β-cell regeneration: the pancreatic intrinsic faculty

DESGRAZ, Renaud, BONAL, Claire Brune, HERRERA, Pedro Luis

Abstract

Type I diabetes (T1D) patients rely on cumbersome chronic injections of insulin, making the development of alternate durable treatments a priority. The ability of the pancreas to generate new β-cells has been described in experimental diabetes models and, importantly, in infants with T1D. Here we discuss recent advances in identifying the origin of new β-cells after pancreatic injury, with and without inflammation, revealing a surprising degree of cell plasticity in the mature pancreas. In particular, the inducible selective near-total destruction of β-cells in healthy adult mice uncovers the intrinsic capacity of differentiated pancreatic cells to spontaneously reprogram to produce insulin. This opens new therapeutic possibilities because it implies that β-cells can differentiate endogenously, in depleted adults, from heterologous origins.

Reference

DOI : 10.1016/j.tem.2010.09.004
PMID : 21067943

Available at:
http://archive-ouverte.unige.ch/unige:25186

Disclaimer: layout of this document may differ from the published version.
Type I diabetes (T1D) patients rely on cumbersome chronic injections of insulin, making the development of alternate durable treatments a priority. The ability of the pancreas to generate new β-cells has been described in experimental diabetes models and, importantly, in infants with T1D. Here we discuss recent advances in identifying the origin of new β-cells after pancreatic injury, with and without inflammation, revealing a surprising degree of cell plasticity in the mature pancreas. In particular, the inducible selective near-total destruction of β-cells in healthy adult mice uncovers the intrinsic capacity of differentiated pancreatic cells to spontaneously reprogram to produce insulin. This opens new therapeutic possibilities because it implies that β-cells can differentiate endogenously, in depleted adults, from heterologous origins.

The different cell types of the adult pancreas, their function and their origin
The mammalian pancreas is a mixed gland of the digestive tract, composed of about 99% of exocrine cells and 1% of endocrine cells. Acinar and ductal cells constitute the exocrine part. Acinar cells secrete digestive enzymes that are forwarded to the duodenum along the ductal excretory tree. Food ingestion triggers nerve and hormonal enteric responses with the release of gastrin (by gastric G-cells), secretin (by duodenal K-cells) and cholecystokinin (by duodenal L-cells), resulting in exocytosis of zymogen granules by pancreatic acinar cells [1]. The endocrine compartment is formed by the islets of Langerhans that are dispersed within the exocrine parenchyma. These are aggregates of four different peptide-hormone-producing cell types, densely vascularized and innervated. In rodents the core of the islets is formed by insulin-producing β-cells (80% of the islet cells) surrounded by the three other cell types, namely α, δ- and PP-cells, which secrete glucagon, somatostatin and pancreatic polypeptide (PP), respectively. A rare fifth cell type, ε-cells, found mainly during pancreatic development, produce ghrelin [2]. Together they not only control blood glucose homeostasis but also contribute to the regulation of food intake and gastric emptying. Briefly, blood glucose levels rise following food intake, stimulating β-cells to secrete insulin. Circulating insulin in turn represses glycogenolysis and neoglucogenesis and promotes glucose uptake and processing by muscle cells and adipocytes. Conversely, when blood glucose is low, glucagon secreted by α-cells stimulates hepatic glycogenolysis and neoglucogenesis, thereby restoring normoglycemia. Somatostatin and PP negatively regulate β-, α- and acinar cell secretion; ghrelin represses β-cell secretion [3,4].

The definitive adult pancreatic cell mass seems to be determined during development by a small pool of endodermal Pdx1+ progenitor cells distributed in two primordia (dorsal and ventral) [5]. These progenitor cells proliferate and differentiate into two distinct major lineages: endocrine precursors expressing neurogenin3 (Neurog3), and Ptf1a+/Mist1+ exocrine progenitors, each with restricted differentiation potential [6,7]. Considered individually, each Neurog3-expressing cell is unipotent and is specified to one of the four islet endocrine cell types [6]. During development it appears that temporal competence windows determine or influence the fate of Neurog3+ cells: the earliest Neurog3-expressing cells tend to mainly differentiate into α-cells [8]. The early endocrine cells aggregate into proto-islet-forming pools, whose size predetermines the final size of the islets [6]. These early developmental steps are crucial because any alteration of the β-cell mass can result in faulty blood glucose control, leading later in life to glucose intolerance and diabetes (for a review on the concept of ‘fetal origin of adult diseases’ see [9,10]). While this review was in press, a new paper reported the first evidence of non-genetic transmission of high-fat diet metabolic sequelae from father to offspring [11].

Towards cell replacement therapy
In normal healthy conditions β-cells have a long life-span with a low proliferation rate [6,12]. In response to increased metabolic demand or after injury, however, the adult pancreas maintains or acquires the ability to produce new cells, particularly β-cells. The precise identification of the mechanisms involved in the maintenance of β-cell mass under different conditions could offer new hints to help generating new β-cells as a cell replacement therapy for treating diabetes. Today, insulin-dependent patients rely on daily insulin injections. Transplantation of isolated islets from cadavers is problematic due to donor scarcity (about 6000 islets/kg of body weight are required [13–15]), and is only applicable to certain forms of diabetes; in addition, transplantation has met with limited success due to restricted engraftment survival [16–19]. A promising approach relies on devising unlimited in vitro generation of insulin-
Table 1. Rodent models used to study pancreas regeneration. In some cases, different laboratories using the same injury approach (e.g. STZ) report different regeneration mechanisms (i.e. proliferation, neogenesis or transdifferentiation): note that in such studies, no clear assessment of the amount of β-cell loss was described and no cell tracing was performed.

