, eating-disorder-related dysfunctional cognitions and obesity may be related to the four facets of impulsivity. If we return to the general framework of this article (Fig. 2), we may hypothesize that hypersensitivity to food stimuli associated with good self-regulatory capacities should not lead to difficulties regulating eating behavior and related thoughts. However, hypersensitivity to food stimuli associated with poor self-control would lead to such difficulties, suggesting that controlled processes and automatic processes interact in this context [23].

3. Methods

3.1. Participants

The study sample consisted of 47 overweight (defined as a body mass index (BMI) >25 kg/m²) and obese patients (defined as a BMI > 30 kg/m²) who were recruited through local advertisements and in the Therapeutic Patient Education for Chronic Diseases Division of the University Hospital of Geneva. Women were included if they met the following criteria: age 18–60 years and body mass index in the overweight (BMI > 25 kg/m²) or obese range (BMI > 30 kg/m²). The 47 normal-weight controls were recruited through local advertisements in the community and represented a range of professions. Women were included in this group if they conformed to the following inclusion criteria: age 18–60 years and body mass index in the normal range (BMI = 18.5–24.9 kg/m²). All participants were female, native or fluent French speakers (criterion for inclusion), had normal or corrected vision (criterion for inclusion), and 90% were Caucasian. They gave written informed consent prior to taking part in the study.

The study was approved by the Medical Ethics Committee of the University Hospital of Geneva.

3.2. Measures

Demographic information (age, ethnicity, years of education) and information about the duration of weight problems was collected during a face-to-face interview before the study. The French versions of the UPPS Impulsive Behavior Scale [5,24] and the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) [25,26] were used to explore the cognitive and motivational facets of impulsivity. The Eating Disorder Examination Questionnaire (EDE-Q) [27] and the Mizes Anorectic Cognitions Questionnaire (MAC-24) [28,29] were used to explore eating disorder symptoms and eating-disorder-related dysfunctional cognitions.
The 4 dimensions of impulsivity in obese patients

The UPPS Impulsive Behavior Scale consists of 45 items that evaluate four different facets of impulsivity, labeled Urgency (12 items, e.g., “I have trouble controlling my impulses”), lack of Premeditation (11 items, e.g., “Before I get into a new situation I like to find out what to expect from it”), lack of Perseverance (10 items, e.g., “I generally seek new and exciting experiences and sensations”), and Sensation Seeking (12 items, e.g., “I generally seek new and exciting experiences and sensations”). Items on the scale are scored from 1 to 4, with 1 = “I agree strongly,” 2 = “I agree somewhat,” 3 = “I disagree somewhat,” and 4 = “I disagree strongly.” Some items are reversed so that, across all items, a high score reveals impulsivity. This instrument has been validated in French with 360 volunteer women and men from the community aged from 17 to 30 years old 

The French version of the SPSRQ consists of 35 items with a yes/no response format divided into two subscales: Sensitivity to Punishment (18 items, e.g., “Comparing yourself to people you know, are you afraid of many things?”) and Sensitivity to Reward (17 items, e.g., “Do you often do things to be praised?”). This instrument has been validated in French with 360 volunteer women and men from the community aged from 17 to 30 years old. The alpha reliabilities in the present sample were .87, .84 for Sensitivity to Punishment, (lack of) Perseverance, and Sensation Seeking, respectively.

The Mizes Anorectic Cognitions Questionnaire (MAC-24) consists of 24 items that assess three types of cognitions relevant to eating disorders. It has three subscales measuring rigid weight regulation and fear of weight gain (8 items, e.g., “If I don’t have a specific routine for my daily eating, I’ll lose all control and I’ll gain weight”), excessive self-control of eating and weight as a basis of self-esteem (7 items, e.g., “I am proud of myself when I control my urge to eat”), and beliefs that body weight is an important factor in approval from others (9 items, e.g., “How much I weigh has little to do with how popular I am”). Some items are reversed so that, across all items, a high score reveals more dysfunctional cognitions. This instrument is a translation of the original validated English version and has been used with obese individuals in previous studies. The alpha reliabilities in the present sample were .79, .86, .76 for rigid weight regulation and fear of weight gain, excessive self-control of eating and weight as a basis of self-esteem, and beliefs that body weight is an important factor in approval from others, respectively.

3.3. Data analysis

Statistical analyses were performed with the Statistica 7.0 program. Descriptive statistics for BMI and age revealed that the normality assumption was not violated. The skewness (degree of symmetry) of the distributions ranged from 0.23 to 1.13 and the kurtosis (degree of peakedness/flatness) ranged from 1.59 to 3.3. Small skewness and kurtosis deviations from zero indicate little or no departure from normality. Differences between obese, overweight and normal-weight participants on questionnaires, BMI and demographic data (age and years of education) were tested using t-tests. Spearman correlations were performed among obese and overweight participants to explore the association between BMI, duration of weight problems, eating disorder symptoms, eating-disorder-related dysfunctional cognitions and each of the four facets of impulsivity, with p set at .05. We pooled the data from overweight
and obese participants for all statistical analyses, as there were only 6 persons in the overweight group.