<table>
<thead>
<tr>
<th>Model of injury</th>
<th>Species</th>
<th>Remnant β-cell mass</th>
<th>Regenerated β-cell mass</th>
<th>Markers of transitional cells</th>
<th>Cell tracing analysis</th>
<th>Mechanisms involved (or proposed)</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% PX</td>
<td>Mouse</td>
<td>n.d.</td>
<td>100% in 4 wks</td>
<td></td>
<td>No</td>
<td>Proliferation?</td>
<td>[40]</td>
</tr>
<tr>
<td>60% PX</td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td></td>
<td>No</td>
<td>Proliferation</td>
<td>[46]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>(−50%)</td>
<td>68% in 2 wks</td>
<td></td>
<td>No</td>
<td>Proliferation</td>
<td>[49]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>n.d.</td>
<td>73% in 1 mo</td>
<td></td>
<td>Elast.I-CreERT²; R26R</td>
<td>No acinar transdifferentiation</td>
<td></td>
</tr>
<tr>
<td>+sucrose</td>
<td>Rat</td>
<td>n.d.</td>
<td>55%</td>
<td></td>
<td>No</td>
<td>β-Cell hyper function</td>
<td>[115]</td>
</tr>
<tr>
<td>+GLP-1</td>
<td>Mouse</td>
<td>n.d.</td>
<td>68% in 2 wks</td>
<td></td>
<td>No</td>
<td>Proliferation</td>
<td>[117]</td>
</tr>
<tr>
<td>+syngenic islets</td>
<td>Mouse</td>
<td>n.d.</td>
<td>70.80% in 10 d</td>
<td>Ngn3+ in exocrine cells</td>
<td>No</td>
<td>Proliferation/ neogenesis</td>
<td>[119]</td>
</tr>
<tr>
<td>90% PX</td>
<td>Rat</td>
<td>n.d.</td>
<td>10%</td>
<td>Proliferating INS+</td>
<td>No</td>
<td>Proliferation</td>
<td>[120]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>n.d.</td>
<td>42% in 8 wks</td>
<td>Proliferating ductal</td>
<td>No</td>
<td>Neogenesis</td>
<td>[121]</td>
</tr>
<tr>
<td>+EX3</td>
<td>Rat</td>
<td>n.d.</td>
<td>40%</td>
<td>Proliferating ductal</td>
<td>No</td>
<td>Neogenesis</td>
<td>[29]</td>
</tr>
<tr>
<td>+ghrelin PDL</td>
<td>Rat</td>
<td>n.d.</td>
<td>10%</td>
<td>No</td>
<td>No</td>
<td>Neogenesis</td>
<td>[56]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>n.d.</td>
<td>50% in 4 wks</td>
<td>Proliferating ductal</td>
<td>No</td>
<td>Neogenesis</td>
<td>[122]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and INS+</td>
<td>No</td>
<td>Proliferation/neogenesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transdifferentiation</td>
<td>[101]</td>
</tr>
<tr>
<td>+gastrin</td>
<td>Rat</td>
<td>100%</td>
<td>80% in 7 d</td>
<td>CK19+/INS+ and CK7+/GLUT2</td>
<td>No</td>
<td>Neogenesis</td>
<td>[123]</td>
</tr>
<tr>
<td>Cellophane</td>
<td>Mouse</td>
<td>100%</td>
<td>200% in 6 wks</td>
<td>Ductal CK/Ngn3+</td>
<td>No</td>
<td>Neogenesis</td>
<td>[65]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transdifferentiation</td>
<td>[57]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No acinar transdifferentiation</td>
<td></td>
</tr>
<tr>
<td>Chemical injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caerulein</td>
<td>Mouse</td>
<td>100%</td>
<td>No</td>
<td>CALI+/INS+</td>
<td>No</td>
<td>Transdifferentiation</td>
<td>[69]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>100%</td>
<td>No</td>
<td>Ductal Pdx1+</td>
<td>No</td>
<td>Neogenesis</td>
<td>[125]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>100%</td>
<td>No</td>
<td>Elast.I-CreERT²; R26R</td>
<td>No</td>
<td>No acinar transdifferentiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transdifferentiation</td>
<td>[65]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neogenesis</td>
<td>[60]</td>
</tr>
<tr>
<td>STZ</td>
<td>Rat</td>
<td>100%</td>
<td>No</td>
<td>Ductal Pdx1+ → Pdx1+/INS+</td>
<td>No</td>
<td>Neogenesis</td>
<td>[126]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>SOM+/Pdx1+ → SOM+/Pdx1+/INS+</td>
<td>No</td>
<td>Neogenesis</td>
<td>[66]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>n.d.</td>
<td>40% in 2 wks</td>
<td>SOM+/Pdx1+ → SOM+/Pdx1+/INS+ and GLUT2+GLU+</td>
<td>No</td>
<td>Transdifferentiation</td>
<td>[67]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>AMY+/INS+</td>
<td>No</td>
<td>Transdifferentiation</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>CK7+/Pdx1+</td>
<td>No</td>
<td>Transdifferentiation</td>
<td>[38]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>GCN+/Pdx1+ or GLUT2+ or INS+</td>
<td>No</td>
<td>Transdifferentiation</td>
<td>[31]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>Ductal Pdx1+ and Ngn3+</td>
<td>No</td>
<td>Transdifferentiation</td>
<td>[39]</td>
</tr>
<tr>
<td>+EX4 or GLP-1</td>
<td>Rat</td>
<td>90%</td>
<td>39%</td>
<td>Proliferating INS+</td>
<td>No</td>
<td>Proliferation/neogenesis</td>
<td>[127]</td>
</tr>
<tr>
<td>+BTC</td>
<td>Mouse</td>
<td>n.d.</td>
<td>39% in 1 wks</td>
<td>Proliferating ductal</td>
<td>No</td>
<td>Neogenesis</td>
<td>[128]</td>
</tr>
<tr>
<td>+Activin A</td>
<td>Rat</td>
<td>n.d.</td>
<td>72% in 2 mo</td>
<td>Proliferating INS+ and INS+</td>
<td>No</td>
<td>Transdifferentiation</td>
<td>[112]</td>
</tr>
<tr>
<td>Tungstate</td>
<td>Mouse</td>
<td>n.d.</td>
<td>87% in 1 mo</td>
<td>Duct-associated INS+ Extra-islet Pdx1+</td>
<td>No</td>
<td>Neogenesis</td>
<td>[129]</td>
</tr>
</tbody>
</table>
producing cells derived from embryonic stem (ES) cells or, even more interestingly, from patient-derived induced pluripotent stem (iPS) cells [20,21]. Very recently, however, in view of new experimental evidence showing that adult differentiated pancreatic cells can reprogram and change their phenotype [22], exploration of the intrinsic spontaneous capacity of the adult pancreas to regenerate β-cells, in particular from heterologous origins, has acquired a new dimension as a route to the development of therapeutic treatments for diabetes.

This review will focus on β-cell regeneration and its diverse mechanisms. In fact, exploiting the intrinsic capacity of the adult pancreas to produce new β-cells endogenously is probably the most promising way to develop cell replacement therapies to treat the forms of diabetes that result from massive β-cell loss. Nevertheless, a prerequisite for such an achievement will be to uncover the immunological basis of the pathogenesis of the disease.

Induction of pancreas injury: models of regeneration

Pancreas regeneration has been studied for more than 30 years using a variety of rodent models which partially mimic either T1D (type 1 diabetes, also called juvenile or insulin-dependent diabetes mellitus) or T2D (type 2 diabetes, non-insulin-dependent diabetes mellitus), essentially by reducing the β-cell mass and therefore impairing glucose homeostasis (Table 1) (for a comprehensive review with a historical perspective see [23]).

<table>
<thead>
<tr>
<th>Model of injury</th>
<th>Species</th>
<th>Remnant β-cell mass</th>
<th>Regenerated β-cell mass</th>
<th>Markers of transitional cells</th>
<th>Cell tracing analysis</th>
<th>Mechanisms involved (or proposed)*</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>+EX4</td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>Pdx1+/SOM+ and Pdx1+/INS+</td>
<td>No</td>
<td>Neogenesis</td>
<td>[38]</td>
</tr>
<tr>
<td>+ElA-INGAP</td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>Proliferating INS+ and Pdx1+</td>
<td>No</td>
<td>Neogenesis</td>
<td>[95]</td>
</tr>
<tr>
<td>+RIP-IGF-1</td>
<td>Mouse</td>
<td>30%</td>
<td>50% in 3 mo</td>
<td>Proliferating INS+</td>
<td>No</td>
<td>Proliferation</td>
<td>[106]</td>
</tr>
<tr>
<td>+BTC adeno</td>
<td>Mouse</td>
<td>10%</td>
<td>50% in 4 wks</td>
<td>Proliferating CK+ and INS+</td>
<td>No</td>
<td>Proliferation/neogenesis</td>
<td>[111]</td>
</tr>
<tr>
<td>+Ngn3/Pdx1/ MafA adeno</td>
<td>Mouse</td>
<td>n.d.</td>
<td>100% in 6 wks</td>
<td>Cpa1-CreER<sup>TM</sup>; R26R</td>
<td>Transdifferentiation</td>
<td>[63]</td>
<td></td>
</tr>
<tr>
<td>+ghrelin</td>
<td>Rat</td>
<td>n.d.</td>
<td>No</td>
<td>Proliferating INS+</td>
<td>No</td>
<td>Proliferation</td>
<td>[108]</td>
</tr>
<tr>
<td>+FGF-7</td>
<td>Rat</td>
<td>n.d.</td>
<td>No</td>
<td>Proliferating ductal and INS+</td>
<td>No</td>
<td>Proliferation/neogenesis</td>
<td>[114]</td>
</tr>
<tr>
<td>Alloxan</td>
<td>Rat</td>
<td>n.d.</td>
<td>No</td>
<td>Proliferating ductal and INS+</td>
<td>No</td>
<td>Proliferation/neogenesis</td>
<td>[130]</td>
</tr>
<tr>
<td>+EGF +gastrin</td>
<td>Rat</td>
<td>n.d.</td>
<td>No</td>
<td>Ductal INS+</td>
<td>No</td>
<td>Neogenesis</td>
<td>[131]</td>
</tr>
<tr>
<td>+HB-EGF</td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>Ductal CK+/INS+</td>
<td>No</td>
<td>Neogenesis</td>
<td>[110]</td>
</tr>
<tr>
<td>Genetic models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdx1-tTA; TetO-Pdx1</td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>Ductal Pdx1+/INS- and Pdx1+/INS+</td>
<td>No</td>
<td>Neogenesis/ transdifferentiation</td>
<td>[33]</td>
</tr>
<tr>
<td>Kir6.2 G132S</td>
<td>Mouse</td>
<td>5.50%</td>
<td>70% in 5 mo</td>
<td>DBA+/INS+ and Pdx1-/INS-</td>
<td>No</td>
<td>Neogenesis</td>
<td>[34]</td>
</tr>
<tr>
<td>RIP-Tgfu</td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>Ductal CK+/Pdx1+</td>
<td>No</td>
<td>Neogenesis/ transdifferentiation</td>
<td>[61]</td>
</tr>
<tr>
<td>INS-Ifnγ</td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>Proliferating INS+ and ductal INS+</td>
<td>No</td>
<td>Neogenesis/neogenesis</td>
<td>[85]</td>
</tr>
<tr>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>Ductal INS+ and INS+</td>
<td>No</td>
<td>Neogenesis/neogenesis</td>
<td>[85]</td>
<td></td>
</tr>
<tr>
<td>STZ</td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>Ductal INS+ and Pdx1+</td>
<td>No</td>
<td>Neogenesis/neogenesis</td>
<td>[132]</td>
</tr>
<tr>
<td>RIP-MycER<sup>TM</sup></td>
<td>Mouse</td>
<td>n.d.</td>
<td>No</td>
<td>Ductal INS+</td>
<td>No</td>
<td>Neogenesis/neogenesis</td>
<td>[133]</td>
</tr>
<tr>
<td>INS-NfsB</td>
<td>Zebrafish</td>
<td>n.d.</td>
<td>No</td>
<td>Proliferating INS+</td>
<td>INS-Kaede</td>
<td>Proliferation and Neogenesis or transdifferentiation</td>
<td>[86]</td>
</tr>
<tr>
<td>RIP-rtTA; Tet-DTA</td>
<td>Mouse</td>
<td>~30%</td>
<td>100% in 8 mo</td>
<td>Proliferating INS+</td>
<td>RIP-CreER<sup>TM</sup>; Z/AP</td>
<td>Proliferation</td>
<td>[50]</td>
</tr>
<tr>
<td>RIP-DTR (HB-EGF)</td>
<td>Mouse</td>
<td>0.10%</td>
<td>1.2% in 1 mo</td>
<td>INS+/GLU+</td>
<td>RIP-CreER<sup>TM</sup>; R26YFP</td>
<td>α-Cell to β-cell</td>
<td>[22]</td>
</tr>
</tbody>
</table>