4. Results

The mean age of the overweight/obese sample was 35.49 ± 9.75 years; they had a mean of 14.40 ± 2.57 years of education and a mean BMI of 35.07 ± 4.78 kg/m². The controls’ mean age was 34.83 ± 11.34 years, with a mean of 14.96 ± 2.06 years of education and a mean BMI of 20.91 ± 1.48 kg/m². t-Tests revealed no significant differences between patients and controls in terms of age (p > .05) or years of education (p > .05), but significant differences in BMI (p < .001).

The results suggest that overweight and obese persons have higher levels of Urgency, lack of Perseverance, Sensitivity to Reward and Sensitivity to Punishment. Obese and overweight persons are also characterized by problematic eating behavior (loss of control over eating) and eating-disorder-related dysfunctional cognitions (all results with p set at .01).

In addition, the analyses suggest that, for overweight and obese persons, the levels of Urgency (rs = .32, p < .05), Sensitivity to Reward (rs = .35, p < .05) and Sensitivity to Punishment (rs = .37, p < .05) correlated significantly with dysfunctional cognitions. Sensitivity to Punishment correlated significantly with problematic eating (rs = .33, p < .05). There was also a significant correlation between lack of Premeditation and problematic eating (rs = -.32, p < .05). However, when we excluded overweight persons from the analysis, this negative association was no longer significant, suggesting that it may be limited to overweight (as opposed to obese) persons. However, as the overweight group is small (6 persons), we could not investigate this association further in this study. Neither BMI nor duration of weight problems correlated significantly with the four facets of impulsivity.

5. Discussion and conclusion

5.1. Discussion

The aim of this study was to examine for the first time how obesity and eating disorder symptoms are related to the four facets of impulsivity in a clinical sample of overweight and obese women. The French versions of Whiteside and Lynam’s Impulsive Behavior Scale, the Sensitivity to Punishment and Sensitivity to Reward Questionnaire, the Eating Disorder Examination Questionnaire and the Mizes Anorectic Cognitions Questionnaire were administered to 47 overweight or obese women with eating disorders and 47 normal-weight controls. The results suggest that overweight and obese persons have higher levels of Urgency, lack of Perseverance, Sensitivity to Reward, and Sensitivity to Punishment.

One finding of this study, as mentioned above, was that obese and overweight persons have high levels of Urgency, which has been found to be related to difficulties suppressing dominant or automatic responses, especially in conditions of intense emotions [6]. In other words, our results suggest that obese and overweight persons may have difficulties controlling their eating behavior, and especially when they are experiencing intense emotions. This inability to prevent oneself from overeating may have detrimental immediate (e.g., self-depreciation, depressed mood, abdominal pain) and long-term consequences (e.g., weight gain). This tendency to overeat can, in turn, lead to the development of maladaptive strategies to control weight (e.g., dieting, skipping meals). As such, it may help explain why certain overweight and obese individuals develop an eating disorder.

Our results also showed that obese and overweight persons have high levels of lack of Perseverance, which has been associated with difficulties inhibiting irrelevant thoughts or memories. It follows that obese and overweight individuals may have difficulties controlling their thoughts of food or thoughts concerning their shape and weight. This phenomenon may lead to overeating because thoughts of food increase the desire to eat [13]. Moreover, Engel et al. [15] showed that attentional avoidance of body and shape concerns – a dysfunctional cognitive strategy – increases such concerns. Alternatively, eating may be used to escape from negative thoughts (e.g., general negative thoughts or self-depreciating thoughts following out-of-control eating). This phenomenon is probably reinforced by the temporary alleviation of the negative thoughts and emotions and it may well increase the likelihood of excessive food intake (see the Escape Theory of Binge Eating [31]). We also found that obese and overweight persons have high levels of Sensitivity to Reward. This tendency to exaggerate the impact of rewards (food, in this case) may lead to weight gain or impede weight loss.

Finally, the correlation analyses suggest that cognitive and motivational aspects of impulsivity, specifically Urgency and Sensitivity to Reward, are associated with eating-disorder psychopathology in overweight and obese persons. These results are in line with the results of other studies [12,21] and indicate that Urgency may be reflected in difficulty controlling binge eating. The associations between Sensitivity to Reward and eating-disorder psychopathology suggest that it is difficult to control binge eating, particularly in overweight and obese persons who have enhanced sensitivity to food.

5.2. Conclusion

These results suggest that obese and overweight persons find it difficult to inhibit automatic or dominant behaviors and intrusive thoughts. They also have a tendency to exaggerate the impact of rewards and punishments. The study confirmed and extended previous results regarding the relationship between impulsivity and dysfunctional eating. To the best of our knowledge, this is the first study to investigate the four facets of impulsivity in obesity. Although the findings of this study provide important information concerning the relationship between impulsivity and dysfunctional eating, several limitations should be noted. First, the design of this study is cross-sectional, which means that causal links cannot be established between impulsivity, obesity and eating disorders. Second, the results are only preliminary and the sample size will be doubled to increase the statistical power of the study. Finally, the results rely on self-reported data, which are potentially subject to social desirability bias.