*Regeneration mechanisms indicated in italics relate to experimental models in which no regeneration was detected and no cell tracing was performed, and in which the degree of β-cell loss was often not determined, but a regeneration process was nevertheless proposed by the authors. Grey rows highlight reports in which cell ligation was not observed or not detected. For a comprehensive review see [23]. Abbreviations: BTC: betacellulin; EX3: exendin3; EX4: exendin4/exenatide; GLP-1: glucagon-like peptide1; mo: months; n.d.: not determined; No: no regeneration observed; PDL: pancreatic duct ligation; PX: pancreatectomy; STZ: streptozotocin; wk(s): weeks.
Surgical procedures trigger acute pancreatitis. Typically, subdiabetogenic partial pancreatectomy (PX) (i.e. resection of 60–70% of the pancreas) and diabetogenic partial PX (90% resection) imply the loss of a substantial proportion of pancreatic cells, including β-cells, and can thus trigger diabetes. Other surgical approaches such as cellophane wrapping and pancreatic main duct ligation (PDL), or the administration of the drug caerulein, are protocols that trigger acute pancreatitis, as does PX, but do not involve β-cell mass reduction. For this reason these latter are, *sensu stricto*, models of pancreas tissue remodeling rather than models of pancreas regeneration, but in which interestingly there is *generation* of new β-cells. After PX, on the contrary, there is a dramatic reduction of the β-cell mass, and this is followed by a process of reconstitution or replacement (i.e. *regeneration*) of new β-cells.

Diabetes and β-cell regeneration are also observed in models of chemically- or genetically-induced β-cell destruction (Box 1). Considering the different approaches and observations that have been reported it now appears that the extent and mechanism of β-cell mass increase could be different and unique to each injury model (Table 1). Three principal regeneration processes have been described or proposed, namely: (i) neogenesis – undifferentiated precursor or progenitor cell differentiation to islet cells, (ii) replication of the remaining intact β-cells, and, more recently, (iii) transdifferentiation of pancreatic fully differentiated cells – conversion of one cell type into another (non-β cells to β-cells) by reprogramming (Figure 1).

Box 1. Total β-cell ablation

A novel powerful tool to study the intrinsic capacity of the adult pancreas to replenish β-cells is the induction of conditional β-cell ablation in adult animals without inflammation or autoimmunity, contrary to what occurs in RIP-TNFα [84], RIP-luc [85], non-obese diabetic (NOD) mice, or in mice treated with multiple low doses of STZ. This kind of massive β-cell ablation was achieved in zebrafish by selectively expressing the bacterial gene *NfsA* encoding nitroreductase (NTR) from an insulin promoter [86]. NTR can convert prodrugs such as metronidazole into a toxic agent, leading to β-cell apoptosis. In this experiment, new β-cells appeared with surprising rapidity, about 36 h after prodrug removal. Although the identity of the source of the regenerated β-cells could not be established, cell lineage-tracing experiments revealed a variety of mechanisms, indicative of pancreas cell plasticity, including cell proliferation and differentiation of unidentified non-β cells [86].

New evidence strongly confirms the regenerative adaptability and versatility of the adult pancreas. Our laboratory recently investigated whether adult mice can produce new β-cells after their total or near-total loss, which resembles the situation found in the pancreas of T1D patients, but without the problem of autoimmunity [22]. We relied on the transgenic expression in mice of the human gene encoding the diphtheria toxin (DT) receptor (*HBEGF/DTR*) on the β-cell surface (driven by an insulin promoter; RIP-DTR transgene). β-Cell regeneration in this extreme situation would imply the involvement of heterologous, non-β-cell sources. The *RIP-DTR* transgene specifically allowed the ablation of more than 99% of the β-cells upon DT injection. These mice became hyperglycemic 2 to 3 days after DT administration, and needed insulin treatment to survive. With time (several months), however, treated mice showed recovery of about 10% of the normal β-cell mass, with new β-cells being derived from non-β-cells, and without involving any increase in cell proliferation rates: the majority of these new β-cells were indeed reprogrammed adult a-cells [22].

Here we review the literature relating to these three processes. Papers involving cell lineage analyses will be particularly highlighted. Irrespective of the injury-and-regeneration model studied, it must be stressed that marker coexpression in single cells is not a proof *per se* of an ontogenic (i.e. mother-to-daughter) relationship between different cell types. Only the appropriate cell lineage-tracing studies allow the origin of regenerated cells to be established, thereby identifying the exact regenerative processes involved (i.e. neogenesis, β-cell replication or transdifferentiation).

Neogenesis after damage: recapitulating pancreatic ontogeny? The controversial involvement of pancreatic duct cells in β-cell regeneration

The existence of intra-islet adult stem cells was debated in the past; in particular, cells expressing the filament nestin were proposed to be such islet progenitors, yet experimental evidence did not support this possibility [24,25]. Even so, the existence of an undefined multipotent adult pancreatic stem/progenitor cell, in particular of ductal origin, is a matter of controversy, with contradictory results provided by cell lineage-tracing analyses [26–28]. It has been proposed the ductal cells represent a pool of homogeneous cells from which few dedifferentiate into progenitor cells or transdifferentiate; alternatively, ducts can contain rare persistent distinct undifferentiated progenitor cells [26,28]. On the one hand, it has been reported that PX triggers the expression of *Pdx1*, *Neurog3* and hormones in ductal cells, increasing their proliferation. This suggests that pancreatic ducts are a potential reservoir of adult progenitor cells, and thus adult regeneration would recapitulate to some extent the generation of endocrine cells.
that takes place during development [29–32]. On the other hand, the direct contribution of ductal cells to the formation of new ß-cells after birth or after PDL has recently been challenged [26–28].

Conditional and transient downregulation of Pdx1 triggers diabetes within two weeks using the Pdx1:4TA knock-in line crossed with TetO-Pdx1 transgenic mice [33]. After doxycyclin (DOX) removal, regeneration is induced by the re-expression of Pdx1, with increased cell proliferation and appearance of Pdx1+ and Pdx1+/insulin+ cells associated with ducts. In another model, mice expressing the dominant-negative form of Kir6.2 (Kcnj11), a subunit of a ß-cell-specific K$_{ATP}$-channel, become diabetic at two months of age but, intriguingly, partially recover their ß-cell mass by six months. The presence of islet cells coexpressing DBA lectin (a ductal cell marker), amylase and hormones led the authors to suggest that ductal cells could be involved in this process [34].

Administration of cytotoxic agents, such as streptozotocin (STZ) or alloxan, is another way to decrease ß-cell mass (Box 2). These molecules enter ß-cells through the glucose transporter type 2 (Glut2) and trigger either DNA damage (STZ, alkylating agent) or the production of reactive oxygen species (alloxan), leading to ß-cell death (extensively reviewed in [35]). Unfortunately, however, Glut2 is also expressed by hepatocytes as well as by kidney and intestinal cells [36]. For this reason, STZ and alloxan are not ß-cell-specific cytotoxic agents, and their use damages these extrapancreatic tissues as well, thus complicating the interpretation of the results. Different administration protocols of STZ can trigger either T2D- or T1D-like symptoms [37]. In STZ-treated hyperglycemic mice, Neurog3 expression is upregulated; nevertheless, the same authors reported different Neurog3 expression patterns (i.e. in islets or in ducts) in different papers [38,39]. In another work, the induced regeneration after 60% PX in mice did not appear to involve Neurog3 re-expression [40].

The participation of cells expressing Neurog3 in the production of new ß-cells in adults appears to be dependent on the nature and extent of the pancreatic insult. For instance, with the model of PDL and subsequent tissue remodeling, Neurog3-expressing cells form near ducts and can give rise to new islet cells; specifically, Neurog3 induction preceded an astonishing 40% increase in ß-cell mass during the week following PDL [30]. Surprisingly, the same investigators were unable to track these cells as of ductal origin in a subsequent cell lineage-tracing analysis [27] using double-transgenic Hnf1b-CreER; R26R mice – which combine a conditional Cre recombinase (CreER) gene under Hnf1b control with the R26R Cre-activated lacZ reporter transgene. In fact, they found that 40% of the pancreatic ductal cells in adult mice could be labeled, but no ß-cell expressed the reporter protein after PDL, suggesting that Neurog3+ cells were not of ductal origin [27]. Similarly, in an independent study using mucin1 (Muc1)-CreER mice, Mucin1+ (i.e. ductal) cells were shown to give rise to islet cells during development only, but not after birth [28]. These two studies challenged an earlier report describing the use of carbonic anhydrase 2 (Car2)-CreER; R26R mice in pancreatitis induced by PDL, which found that ductal cells in newborn mice can give rise to both acinar and endocrine cells [41].