Future longitudinal studies should examine the relationship between impulsivity, obesity and dysfunctional eating. This kind of extension would allow stronger inferences to be made about causality. Studies are also required to explore the cognitive processes underlying the four facets of impulsivity by using cognitive tasks specifically designed for this purpose (see [6] for suggestions) and thereby circumvent self-report biases. Finally, these results have several important clinical implications.

5.3. Practice implications

To maximize treatment efficacy, the psychological assessment of obese persons should explore the different facets of impulsivity, for example by using the UPPS Impulsive Behavior Scale [5,24]. Based on this evaluation, psychological interventions should target the self-control problems that characterize impulsive behaviors. Two types of interventions should be offered: first, obese and overweight patients may benefit from treatment that focuses directly on remediation of inhibition, attention and mental flexibility and improves processing resources. They may also benefit from interventions that circumvent limited cognitive resources and work on automatic processes.
To the extent that obese persons have deficits affecting inhibition and mental flexibility, they may benefit from mindfulness techniques that target inhibition (of dominant or automatic behaviors and of intrusive thoughts) and mental flexibility processes. The primary goal of mindfulness-based therapy is to develop attentional control by the daily practice of mindful meditation [32]. The practice teaches individuals to observe their thoughts, emotions, and bodily sensations without judgment. Individuals are also guided in voluntarily shifting attention sequentially to the movements of breathing, sensations in the body, sounds in the environment, and thoughts and emotions that may arise. As such, mindfulness encourages a more adaptive relationship with the thoughts and negative emotions that previously triggered problematic eating; it also encourages patients to observe their feelings of hunger and satiety. Early results on the efficacy of mindfulness for problematic eating are promising and suggest that this kind of training improves self-control of eating, with binges decreasing in frequency and severity. They also suggest that participants become more aware of their physiological signals of hunger and satiety [33].

Since intrusive thoughts and visual images of food (visualizing a specific food item) and olfactory images of food (smelling a specific food item) play a key role in triggering overeating, obese persons may benefit from imagery techniques that aim to strengthen their thought-control abilities, as proposed by Kempt and Tiggesmann [34]. The imagery technique uses visual and olfactory imagery tasks in which persons are trained to form images that interfere with images of food. To this end, they are asked to read visual and olfactory cues silently. These cues are unrelated to food and are printed on a sheet of paper, for example “Imagine the appearance of a rainbow” or “Imagine the smell of freshly mown grass.” Then, the patients are instructed to maintain the imagined scene or smell by focusing exclusively on the picture or on the smell that each one brought to mind. Kempt and Tiggesmann found that this procedure reduced food desire. They suggest that this is because the visual and olfactory images interfere with food-related images.

Given that binge eating often occurs when cognitive resources are depleted (e.g., when the person is tired or under stress), obese persons may benefit from implementation intention techniques that rely on automatic components of self-regulation [35–37]. Implementation intentions are if-then plans that link situational cues with responses that are effective in attaining goals or desired outcomes. They are formed to enhance the translation of goal cues with responses that are effective in attaining goals or desired outcomes. They are formed to enhance the translation of goal cues with responses that are effective in attaining goals or desired outcomes. Individuals are also guided in voluntarily shifting attention sequentially to the movements of breathing, sensations in the body, sounds in the environment, and thoughts and emotions that may arise. As such, mindfulness encourages a more adaptive relationship with the thoughts and negative emotions that previously triggered problematic eating; it also encourages patients to observe their feelings of hunger and satiety. Early results on the efficacy of mindfulness for problematic eating are promising and suggest that this kind of training improves self-control of eating, with binges decreasing in frequency and severity. They also suggest that participants become more aware of their physiological signals of hunger and satiety [33].

Conflict of interest
None.

Role of funding
This research was supported by the Swiss National Science Foundation (SNSF) (grant number 100014-122398/1) and INTACT (Individually Tailored Stepped Care for Women with Eating Disorders) Research Training Network funded by the European Commission (2007–2011) in the Marie Curie Program (MRTN-CT-2006-035988). Both provided financial support for the conduct of the research and preparation of the article.

Acknowledgement
Zofia Laubitz who provided language help for the preparation of the article Serge Broennimann who provided technical help for the preparation of the figures.

References
[18] Rissanen A, Hakala P, Lissner L, Mattlar CE, Koskenvuo M, Rönne T. Body, sounds in the environment, and thoughts and emotions that may arise. As such, mindfulness encourages a more adaptive relationship with the thoughts and negative emotions that previously triggered problematic eating; it also encourages patients to observe their feelings of hunger and satiety. Early results on the efficacy of mindfulness for problematic eating are promising and suggest that this kind of training improves self-control of eating, with binges decreasing in frequency and severity. They also suggest that participants become more aware of their physiological signals of hunger and satiety [33].