Box 2. Biomolecules for ß-cell regeneration

A number of molecules directly promote ß-cell mass expansion and function. Both processes can occur, nevertheless, in absence of ‘true’ islet regeneration. Among these factors, some endogenous proteins were identified by high-throughput transcriptome and proteome screens of regenerating pancreata [87–90]. Whole pancreatic extracts after injury appear to promote ß-cell mass augmentation in mice treated with STZ [91,92]. Specifically, two proteins of the Reg family, Reg3 (formerly named INGAP) and PSP/Reg, isolated from pancreatic extracts after cellophane wrapping or 90% partial PX, respectively, were shown to stimulate ß-cell growth [93–96]. Recent clinical studies suggest that INGAP promotes insulin production in T1D patients and ameliorates glycemic control in T2D patients [97].

Extrapancreatic substances, such as intestinal hormones and growth factors that are involved in postprandial control of glyceremia, also promote ß-cell mass expansion. Glucagon-like peptide 1 (GLP-1, a post-translational cleavage product of the proglucagon peptide), for instance, is secreted upon meal ingestion by intestinal L-cells and by neurons located in the brainstem and hypothalamus. When released into the bloodstream, GLP-1 has a so-called ‘incretin effect’ on ß-cells, and this accounts for at least 50% of the total insulin secretion. GLP-1 is nevertheless rapidly degraded by dipeptidyl peptidase 4 (DPP-4). Clinical trials have revealed that the GLP-1 agonist exenatide (or the very similar exendin-4), and the DDP-4 antagonist sitagliptin, can improve glucose-dependent insulin secretion in normal and T2D patients, and thus reduce the level of HbA$_1c$ (glycated hemoglobin) [98]. In addition, GLP-1 appears to stimulate ß-cell mass expansion by repressing ß-cell apoptosis and by promoting ß-cell proliferation and neogenesis. This was reported in rats after 90% PX and in mice made diabetic with STZ that were treated with exendin 4 [99]. In these mice, Pdx1 and Neurog3 expression in ducts was increased [38,99–101]. Further lineage-tracing experiments are needed to define the contribution of GLP-1 to the formation of new ß-cells from progenitors, or by proliferation, or even by transdifferentiation [102].

Another interesting molecule is gastrin, a hormone secreted by gastric G-cells, which is a cholecystokinin homolog that promotes parietal HCl secretion in the stomach after food intake. Gastrin was reported to boost neogenesis of ß-cells from ductal progenitors in RIP-Tnf mice and in rats after PDL, but without inducing ß-cell proliferation [103,104]. During undernutrition, regeneration after 90% PX was moderate and was associated with lower plasma IGF-1 levels [105]. Conversely, STZ-treated mice overexpressing IGF-1 showed a higher ß-cell proliferation rate [106].

The hormone ghrelin is secreted by D-cells of the gastric fundus. Ghrelin influences pancreatic endocrine and exocrine functions, and stimulates the release of growth hormone from the anterior pituitary [107]. Newborn rats made diabetic with STZ and given ghrelin for a week displayed increased ß-cell proliferation and a better recovery than STZ-treated controls [108]. Similar observations were made in juvenile rats after 90% PX [109].

Other growth factors also promote pancreatic regeneration. Betacellulin is a member of the epidermal growth factor (EGF) family and was reported to improve ß-cell mass and function in mice after administration of STZ and in rats after 90% PX [110,111]. When administered to STZ-treated neonates together with activin A (TGF-ß family), ß-cell mass growth was potentiated [112]. This increase in ß-cell mass was associated with proliferation of ductal, ß- and δ-cells, and with the appearance of cells coexpressing somatostatin and insulin, or somatostatin and Pdx1. Another EGF-like molecule, HB-EGF, also improves ß-cell mass recovery by stimulating ductal ß-cell neogenesis and ß-cell proliferation [113]. Similar observations were made in STZ-treated newborn rats that received FGF-7 (fibroblast growth factor family) [114].
Very recently, observations made by lineage-tracing Sox9+ cells (Sox9 is an early pancreas progenitor marker, as is Pdx1) with high efficiency (70–80% of ductal cells labeled), largely correlate with those obtained using Hnf1b-CreER; R26R mice [27]: after PDL, Sox9+ ductal cells give rise to Neurog+ cells, but do not contribute to islets [42].

In conclusion, whether there is a direct contribution of ductal cells to the formation of new β-cells in adult mice, be they differentiated epithelial cells or undifferentiated precursors, remains elusive, even if negative evidence is accumulating in most recent reports [43–45]. What could explain the discrepancy? The contradictory observations might be explained, at least in part, by (i) heterogeneity in the ductal cell population—duct cell labeling was mosaic in most lineage-tracing studies (between 60 to 20% of duct cells remained unlabeled in different works), or by (ii) transgene specificity or other technical issues. What is the tenet regarding the role of pancreatic ducts in β-cell regeneration? Although the issue remains unresolved at this time, it now clearly appears (and future studies should confirm this view) that there is a high degree of versatility and cell plasticity in the adult pancreas, such that the nature and extent of the lesion inflicted to this organ probably determines the type of healing or regenerative response.

Replication of remaining β-cells
Several studies describe increased β-cell mitotic indexes in injured pancreata, and this suggests that β-cell regeneration can result from the proliferation of pre-existing β-cells. This was shown, for instance, using nucleotide-analog-dependent lineage tracing after 50% PX in mice [46]. In another study, transient forced expression of Myc in β-cells, which initially leads to massive apoptosis [47], subsequently resulted in a higher mitotic index in remaining β-cells and regeneration [48]; in this investigation, however, no cell lineage-tracing was performed.

In 60% of PX mice, or in transgenic models in which an important degree of β-cell death can be induced, such as the insulin (Ins2-rTA)-rTA; TetO-DTA mice, cell lineage-tracing analyses showed surviving β-cells to be the precursors of new β-cells [49,50]. Briefly, mice were given DOX for several weeks, including the gestational period, to trigger the transgenic expression in β-cells of DT-A (i.e. the active subunit of diphtheria toxin, DT, a blocker of protein synthesis) [51]. In these animals about 70–80% of the β-cell mass was destroyed and they became diabetic. After DOX removal β-cell mass was fully replenished by new β-cells produced by the replication of remaining β-cells, as shown by β-cell tracing analysis and BrdU incorporation [50].

In rodent β-cells, cell cycling is driven by CyclinD1/D2-Cdk4 activity and is repressed by the Cdk-inhibitor p16INK4a [44,45]. After STZ treatment, mice expressing an active (i.e. p16-independent) Cdk4P57RIC mutant kinase very rapidly showed improved β-cell regeneration, and this correlated with an increased number of proliferating cells in ducts and islets as compared with untreated mice [51], but no lineage tracing was done. In wild-type mice, the Cdk inhibitor p16INK4a accumulates with age and is associated with the observed decline in aged animals of the regenera-

Reprogramming pancreatic cells into β-cells
Fate switching of adult cells, or transdifferentiation/reprogramming of terminally differentiated cells to another phenotype, is, in principle, a rare event that can take place either via direct conversion, or indirectly through a transient intermediate de-differentiated stage—which does not systematically involve the passage through a transitional pluripotent stage [55]. In different mouse injury models the detection of transitional cells (i.e. cells expressing multiple markers) suggests that exocrine cells can transdifferentiate directly into β-cells—ductal cells after 90% PX [56], acinar cells after PDL [57], and acinar and ductal cells in human insulin promoter-Ifng mice in which γ-interferon expression is driven from the insulin gene promoter [58] (Table 1). The coexpression of insulin and amylase has led to the hypothesis that acinar cells could represent progenitors to β-cells during regeneration in these different models [57,59–62]. In fact, two studies using genetic lineage-tracing approaches have so far demonstrated direct reprogramming of adult acinar cells, either to β-cells or to adipocytes, by ectopic β-cell-specific transcription factor expression or after inactivation of Myc, respectively [63,64].

In elastase I (Ela1)-CreERT2; R26R mice, adult acinar cells can be conditionally labeled with moderate efficiency, but the proportion of labeled cells is high in few pancreatic lobes [65]. Desai and colleagues showed with these transgenics that there is no acinar-to-β-cell reprogramming after 70% PX or in PDL- or caerulein-induced pancreatitis. In a more recent study, however, using the same transgenic acinar lineage-tracing system, Zhou and coworkers have shown that overexpression of β-cell lineage-specific genes (namely Neurog3, Pdx1 and MafA) in adult acinar cells, from recombinant adenovirus injected into the pancreatic parenchyma, forces them to acquire the β-cell phenotype [63]. Together these results suggest that acinar cells are plastic enough to reprogram when driven by transcription factor activation or inactivation, but do not spontaneously reprogram during inflammation or after β-cell mass reduction.

Islet endocrine non-β-cells could also represent a potential source of new β-cells. For instance, cells coexpressing different hormones have been described after STZ treatment or cellophane wrapping [34,58,66–68]. More precise-
ly, some investigators suggested the potential involvement of α-cells in β-cell regeneration after observing cells coexpressing glucagon and insulin in several pancreatic regeneration models. Another interesting observation is that diabetic patients have an increased α-cell mass [69,70]; similarly, α-cell proliferation was increased in STZ-treated rats, and α-cells expressed β-cell markers such as Pdx1, Glut2 (Slc2a2) and insulin [31,66,71]. In the same way, β-cell ablation induced by DOX in Ins2-rtTA; TetO-DTA mice was followed by the appearance of a very small number of glucagon+/insulin+ bihormonal cells, although these cells were not lineage-traced and their contribution to the formation of new β-cells was not explored [50]. In vitro, the α-cell line αTC1.6 expresses various β-cell markers when cultured in the presence of betacellulin [72].

Lineage-tracing studies, performed in healthy mice after the initial reports on bihormonal cells were published, revealed that adult α- and β-cells share a common precursor but belong to separate developmental lineages [73]. However, Collombat and colleagues recently reported that ectopic expression of the β-cell-specific transcription factor Pax4 in mouse embryonic α-cells triggers their conversion into β-cells [74]. Conversely, downregulation of Pdx1 in β-cells triggers the expression of glucagon, thus leading to the accumulation of cells coexpressing insulin and glucagon [33,75,76]; similarly, upregulation of Arx in embryonic β-cells pushes them towards the acquisition of the α-cell phenotype [77].

In summary, recent observations reveal that the direct expression of α-cell-specific transcription factors in developing β-cells [77], or of β-cell lineage transcription factors in either developing α-cells [74] or in adult differentiated acinar cells [63], is sufficient to trigger their reprogramming in non-regenerating conditions, and illustrates the plasticity of pancreatic cells.

Very recent evidence now shows that regenerating conditions could be sufficient to drive the spontaneous conversion of adult pancreatic cells. The heterologous formation of new β-cells in adulthood was recently shown in RIP-DTR mice after the near total ablation of β-cells, with an α-cell-specific inducible lineage-tracing experiment performed during regeneration [22] (Box 1). After near-total loss of β-cells, about 5–10% of the α-cells in these mice spontaneously and rapidly reprogram to produce insulin and other β-cell proteins, including Pdx1, Nkx6.1 or Glut2, and therefore the majority of the regenerated β-cells are indeed reprogrammed α-cells. Direct α-to-β reprogramming was further confirmed in this study by double ablation of β- and α-cells; this prevented the appearance of glucagon+/insulin+ bihormonal cells. The molecular mechanisms governing the α- to β-cell conversion have not yet been deciphered; systemic or local factors, or both (Box 2), might be involved in this newly-observed process.

Perspectives

The number of articles reporting the capacity of the adult pancreas to generate new cells after damage is growing. Evidence from the somewhat abundant literature suggests that regeneration must involve different mechanisms that are directly related to (i) the type of injury, and (ii) the amount or degree of β-cell loss (Figure 2; summarized in Table 1).

We are entering an exciting period in which we should learn how to exploit the regenerative power of the pancreas. Acinar and α-cells have been shown so far to acquire the β-cell phenotype upon genetic modification or after near-total β-cell loss. This versatility could be used to trigger cell reprogramming in diabetes, but more mechanistic information will be required before the endogenous capacity of the pancreas to generate new β-cells can be exploited. For example, diverse molecules including circulating gut hormones and local growth factors, or cytokines in autoimmune or inflammatory conditions, can modulate regeneration [78,79] (Box 2).

In humans, as in rodents, pancreas regeneration appears to be modulated by age and disease. One-month-old infants afflicted with ‘permanent hyperinsulinaemic hypoglycaemia in infancy’ can only be treated by

Figure 2. The amount of β-cell loss and the type of injury determine the regeneration mechanism. The contribution of procedures other than β-cell proliferation is proportional to the degree of β-cell destruction, such that the less β-cells remain, the more relevant are processes such as direct reprogramming of other pancreatic cell types to β-cells. Only a profound decrease of the β-cell mass triggers β-cell regeneration – for example, 50% β-cell ablation in RIP-DTR female mice is not followed by a measurable increase in the β-cell mass under normal conditions (i.e. without inflammation and on a standard diet) [22]. The heterologous formation of new β-cells is only observed when almost no β-cells are left [22]. Green cells, β-cells; red cells, α-cells.
removal of most of the pancreas (90-95% PX), and this results in iatrogenic diabetes. Over a follow-up period of almost 6 years in one study, 12 out of 22 children having undergone >90% PX recovered glycemic control, meaning that they had regenerated significant β-cell mass [80]. On the contrary, aged patients (50 years on average) undergoing 50% PX as treatment for adenocarcinoma or chronic pancreatitis did not show any measurable regeneration after a period of almost 2 years. Whether this is an age-related phenomenon or whether 50% PX is not enough to stimulate regeneration, or 2 years is insufficient, remains unclear [81]. Nevertheless, there is evidence suggesting that regeneration by increased β-cell replication is not blocked in aged individuals with T1D [82]. In another study involving a cohort of recent-onset T1D patients who died of diabetic ketoacidosis there were no signs of increased β-cell replication [83].

These combined observations in humans correlate with our own observations made in mice after total β-cell ablation showing that the adult pancreas can generate new β-cells from heterologous sources [22]. We can thus reasonably speculate that the development of a sustainable regenerative therapy for treating T1D will require our mastering the ability to control the immune system; in this situation any inherent regenerative capacity of the adult pancreas would become apparent and therefore exploitable in the development of new and powerful treatments.

Acknowledgements
We are grateful to F. Thorel, S. Chera and D. Baronnier for critically reading the manuscript, and to S. Chera for artwork. We thank S. Tranguch for excellent editorial support. We were unable to cite all the extensive literature on pancreas regeneration. C.B. and R.D. are recipients of grants (postdoctoral fellowship awards) from the Swiss National Science Foundation. P.L.H. is a recipient of grants from the Juvenile Diabetes Research Foundation, the National Institutes of Health (NIH)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (Beta Cell Biology Consortium), the Swiss National Science Foundation (National Centre of Competence in Research ‘Frontiers-in-Genetics’ and NRP63), and the European Union (FP6 and FP7).

References
5 Stanger, B.Z. et al. (2007) Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature 445, 886–891
18 Cure, P. et al. (2008) Improved metabolic control and quality of life in seven patients with type 1 diabetes following islet after kidney transplantation. Transplantation 85, 801–812
30 Xu, X. et al. (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207
39 Kodama, M. et al. (2009) Embryonic stem cell transplantation correlates with endogenous neurogenin 3 expression and pancreas
regeneration in streptozotocin-injured mice. J. Histochem. Cytochem. 57, 1149–1158
42 Sander, M. Personal communication
45 Marzo, N. et al. (2004) Pancreatic islets from cyclin-dependent kinase 4/BRCA (Cdk4) knockin mice have significantly increased beta cell mass and are physiologically functional, indicating that Cdk4 is a potential target for pancreatic beta cell mass regeneration in type 1 diabetes. Diabetologia 47, 686–694
61 Song, S.Y. et al. (1999) Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha. Gastroenterology 117, 1416–1426
81 Menge, B.A. et al. (2008) Partial pancreatectomy in adult humans does not provoke beta-cell regeneration. Diabetes 57, 142–149
83 Butler, A.E. et al. (2007) Modestly increased beta cell apoptosis but no increased beta cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia 50, 2323–2331
95 Taylor-Fishwick, D.A. et al. (2006) Islet neogenesis associated protein transgenic mice are resistant to hyperglycemia induced by streptozotocin. J. Endocrinol. 190, 729–737
101 Xu, G. et al. (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48, 2270–2276
104 Rooman, I. et al. (2002) Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 51, 686–690
116 Liu, Y.Q. et al. (2000) Beta-cell adaptation in 60% pancreatectomy rats that preserves normoinsulinemia and normoglycemia. Am. J. Physiol. 279, E68–73
120 Brockenbrough, J.S. et al. (1988) Discordance of exocrine and endocrine growth after 90% pancreatectomy in rats. Diabetes 37, 223–236